
Technical report from Automatic Control at Linköpings universitet

Lego Segway Project Report

Patrik Axelsson, Ylva Jung
Division of Automatic Control
E-mail: axelsson@isy.liu.se, ylvju@isy.liu.se

16th March 2011

Report no.: LiTH-ISY-R-3006

Address:
Department of Electrical Engineering
Linköpings universitet
SE-581 83 Linköping, Sweden

WWW: http://www.control.isy.liu.se

AUTOMATIC CONTROL
REGLERTEKNIK

LINKÖPINGS UNIVERSITET

Technical reports from the Automatic Control group in Linköping are available from
http://www.control.isy.liu.se/publications.

http://www.control.isy.liu.se/~axelsson
http://www.control.isy.liu.se/~ylvju
mailto:axelsson@isy.liu.se
mailto:ylvju@isy.liu.se
http://www.control.isy.liu.se/publications/?type=techreport&number=3006&go=Search&output=html
http://www.control.isy.liu.se
http://www.control.isy.liu.se/publications

Abstract
This project was a part of the course Applied Control and Sensor Fusion
(http://www.control.isy.liu.se/student/graduate/AppliedControl/
index.html) during summer and fall 2010. The goal of the course was to be a
practical study of implementation issues, not always encountered in the life of a
PhD student.
A segway was constructed using a LEGO Mindstorms NXT kit and a gyro, and
the goal was to construct a self balancing segway. To do this the motor angles
and the gyro measurements were available, and a working Simulink program. The
main focus in this project has been to construct an observer.
The segway can be used for demos in basic control courses, and a manual can be
found at the end of the report.

Keywords: segway, manual, observer, lego mindstorms

http://www.control.isy.liu.se/student/graduate/AppliedControl/index.html
http://www.control.isy.liu.se/student/graduate/AppliedControl/index.html

Lego Segway Project Report
Patrik Axelsson – axelsson@isy.liu.se

Ylva Jung – ylvju@isy.liu.se

2011-03-16

1 Introduction
In this project a LEGO segway robot has been built as a part of the course
Applied Control and Sensor Fusion (http://www.control.isy.liu.se/student/
graduate/AppliedControl/index.html). The goal of this project course is to be a
practical study of implementation issues, not always encountered in the life of a PhD
student. A short presentation of the segway can be found in Section 2. The modeling
is described in Section 3 and the controller in Section 4.

The initial plan for the project was to construct and implement an H∞-controller,
and if the project time allowed it, construct and implement an observer. We started out
on an H∞-controller, but since we did not like the way of implementing an observer by
integrating a sensor measurement we soon switched to observer construction instead.

The observer is presented in Section 5 and works well on simulated data, but when
trying it on the real segway it did not work at all. To investigate why we tried to log
the measured data by connecting the segway to the PC, using Bluetooth and a USB
cable, but we did not succeed, see Section 6.

In Section 7 a short user manual can be found, describing how to use the exist-
ing programs (for e.g. small demonstrations), and how to develop and compile new
programs.

If there had been more time, we had most likely tried to design and implement an
EKF and/or proceed to design and implement an H∞ controller.

2 Segway
The segway used is based on LEGO Mindstorms NXT and assembled according to [1].
All parts are standard LEGO Mindstorms components, except for a single direction
gyro sensor from HiTechnic.

The segway is an implementation of an inverted pendulum and is a nonlinear
system. The nonlinear model and the linearised model used in this project are further
presented in Section 3.

Inputs and outputs
The actuators of the segway are two DC motors, one connected to the left wheel and
one to the right. To control these actuators, the controlled input is:
• voltage to the motors recalculated to two PWM signals to the left and right DC

motor.
Some of the segway state variables are measured and the outputs from the segway are:
• the DC motor angles θml and θmr

1

http://www.control.isy.liu.se/student/graduate/AppliedControl/index.html
http://www.control.isy.liu.se/student/graduate/AppliedControl/index.html

3 MODEL 2

Figure 1: Side view and plane view of the two-wheeled inverted pendulum
modeled [1].

Table 1: Physical parameters used in the model.
g gravitational acceleration
Jm DC motor moment of inertia
Jw wheel moment of inertia
Jφ body yaw moment of inertia
Jψ body pitch moment of inertia
L distance of the mass center from the wheel axis
m wheel weight
M body weight
n gear ratio
R wheel radius
W body width

• the body pitch angular velocity, ψ̇ from the gyro.
The other states, including the body pitch angle ψ, have to be calculated, and therefore
an observer will be used in this project.

3 Model
The model used is derived by [1]. Since the segway has been built in the same way as
the segway the models were developed for, these are judged to be valid in this project.

Figure 1 shows a simplified two-wheeled inverted pendulum from the side and from
the top, with the coordinates used in the report. These are

θ: average angle of left and right wheel, θl and θr
ψ: body pitch angle
φ: body yaw angle

and some parameters are presented in Table 1 (for the numerical values, see [1]).

4 CONTROLLER 3

Lagrange equation leads to a description of the motion,[
(2m+M)R2 + 2Jw + 2n2Jm

]
θ̈ +

[
MLRcosψ − 2n2Jm

]
ψ̈ −MLRψ̇2sinψ = Fθ

(1)[
MLRcosψ − 2n2Jm

]
θ̈ +

[
ML2 + Jψ + 2n2Jm

]
ψ̈ −MgLsinψ−

ML2φ̇2sinψcosψ = Fψ (2)[
1
2mW

2 + Jφ + W 2

2R2

(
Jw + n2Jm

)
+ML2sin2ψ

]
φ̈+ 2ML2ψ̇φ̇sinψcosψ = Fφ (3)

These equations are nonlinear but can be linearised around a point of equilibrium,
in this case the upstanding position of the segway (ψ → 0⇒ sinψ → ψ, cosψ → 1 and
higher order terms are neglected). Equations (1)-(3) can then be approximated as[

(2m+M)R2 + 2Jw + 2n2Jm
]
θ̈ +

[
MLR− 2n2Jm

]
ψ̈ = Fθ (4)[

MLR− 2n2Jm
]
θ̈ +

[
ML2 + Jψ + 2n2Jm

]
ψ̈ −MgLψ = Fψ (5)[

1
2mW

2 + Jφ + W 2

2R2

(
Jw + n2Jm

)]
φ̈ = Fφ, (6)

where Fθ,ψ,φ are the forces in the θ, ψ, φ directions, respectively.
The connection between θ and ψ and their derivatives is described in Equations (4)

and (5), and φ in Equation (6). So with the state vectors

x1 =
(
θ ψ θ̇ ψ̇

)T
, x2 =

(
φ φ̇

)T (7)

and the expressions for Fθ,ψ,φ as in [1], the motion equations can be rewritten and
divided into two separate state space models,

ẋ1 = A1x1 +B1u (8)
ẋ2 = A2x2 +B2u (9)

where u =
(
vl vr

)T are the left and right motor voltages. In the model in Equa-
tion (8), with the equations handling the upright position (no turning possibility
needed), vl = vr, so therefore these are simplified to the one input signal, u, the
voltage to the motors. The angles θ and ψ are in radians and the angular velocities θ̇
and ψ̇ are in radians/s. Since this project has focused on the control of θ and ψ, only
the model described in (8) has been considered.

The nonlinear state equations are linearised around the upstanding position and
are thus only valid around that point.

4 Controller
The controller implemented in [1] is a modified linear quadratic controller, with a
feedback gain and an integral gain (to help control the position of the segway). The
weight matrices are

Qlqr =

1 0 0 0 0
0 6 · 105 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 4 · 102

 , Rlqr =
(

1 · 103 0
0 1 · 103

)
(10)

with xlqr =
(
θ ψ θ̇ ψ̇

∫
(θ − θref)

)T . So the Qlqr(2, 2)-element is the weight for
ψ and the Qlqr(5, 5)-element is working on an added state, the integrated difference

5 OBSERVER 4

Figure 2: An overview of the modified LQ controller [1]. Cθ denotes the con-
version from x1 to θ.

between the angle θ and the reference θref, see Figure 2 for the Simulink block diagram
of the controller.

The controller has not been evaluated or improved in this project.

5 Observer
The observer that was implemented in [1] integrated the measured angular velocity
from the gyro. One thing that you learn in a basic course in signal processing is that
the measured signal from many sensors are noisy and influenced with drift. That is, a
constant sensor error will grow without limits, when integrating the signal. Integrating
this signal directly will therefore be a bad decision. Instead we developed a model
based observer to cope with this problem. The segway is a nonlinear system, that
means, a nonlinear observer should be used, e.g. Extended Kalman Filter (EKF).
Since we used a linearised model of the segway in upstanding position, as described
in Section 3, a stationary Kalman Filter (KF) was used. The system can be described
by a continuous state space model according to (8),

ẋ1 = Ax1 +Bu, (11)

where x1 =
(
θ ψ θ̇ ψ̇

)T , A and B are system matrices and u is the voltage to the
motors, see Section 3 and [1] for more details.

5.1 Design
We augmented this model with one more state δ in order to take the drift of the gyro
into consideration. The new model, where we also have included a noise model, can
be written

ẋ =
(
A 0
0 0

)
︸ ︷︷ ︸

Ā

x+
(
B
0

)
︸ ︷︷ ︸
B̄

u+
(
B 0
0 1

)
︸ ︷︷ ︸

Ḡ

w, (12)

where x =
(
θ ψ θ̇ ψ̇ δ

)T is the augmented state vector and w =
(
w1 w2

)T is
the noise vector.

The measured signals are the angular velocity of the body from the gyro and the
motor position of the two motors. First, we model the measured angular velocity as

y1 = ψ̇ + δ =
(
0 0 0 1 1

)
x. (13)

It is a bit more tricky to find a relationship between the measured motor angles and

5 OBSERVER 5

the states. A glance at the existing solution gave us

θ = 1
2 (θl + θr) = 1

2 (θm,l + ψ + θm,r + ψ) =

= 1
2 (θm,l + θm,r) + ψ = θm + ψ, (14)

where θl and θr are the angles of the left and right wheel, θm,l and θm,r are the angles
of the left and right motor, which are measured, and θm

∆= 1
2 (θm,l + θm,r). The second

measurement equation can be written

y2 = θm =
(
1 −1 0 0 0

)
x, (15)

and the complete measurement equation with measurement noise added is at last
obtained as

y =
(

0 0 0 1 1
1 −1 0 0 0

)
x+ e = C̄x+ e. (16)

Simple calculations show that the model is observable, i.e., the observability matrix
O has full rank.

The stationary KF can be written as

˙̂x = (Ā−KC̄)x̂+
(
B̄ K

)(u
y

)
, (17a)

ĀP + PĀT − PC̄TR−1C̄P + ḠQḠT = 0, (17b)

K = PC̄TR−1, (17c)

where R = E
[
eeT
]
and Q = E

[
wwT

]
. We have also assumed that the cross correla-

tion between the process noise w and the measurement noise e is zero. The Matlab
function lqe has been used to calculate the observer gain K. The covariance matrices
for the process noise and measurement noise are chosen as

Q =
(

20 0
0 0.1

)
(18a)

R =
(

0.01 0
0 0.001

)
. (18b)

5.2 Implementation
The observer has to be discretised before it can be implemented in the Simulink dia-
gram. The discretisation is made with zero order hold, that is

xk+1 = Adxk +Bduk, (19a)
yk = Cdx, (19b)

where

Ad = eĀTs , (20a)

Bd =
∫ Ts

0
eĀtB̄dt, (20b)

Cd = C̄. (20c)

The sample time Ts is 4ms.

6 DATA LOGGING 6

The measured gyro data are in degrees/s but they are given with an offset. An
estimate of the offset is obtained if the measured data is averaged over several readings
while the segway is standing still. This is done during the initialisation task in the
Simulink diagram. The offset is then subtracted from the measurement before it enters
the observer. A transformation from degrees/s to rad/s also has to be done both for
the gyro data (after the offset is removed) and for the measured motor angles.

5.3 Result
The linearised model was simulated with our observer. Figure 3 shows the estimated
θ, ψ, θ̇ and ψ̇. Note that the estimation starts after 1 s because the first second is used
to perform the initialisation task. We can see that the estimated states follow the true
states well.

There are some differences in the beginning of the second state but it is less than
5◦ which we thought would be sufficient. These differencies probably stem from the
peak in the fifth state, δ, causing a discrepancy between the true and estimated ψ̇,
thus leading to an error in the ψ state. We have also compared our estimates with the
estimates from the existing observer in [1] and they are more or less the same. The
state δ, that describes the drift in the gyro, is shown in Figure 4.

The controller is obviously able to hold the segway in an upstanding position with
our observer during the simulation. But when we download the observer to the real
segway and run it, the segway can not be controlled to an upstanding position. We
therefore tried to save the estimates from our observer and the existing one to see how
different they are on the segway, see Section 6.

The different behaviour of the segway in simulation vs. reality is probably because
of the linearisation made in Section 3; the model and controller are linear but the
reality is nonlinear. One way to better imitate this situation would be to implement
the nonlinear system in the simulation model, to be able to tune the Q, R matrices
in eq. (18) in a more suitable way. Another solution would be to use a time varying
Kalman filter instead of the time invariant KF we have used.

6 Data logging
The obtained observer works very well during simulations, but not when compiled and
used on the segway. Therefore we wanted to log the measured data from the segway
to better see what happens and why this did not work. Our intention was to see how
to tune the observer to the real segway, i.e., choose new Q and R matrices that fit the
true system better.

It is possible to connect the LEGO NXT brick to a computer using either Bluetooth
or a USB cable, and we started using the Bluetooth connection since this means the
segway can move around freely, like it is supposed to. But we could not get the
connection to work, the COM port did not register anything being sent or recieved.
To use the USB connection an additional program, USBlib, had to be downloaded
that did not agree with the firmware version used. We changed back to an older
version of the firmware, but this took away the possibility to compile and download
new programs to the segway, and we decided not to proceed with this.

So sadly enough we did not succeed in logging data, which makes it hard to tell
what the problem with our observer was.

7 User Manual
This section describes how to build the Simulink diagram and download the program
to the segway. A description of how to use the segway is also included. There is also

7 USER MANUAL 7

0 5 10 15 20 25 30
−1000

0

1000

2000

3000

θ
[d

eg
]

0 5 10 15 20 25 30
−10

−5

0

5

10

ψ
 [d

eg
]

Time [s]

True
Estimated

(a) State one and two.

0 5 10 15 20 25 30
−500

0

500

θ
do

t [
de

g/
s]

0 5 10 15 20 25 30
−60

−40

−20

0

20

40

ψ
 d

ot
 [d

eg
/s

]

Time [s]

True
Estimated

(b) State three and four.

Figure 3: The true states (blue) and the estimated states (red) with our observer.

7 USER MANUAL 8

0 5 10 15 20 25 30
−7

−6

−5

−4

−3

−2

−1

0

1

Time [s]

δ
[d

eg
/s

]

Figure 4: The estimated offset of the gyro, i.e., state five.

7 USER MANUAL 9

another Matlab toolbox available at [3] which is good if you only want to test the
sensors. No instructions for the second toolbox are presented in this report.

7.1 How to use NXTway-GS
The given controller in [1] uses the Matlab toolbox Embedded Coder Robot for LEGO
Mindstorms NXT or for short ECRobot NXT. Information about the toolbox and how
to install can be found in [2].

All the files for [1] can be found on the desktop of the computer RTLT-12 in the
directory Segway filer. The Matlab files can then be found under nxtway_gs\models.
The file nxtway_gs.mdl is a simulation model that uses the controller in nxtway_gs_
controller.mdl. The rest of this section focus on nxtway_gs_controller.mdl since it is
this file that is used on the segway.

The main window of the file nxtway_gs_controller.mdl can be seen in Figure 5.
The controller is implemented in the subsystem nxtway_app. Press the button Gen-
erate code and build the generated code to do what it says. However, there is some
problem with the installation so the only thing that happens is that the Simulink
diagram is built. The rest has to be done manually according to
• Open C:\cygwin\bin\bash.exe
• Go to the directory c:\Document and Settings\rtadm\Desktop\Segway filer\

nxtway_gs\models\nxtprj
• Write make all
• Write make rxeflash
• Connect and start the segway
• Write sh ./rxeflash.sh

The program is now on the robot and is called nxtway_app which is the same as the
Simulink subsystem described above.

7.2 Start the Robot
The main things to know about the robot is:

1. Press the orange button to start the robot.
2. Walk through the menus with the triangular buttons.
3. Confirm with the orange button.
4. Go back with the dark gray button.

The program that is downloaded in Section 7.1 is started according to:
1. Press the orange button to start the robot.
2. Use the triangular and the orange buttons to choose My Files/Software files/

nxtway_app.
3. Choose the alternative called run and confirm with the orange button.
4. The main menu for the NXT program is now visible. The display shows how to

continue.
5. The robot must be held still in an upright position when the start button (right

triangular button) is pressed. Release the robot when a beep sounds.

7 USER MANUAL 10

Disclaimer:
LEGO(R) is a trademark of the LEGO Group of companies which does not sponsor, authorize or endorse this demo.
LEGO(R) and Mindstorms(R) are registered trademarks of The LEGO Group.

NXTway-GS Controller Model based on Rate Monotonic Scheduling
This model consists of four parts : Device Inputs, Device Outputs, Task Scheduler, and Application Task Subsystem.

Generate code from task subsystem using RTW-EC

Generate code and build the generated code

Requires only MATLAB products

Requires additional 3rd party tools

Download (SRAM)Download (NXT enhanced firmware)

Click the annotations to generate/build code and download it into NXT

pwm_r
2

pwm_l
1

nxtway_app

task_init_fc

task_ts1_fc

task_ts2_fc

task_ts3_fc

Ultrasonic Sensor Interface
Port = S2

Priority = -1

S2

System Clock Interface
Priority = -1

Sound Tone Interface
Priority = 1

Freq

Dur

Servo Motor Interface1
Port = C

Priority = 1

C

Servo Motor Interface
Port = B

Priority = 1

B

Revolution Sensor Interface1
Port = B

Priority = -1

In1B

Revolution Sensor Interface
Port = C

Priority = -1

In1C

Gyro Sensor Interface
Port = S4

Priority = -1

S4

ExpFcnCalls Scheduler
Priority = 0

OSEK Tasks
task_init: Init

task_ts1: 0.004 [sec]
task_ts2: 0.02 [sec]
task_ts3: 0.1 [sec]

Bluetooth Tx Interface
Priority = 1

BTTx

Bluetooth Rx Interface
Priority = -1

BTRx

Battery Voltage Interface
Priority = -1

sonar
6

gyro
5

theta_m_r
4

theta_m_l
3

bluetooth_rx
2

battery
1

int32

uint16

int32

int32

uint8

int8

int8

uint8

uint16

task_init

task_ts1

task_ts2

task_ts3

uint32

uint32

Figure 5: The main window of the file nxtway_gs_controller.mdl. The controller
is implemented in the subsystem nxtway_app.

7.3 Develop new Programs
This section describes how you can develop your own program in ECRobot NXT. It
is best to start with nxtway_gs_controller.mdl since all the necessary settings are
correct in that file. Save the file as something new, e.g. my_terminator, and you
are ready to develop. Start by renaming the subsystem nxtway_app to a name of
your choice, e.g. terminator. Then, right click on the button Generate code and
build the generated code, choose Annotation Properties... Finally, change the name
of the system you want to build in the ClickFcn text editor. In other words, change
from nxtbuild(’nxtway_app’,’build’) to nxtbuild(’terminator’,’build’). You
are now free to implement your on program. The program should be implemented in
the subsystem you just renamed, i.e., terminator.

7.4 Possible Error Messages.
You can find the solutions of some errors that may occur in this section.
• If

Error executing callback ’ClickFcn’
Error using ==> nxtbuild at 149
Failed to create nxtprj directory for model: nxtway_app

arises when you press the button Generate code and build the generated code,
then it is probably because you are in the nxtprj folder with Cygwin. Go back
one folder and try again.

• If you do not get the message filename.rxe=xxxxx when you type sh ./rxe-
flash.sh in Cygwin, there might not be enough space on the NXT. Delete pro-

REFERENCES 11

grams not used and try again. It can also be that you have forgot to turn the
robot on.

• If you get an error message saying

Model failed to compile with strict bus check on
Turning strict bus check off
...
Model has compile errors.

when you have pressed the button Generate code and build the generated code,
then open the file rtwbuild. Set a breakpoint at row 201 and then press the
button Generate code and build the generated code again. Matlab will now
stop at row 201 in rtwbuild and you have access to the variable newExc. The
variable is a MException object and contains information about the error. The
error message you are looking for can be found if you dig into the causes, e.g.
newExc.causes{1,1}.causes{1.1}.message.

References
[1] Yorihisa Yamamoto. NXTway-GS (Self-Balancing Two-Wheeled Robot) Con-

troller Design. http://www.mathworks.com/matlabcentral/fileexchange/
19147

[2] Takashi Chikamasa. Embedded Coder Robot NXT. http://www.mathworks.
com/matlabcentral/fileexchange/13399

[3] MATLAB for LEGO MINDSTORMS Robots. http://www.mathworks.com/
academia/lego-mindstorms-nxt-software/legomindstorms-matlab.html

http://www.mathworks.com/matlabcentral/fileexchange/19147
http://www.mathworks.com/matlabcentral/fileexchange/19147
http://www.mathworks.com/matlabcentral/fileexchange/13399
http://www.mathworks.com/matlabcentral/fileexchange/13399
http://www.mathworks.com/academia/lego-mindstorms-nxt-software/legomindstorms-matlab.html
http://www.mathworks.com/academia/lego-mindstorms-nxt-software/legomindstorms-matlab.html

Avdelning, Institution
Division, Department

Division of Automatic Control
Department of Electrical Engineering

Datum
Date

2011-03-16

Språk
Language

� Svenska/Swedish
� Engelska/English

�

�

Rapporttyp
Report category

� Licentiatavhandling
� Examensarbete
� C-uppsats
� D-uppsats
� Övrig rapport
�

�

URL för elektronisk version

http://www.control.isy.liu.se

ISBN
—

ISRN
—

Serietitel och serienummer
Title of series, numbering

ISSN
1400-3902

LiTH-ISY-R-3006

Titel
Title

Lego Segway Project Report

Författare
Author

Patrik Axelsson, Ylva Jung

Sammanfattning
Abstract

This project was a part of the course Applied Control and Sensor Fusion (http://
www.control.isy.liu.se/student/graduate/AppliedControl/index.html) during
summer and fall 2010. The goal of the course was to be a practical study of imple-
mentation issues, not always encountered in the life of a PhD student.

A segway was constructed using a LEGO Mindstorms NXT kit and a gyro, and
the goal was to construct a self balancing segway. To do this the motor angles and
the gyro measurements were available, and a working Simulink program. The main
focus in this project has been to construct an observer.

The segway can be used for demos in basic control courses, and a manual can be
found at the end of the report.

Nyckelord
Keywords segway, manual, observer, lego mindstorms

http://www.control.isy.liu.se
http://www.control.isy.liu.se/student/graduate/AppliedControl/index.html
http://www.control.isy.liu.se/student/graduate/AppliedControl/index.html

	1 Introduction
	2 Segway
	3 Model
	4 Controller
	5 Observer
	5.1 Design
	5.2 Implementation
	5.3 Result

	6 Data logging
	7 User Manual
	7.1 How to use NXTway-GS
	7.2 Start the Robot
	7.3 Develop new Programs
	7.4 Possible Error Messages.

