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Abstract—In this work, estimators for platform pose and land-
mark maps for visual-inertial data are analysed. It is shown that
the full, non-linear, visual-inertial problem has a conditionally
linear substructure in the 2D case which can be exploited for
efficient solutions, e.g., Block Coordinate Descent (BCD). It is also
shown that the measurement noise from the non-linear model
becomes parameter dependent resulting in biased estimates if
that fact is ignored. However, the bias can be accounted for
using the Iteratively Reweighted Least Squares (IRLS) method.
In the 3D case the conditionally linear substructure is not
separable. However, it can be shown that the Jacobian of the
non-linear substructure can be calculated recursively resulting
in an efficient solution. A simulated 2D visual-inertial example
is used to illustrate the theoretical results.

Index Terms—Visual-Inertial Estimation, Iteratively
Reweighted Least Squares, SLAM

I. INTRODUCTION

Mobile platforms with visual-inertial sensing are common in
robotics and autonomous vehicles, and are used in applications
and research. They enable odometry, Structure from Motion
(SfM), tracking, and Simultaneous Localization and Mapping
(SLAM) with applications in e.g., decision support and con-
trol. The inertial measurement unit (IMU) can forecast the
platform’s orientation at high sampling rate yielding better
predictions for visual feature tracking, while vision-based ori-
entation estimation can mitigate bias and drift errors inherent
in inertial navigation.

For monocular vision systems the scale of the scene cannot
be recovered without additional information. However, when
combined with an IMU it can be used to estimate the pose
and to recover the metric scale, a topic which have been
studied by [1]–[3] and others. It is shown in [1] that given
noise-free measurements of a landmark from five distinct
vantage points, with known platform rotation, it is possible
to recover the landmark position, the platform’s position and
velocity, and accelerometer bias in closed form. A similar idea
was explored in [4] parametrizing the estimator with relative
motion constraint between poses in a sparse representation of
the trajectory and it is referred to as pre-integration.

Similarly, camera observations from several vantage points
can be used to derive keyframes [5], [6] effectively down-
sampling the pose trajectory [7]. In the keyframes approach,
camera measurements are used to express relative pose

This work has been supported by the Industry Excellence Center LINK-
SIC founded by The Swedish Governmental Agency for Innovation Systems
(VINNOVA) and Saab AB.

constraints, or feature-based constraints, rather than direct
parametrized by landmarks. Such structure-free solutions [8]
still produce internal estimates of landmark position, using
non-linear least-squares (NLS), which are needed to introduce
the feature-based constraints. The combination of structure-
free SLAM utilizing pre-integration was explored in [9]–[11].

Estimation and initialization of variables such as landmarks
has been considered extensively in computer vision. Polyno-
mial methods can have closed-form solutions and are popular
when computational speed is key, for instance using RANSAC
outlier rejection. Another class are linear (or affine) formula-
tions of e.g., essential and fundamental matrices, points, lines,
and SFM see e.g., [12], [13] which are solved using least-
squares or eigen-value methods. In [14] a comparison between
polynomial, linear, and iterative linear estimators is done on
camera-based triangulation problems. The linear methods may
fail to converge [14] if, for example, the baseline is very short,
which in turn results in a poorly conditioned system. These
methods may even not converge with standard projection error
minimization. Linear methods are often algebraic in the sense
that they do not consider minimisation of the measurement
errors since the projective model is not directly used to form
the error resulting in parameter dependent noise. However,
linear solutions can also minimise the re-projection error if
the correct weighting is used [13], [15]. This can be treated
using Iteratively Reweighted Least Squares (IRLS), see e.g.,
[16] by alternating parameter and noise covariance updating
in an iterative fashion.

In this contribution we present two conditionally linear
models coupling motion and landmarks in visual/inertial es-
timation. As an extension to previous work [1], which only
consider noise-free models, the linear formulations implicate
parameter-dependent noise which can be efficiently treated
using IRLS. We suggest a chain of linear solutions combining
motion, landmark, and noise estimation using IRLS and Block
Coordinate Descent (BCD) and this could be used as either
an initialization method for a non-linear solver or as an
approximate solution on its own. The approach is numerically
analysed in a 2D examples showing reduced bias and improved
consistency. Furthermore, an efficient recursive Jacobian cal-
culation is suggested for the corresponding 3D case.

II. SYSTEM DEFINITION

The proposed model is, more or less, standard for visual-
inertial estimation of the platform and the observed envi-



ronment. Its formulation is in a batch form, i.e., all the
measurements are collected beforehand and available during
estimation. For various reasons, an initial restriction is to
consider a 2D formulation. First of all, 2D results are easier to
visualise and understand. Second, as we will show below, the
iterative solution for the 2D case has some attractive properties
that we will exploit. An expansion to the 3D case will not be
done here, but some insights into its properties will be given
in Section VI.

It is assumed that the platform is moving in an environment
parametrised by point landmarks. The data are both visual and
inertial measurements that are used to estimate the motion and
the environment. Parametrisation of a platform’s motion is ex-
pressed with its position and rotation relative to a world fixed
frame for each time step, and the landmarks are parametrised
with their 2D position relative to the same world fixed frame

pt = [pxt p
y
t ]T (1a)

Rt =

[
R11

t R12
t

R21
t R22

t

]
(1b)

li = [lxi l
y
i ]T (1c)

t ∈ {0, . . . , N} (1d)
i ∈ {1, . . . ,M} (1e)

where pt is the position, Rt is the orientation of the platform,
li is the landmark vector, and the number of time steps is
N + 1 and the number of landmarks is M . In visual-inertial
setups, the parameters are usually not directly measured, for
example, projections of landmarks via images and motion
parameters measured with inertial consiting of the deriva-
tives, i.e., velocities and accelerations. To simplify the further
analysis in this paper, we will assume that the angular, ω,
and linear, v = [vx vy]T , velocities in the body fixed frame
are measured. The connection between the velocity and the
position is described by a simple first order dynamics as

pt = pt−1 + Tsvt, t ∈ {1, . . . , N} (2)

where Ts is the sampling time. This can be rewritten in a
more compact form containing only initial position and the
velocities as

pt = p0 + Ts

t∑
k=1

vk, t ∈ {1, . . . , N}. (3)

Without loss of generality, we shall assume the the initial
position is put in the origin, i.e., p0 = [0 0]T , since it is
arbitrary.

The rotation in (1) is parametrised with a rotation matrix
that is dependent on only one parameter, rotation angle θ, and
the rotation matrix is uniquely determined by it as

Rt =

[
R11

t R12
t

R21
t R22

t

]
=

[
cos(θt) sin(θt)
− sin(θt) cos(θt)

]
. (4)

With this in mind, we can use the 2D unit quaternion defined
as

qt = [q1
t q

2
t ]T (5a)

q1
t = cos(θt) (5b)

q2
t = sin(θt) (5c)

‖qt‖ = 1 (5d)

to parametrise rotation matrix as

Rt =

[
q1
t q2

t

−q2
t q1

t

]
. (6)

This parametrisation is advantageous when the relationship
between the measured angular velocity, ωt, and the rotations
is established. To obtain it, we will start with the rotational
dynamics in continuous time that can be expressed as

q̇1
t =

d
dt

cos(θt) = − sin(θt)θ̇t = −q2
tωt (7a)

q̇2
t =

d
dt

sin(θt) = cos(θt)θ̇t = q1
tωt (7b)

where the relationship ωt = θ̇t is used. Now we can express
the dynamics as

q̇t =

[
0 −ωt

ωt 0

]
qt = S(ωt)qt. (8)

Note that this bi-linear relationship also holds for general
rotation matrix Ṙt = S(ωt)Rt, but this is not a minimal
representation. We can now employ exact sampling to obtain
the dynamics for the discrete time (given that the angular
velocity is assumed constant between the sampling times) as

qt = eTsS(ωt)qt−1. (9)

By using the Euler forward sampling approximation, the
dynamics in (9) can be written as

qt = qt−1 + TsS(ωt)qt−1 =
(
I + TsS(ωt)

)
qt−1. (10)

It is assumed that the velocities are measured without any
bias, and that the projection of the landmarks in an image plane
with the 2D correspondence are bearing (or visual) measure-
ments. The measurements are assumed to be influenced by
additive white Gaussian. Measurements are denoted y with
superscript denoting the measured quantity an a model is thus
defined as

yvt = vbt + evt = [vb,xt vb,yt ]T + [ev,xt ev,yt ]T (11a)
yrt = ωt + ert (11b)

yjtt =
ujt,yt

ujt,xt

+ eLt (11c)

ujtt = Rt(ljt − pt) = Rtδ
jt
t (11d)

evt ∼ N (0,Σv) (11e)
ert ∼ N (0,Σr) (11f)

eLt ∼ N
(
0,ΣL

)
(11g)

t ∈ {1, . . . , N} (11h)
jt ⊆ {1, . . . ,M}. (11i)



Note that all landmarks are not necessarily observed at each
time step and hence landmark index jt that is time dependent.
Which landmarks are observed at a certain time by which
measurement is encoded by the data association, which we
assume is given in this paper. The total number of landmark
measurements as is given by

J =

N∑
t=1

|jt| (12)

where |jt| denotes the number of landmark measurements at
time t. The Gaussian noise is assumed i.i.d. and white with
time independent covariance. Furthermore, the world related
velocity vt is not the measured body related one, vbt , but they
are connected via the rotation as

vbt = Rtvt. (13)

Given all the measurements, a non-linear equation system
can be formulated by stacking the equations from (11) and the
resulting non-linear least squares problem is

min
v1:N ,ω1:N ,l1:M

‖Y − F (v1:N , ω1:N , l1:M )‖2Σ−1 (14a)

where Y and F are resulting stacked left and right hand
sides of (11), and Σ is block diagonal matrix consisting
of measurement covariances. Note that the system dynamics
from (2) and (10), which can be interpreted as constraints,
are embeded into the minimisation formulation above. This
problem can be solved with, for instance, the Levenberg-
Marquardt method [17], [18].

III. LINEAR PROBLEM FORMULATION

In this section it is shown how the system in (11) can be
rewritten by observing that the general form of the considered
systems are with measured quotients of the unknowns. For
example, a quotient system with unknown x = [x1, x2]T ,
given some functions f1 and f2, measurement y, and noise
e, can be expressed and rewritten as

y =
f1(x1)

f2(x2)
+ e =⇒ f2(x2)y = f1(x1) + f2(x2)e. (15)

In the simplistic linear case with f1 = f2 = I then (15)
becomes[

0 y
]
x =

[
1 0

]
x+

[
0 e

]
x⇐⇒ Y x = Hx+ Ex (16)

where the noise, Ex, now becomes correlated with the param-
eters. In [1] observations are made that relate (15) and (11),
i.e., that the rearranged equation system is conditionally linear
given the rotations. In this case the functions f1 = ujt,yt and
f2 = ujt,xt from (11c) becomes linear (or affine) function
of the unknowns. This follows directly by rearranging the

equations that are not related to angular velocity in (11) as

yvt = vbt + evt = Rtvt + evt (17a)

yjtt =
ujt,yt

ujt,xt

+ eLt ⇒

yjtt u
jt,x
t = ujt,yt + ujt,xt eLt ⇒

yjtt (q1
t δ

jt,x
t + q2

t δ
jt,y
t ) = −q2

t δ
jt,x
t + q1

t δ
jt,y
t + ujt,xt eLt

(17b)

δjt,xt = lxjt − p
x
t = lxjt − Ts

t∑
k=1

vxk (17c)

δjt,yt = lyjt − p
y
t = lyjt − Ts

t∑
k=1

vyk (17d)

resulting in an equation system that is linear in parameters, and
where rotations and measurements are now coefficients in the
system matrix. We can now define all matrices and vectors
based on (17) where Y L are the visual measurements, Y v

are the inertial body velocity measurements, X are the linear
motion parameters, Q are the rotation parameters and Ev

and EL(X,Q) are the (possibly linear and rotation parameter
dependent) noise terms defined as

Y L = [yj11 , . . . , y
jN
N ]T ∈ RJ (18a)

Y v = [yv,x1 , . . . , yv,yN ]T ∈ R2N (18b)

EL = [uj1,x1 eL1 , . . . , u
jN ,x
N eLN ]T ∈ RJ (18c)

Ev = [ev,x1 , . . . , ev,yN ]T ∈ R2N (18d)

Q = [q1
0 , q

2
0 , . . . , q

1
N , q

2
N ]T ∈ R2N (18e)

X = [vx1 , v
y
1 , . . . , v

x
N , v

y
N , l

x
1 , l

y
1 . . . , l

x
M , l

y
M ]T ∈ R2(N+M).

(18f)

This leads to a new, this time linear, equation system

A(Y L, Q)X = [Y v 0]T + [Ev EL(X,Q)]T = Ȳ v + Ēv

(19)

where A(Y L, Q) ∈ R(2N+J)×2(N+M) is the system matrix
with coefficients that depend on the visual measurements and
the rotations. In order to show the principal structure of this
matrix some short-hand definitions obtained by rearranging
terms in (17) are

gjt,xt = yjtt q
1
t + q2

t (20a)

gjt,yt = yjtt q
2
t − q1

t (20b)

hjt,xt = −Ts(yjtt q1
t + q2

t ) (20c)

hjt,yt = −Ts(yjtt q2
t − q1

t ) (20d)



The matrix A in (19) then becomes

q1
1 q2

1

−q2
1 q1

1

. . .
q1
N q2

N

−q2
N q1

N

h1,x
1 h1,y

1 g1,x
1 g1,y

1
...

...
. . .

...
...

. . .
...

...
hM,x
N hM,y

N · · ·hM,x
N hM,y

N gM,x
1 gM,y

1


. (21)

Different blocks are related to inertial and visual measurements
as well as velocity and landmark parameters. The covariance
of the stacked noise is denoted as Σ̄v = diag(Σv, ΣL(X,Q)).
Since the equation system in (19) is linear in the unknown pa-
rameters an ordinary Weighted Least Squares (WLS) method
can be usedt to solve for them as

X̂ = (AT Σ̄−1
v A)−1AT Σ̄−1

v Ȳ v (22)

where some arguments are dropped for the sake of readability.
In [1] all the algebraic manipulations are done without con-
sidering the measurement noise present, i.e., setting Σ̄v = I ,
which can be a fair approximation. However, since the noise
for the visual measurements becomes parameter-dependent in
the linear estimator, it can influence the performance.

Another issue that should be investigated is errors in the
assumed rotation and its influence on the solution. This is an
interesting question, since it cannot always be assume that the
true rotation is available, but instead some kind of estimate or,
in the worst case, pure guess must be used. In order to explore
this an empirical analysis of the estimator is performed.

Ideally we would like to calculate the expected value of
the estimate X̂ with respect to both the measurements and
the rotations, i.e., E(X̂|Y L, Y v, R), both using, and without,
the covariance weighting. Unfortunately, the expectation does
not have a simple analytical solution, and instead a Monte
Carlo (MC) simulation is implemented for empirical analysis
in a simple setup. This will serve as an illustration of the
estimator performance, and not a general result. In Section V
similar performance will be seen in other examples, further
strengthening the assumed properties of the estimator consis-
tency.

A. The Importance of Noise

In the example setup, only one landmark is present and it
is observed from three positions. The initial position and
rotation are assumed known. 1000 randomly generated noise
realisations for the visual and inertial measurements, as well
as, 1000 randomly generated rotations around the true one. Te
noise covariance used as a weight, i.e., Σ̄v in (22), and the true
positions of the platform and the landmark are used. This is, of
course, not possible to do in the real case, but is used here for
the sake of analysis. The result of the simulation is illustrated
in Fig. 1 where the estimate of the landmark is depicted. It can
be seen that the estimate that uses the covariance is consistent
and has a mean that is close to the true landmark position. The
estimate that is not using the covariance weighting has a mean

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4
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Y
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Figure 1: MC estimated mean and covariance (50% 2D-
confidence) of the linear system with covariance based weights
(in black) and without (in red).

that is biased, its covariance is much larger and without cov-
ering the true landmark position, i.e., an inconsistent estimate.
Unsurprisingly, the analysis shows that the noise covariance
improves the estimator and should be considered further on.
However, in the example above, the true parameter values in
the noise covariance, which of is not necessarily available. A
solution to this issue via an iterative method is introduced in
the next section.

B. Conditionally Linear Rotation Dependent System

It can be observed that the system in (17) is conditionally
linear in the rotation variables q1

t and q2
t conditioned on

the landmark and position variables. The angular velocity
measurements can be used by modifying (10) with the addition
of the noise as in

qt =qt−1 + TsS(ωt)qt−1 =

qt−1 + TsS(yrt − ert )qt−1 =(
I + TsS(yrt )

)
qt−1 − TsS(ert )qt−1 =(

I + TsS(yrt )
)
qt−1 + Ts[q

2
t−1 − q1

t−1]T ert(
I + TsS(yrt )

)
qt−1 + ērt (23)

where new noise ērt is now dependent on rotations qt−1. This
implies that we can formulate a new linear system where
the rotations are unknown by combining visual measurements
from (17) and (23), this time with fixed positions and land-
marks, i.e., fixed δt. Similarly as before, define

Y r = [yr1, . . . , y
r
N ]T ∈ RN (24a)

Er = [ēr,11 , . . . , ēr,2N ]T ∈ R2N (24b)

and the system matrix B(Y r, Y L, X) ∈ R(J+2N)×2N . This
system will have very similar structure to (19) as in

B(Y r, Y L, X)Q = [(Y r
0 )T 0]T + [Er(Q) EL(X,Q)]T

= Ȳ r + Ēr (25)



where Y r
0 = (I + TsS(yr1))[q1

0 q
2
0 ]T since we, exactly as for

the position, assume that the initial rotation is known. Define,
similar to above,

m1,jt
t = yjtt δ

jt,x
t − δjt,yt (26a)

m2,jt
t = yjtt δ

jt,y
t + δjt,xt (26b)

The matrix B will then have the principal structure

1
1

−1 Tsy
r
2 1

−Tsyr2 −1 1
. . .

−1 Tsy
r
N 1

−TsyrN −1 1

m1,1
1 m2,1

1
...

...
. . .

...
...

m1,M
N m2,M

N


. (27)

This system can now be solved according to WLS method as

Q̂ = (BT Σ̄−1
r B)−1BT Σ̄−1

r Ȳ r (28)

where Σ̄r = diag(Σr(Q), ΣL(X,Q)).

IV. THE ITERATIVE METHOD

The main idea now is to use the conditional linearity of the
two interconnected systems,

A(Y L, Q)X = Ȳ v + Ēv (29a)

B(Y r, Y L, X)Q = Ȳ r + Ēr (29b)

and solve for all the parameters, X and Q, by iterating
solutions between the systems. This can be done using Block
Coordinate Descent (BCD). However, the parameter dependent
noise must be accounted for. We suggest IRBCD as combina-
tion BCD [19], [20], and Iteratively Reweighted Least Squares
method, see e.g., [16], [21], where the weights are represented
by the (square root of the) covariance matrix. In this way, the
values from previous iteration are used as weights and both
systems are solved until convergence. This method is shown
in Algorithm 1. Although both main steps are solved as linear
equation systems, the algorithm still needs initial values for
the parameters. This is not so strange, since the underlying
problem is still a non-linear and as such require a starting point
for the iterations. Furthermore, Algorithm 1 is implemented in
a way that can be altered, e.g.,, each linear solution, i.e., steps
4. and 6. are done with the previous iterate in the weights.
An alternative is to iterate step 4. (and 6.) with the update
of the weights until convergence and then move on. In other
words, there are inner iterations around steps 4. and 6. This
method is shown in Algorithm 2. Which method is preferred is
not obvious at first glance, and numerical comparison will be
done in Section V. Step 7. (and 17. in Algorithm 2) is needed
in order to keep quaternion length constraint, since it is not
guaranteed after solving for it. Also, if no (or constant) noise
assumption is done, the only modification to the Algorithm
1 is to set noise covariances Σ̄ to I or constant values

Algorithm 1 Iteratively Reweighted Block Coordinate Descent
(IRBCD).
Require: X0, Q0, Y L, Y r, Y v , Σv , Σr, ΣL, ε
Ensure: X̂ , Q̂

1. Set i = 1
2. Set Terminate = false
while not Terminate

3. Create A(Y L, Qi−1), Ȳ v and Σ̄v(Xi−1, Qi−1)
4. Solve Xi = (AT Σ̄−1

v A)−1AT Σ̄−1
v Ȳ v

5. Create B(Y L, Y r, Xi), Ȳ r and Σ̄r(Xi, Qi−1)
6. Solve Qi = (BT Σ̄−1

r B)−1BT Σ̄−1
r Ȳ r

7. Normalise Qi

if ‖Qi −Qi−1‖ < ε and ‖Xi −Xi−1‖ < ε then
8. Set Terminate = true

else
9. Set i = i+ 1

end if
end while
10. Set X̂ = Xi and Q̂ = Qi

independent of the parameters. A comparison of results with
these assumptions will also be performed in the same section.

V. NUMERICAL RESULTS

Numerical evaluation of the methods above is performed on
a very simple simulated setup with three landmarks and 10
trajectory positions. The landmarks are positioned in [1 100]T ,
[5 65]T and [3 30]T and the platform is mainly moving
along the X-axis pointing along the Y -axis. The platform’s
movement is not completely uniform, since some variation in
the velocity and rotation is applied. The measurements are the
linear and angular velocities, and the landmark observations
as in (11). The noise covariances are set to ΣL = 10−6 [m2],
Σv = 10−2I [m2/s2] and Σr = 10−4 [deg2/s2]. 100 MC
runs were performed and comparison of the performance for
different noise assumptions is evaluated. The initial values
of the parameters were [0 50]T for all three landmarks and
all zeros for the linear velocity. The rotations are initialised
with random values around the true ones and the termination
threshold ε is set to 10−4.

A comparison of the performance between the IRBCD
according to Algorithm 1 and 2, and with BCD for constant
noise and noise-free assumptions. As a reference, BCD with
“true” noise is also run, where true here means that the true
parameter values are used in the covariance matrices. The
performance is mainly evaluated for the landmarks due to
simplicity of illustration. The results are given in Table I as the
error between the true landmark position and the MC based
mean, l̃i, as well as its the covariance, Cov(l̃i). It can be seen
that the performance of the IRBCD methods are basically
identical and quite close to the true position which can be
compared to the BCD estimate with the true noise assumption.
However, if we compare to the estimates from BCD with the
noise-fre assumption, we can see that it is biased and the



Algorithm 2 Iteratively Reweighted Block Coordinate Descent
with inner iterations.
Require: X0, Q0, Y L, Y r, Y v , Σv , Σr, ΣL, ε
Ensure: X̂ , Q̂

1. Set i = 1
2. Set Terminate = false
while not Terminate

3. Set j = 1
4. Set Terminate inner = false
5. Set Xj−1 = Xi−1

6. Create A(Y L, Qi−1) and Ȳ v

while not Terminate inner
7. Create Σ̄v(Xj , Qi−1)
8. Solve Xj = (AT Σ̄−1

v A)−1AT Σ̄−1
v Ȳ v

if ‖Xj −Xj−1‖ < ε then
9. Set Terminate inner = true
10. Set Xi = Xj

else
Set j = j + 1

end if
end while
11. Set j = 1
12. Set Terminate inner = false
13. Set Qj−1 = Qi−1

14. Create B(Y L, Y r, Xi) and Ȳ r

while not Terminate inner
15. Create Σ̄r(Xi, Qj−1)
16. Solve Qj = (BT Σ̄−1

r B)−1BT Σ̄−1
r Ȳ r

17. Normalise Qj

if ‖Qj −Qj−1‖ < ε then
18. Set Terminate inner = true
19. Set Qi = Qj

else
20. Set j = j + 1

end if
end while
if ‖Qi −Qi−1‖ < ε and ‖Xi −Xi−1‖ < ε then

21. Set Terminate = true
else

22. Set i = i+ 1
end if

end while
23. Set X̂ = Xi and Q̂ = Qi

covariance is not covering the true position of the landmark.
The same is applicable to the constant noise assumption, where
the results are even worse. Further, the number of iterations
that are performed on average for both IRBCD methods are
compared. Both methods converges after 45 outer iterations
on average while IRBCD with inner iterations has slower
convergence since it requires more iterations in total. In this
cse the average nuber of inner iterations was 30. Since the
performance is basically the same, there is no need to use
Algorithm 2 since it needs more iterations in total. As a further
illustration Figure 2 shows MC estimates for the IRBCD and

Table I: Results for the landmark estimates

True
noise

IRBCD IRBCD
(inner)

No
noise

Const.
noise

l̃1 [.05 6.0]T [.06 6.9]T [.06 6.9]T [.8 77]T [1.0 99]T

Cov(l̃1)
[
.006 .3
.3 43

] [
.007 .4
.4 57

] [
.007 .4
.4 57

] [
.001 .5
.5 9.7

] [
.0001 .007
.007 .7

]
l̃2 [.3 3.8]T [.3 4.4]T [.3 4.4]T [3.5 45]T [4.9 64]T

Cov(l̃2)
[
.09 1.1
1.1 16

] [
.1 1.6
1.6 21

] [
.1 1.6
1.6 21

] [
.04 .5
.5 6.2

] [
.002 .02
.02 .3

]
l̃3 [.2 1.7]T [.2 2.0]T [.2 2.0]T [1.5 15]T [3.0 30]T

Cov(l̃3)
[
.03 .3
.3 3.5

] [
.04 .4
.4 4.6

] [
.04 .4
.4 4.6

] [
.02 .2
.2 2.2

] [
.0006 .006
.006 .06

]
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(a) Estimates from the IRBCD.
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(b) Estimates from the BCD with noise-free assumption.

Figure 2: MC sstimates of the landmark 1 from IRBCD and
noise-free assumption in blue. Black circle is the mean of the
estimates and red cross is the true landmark position.

noise-free assumption for the landmark 1.

The rotation estimate is evaluated by comparing the true
rotation matrix R∗t and the MC estimated ones R̂i

t, i =
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Figure 3: Error of the rotation estimate, BCD with true
noise assumption in blue, IRBCD with inner iterations in red,
IRBCD in black and BCD with noise-free assumption in green.

{1, . . . , NMC} as in

Rerr
t =

√√√√ 1

2NMC

NMC∑
i=1

trace
((

(R∗t )T R̂i
t − I

)2)
(30)

Basically, this is a scalar measure of how aligned these
matrices are. The result is shown in Figure 3. Here it can
be seen that all but green estimate are similar and very close
to zero, while the estimate from noise-free assumption is much
larger. This also shows that taking the noise into account is
important.

VI. TREATMENT OF THE 3D CASE

So far we have considered a 2D setup where we could utilise
the linear dependence between parameters in the rotation
parametrisation. Unfortunately, this property does not translate
to the 3D case. The connection between the rotation matrix
and the quaternion is non-linear in this case implying that
the rotation part of the system must be solved with a non-
linear method, e.g., non-linear least squares (NLS) (the linear
velocity and landmarks part is still conditionally linear and can
be solved as before). This basically means that the Algorithm
1 is modified in steps 5. and 6. by replacing the WLS with
the N(W)LS step. The important part of NLS is the Jacobian
of the equation system and it should be beneficial if the
calculation of the Jacobian is efficient. We shall here formulate
an approach to calculate the Jacobian in a recursive fashion,
which increases the efficiency of the calculations.

To do this, we will change the parametrisation of the rotation
and use angular velocity, ωt = [ωx

t , ω
y
t , ω

z
t ]T , t = {1, . . . , N},

as a parameter instead. This means that we need to express
the rotation as a function of the angular velocity. Similar to

the 2D case, the 3D rotation dynamics in the continuous time
can be expressed as

Ṙt = ω̂tRt (31a)

ω̂t =

 0 −ωz
t ωy

t

ωz
t 0 −ωx

t

−ωy
t ωx

t 0

 . (31b)

see e.g., [12]. Note also that this change of parameters implies
that the step 7. from Algorithm 1 can be removed since angular
velocities do not need normalisation. In the same way as before
this dynamics can be discretised, under the constant angular
velocity between the sampling times assumption, as

Rt = eTsω̂tRt−1. (32)

The dynamics can now be used to express a rotation matrix
at any time t as a function of the initial rotation R0 and the
angular velocities up to time t, ωt, t = {1, . . . , t} as

Rt =
( t∏
k=1

eTsω̂k
)
R0. (33)

For the Jacobian calculation, terms for the partial derivatives
of the rotation matrices with respect to angular velocities,
∂Ri/∂ωj , j ≤ i are needed. These are defined as a 3× 3× 3
matrices and can be calculated by observing that

∂Ri

∂ωj
= eTsω̂ieTsω̂i−1 · · · ∂e

Tsω̂j

∂ωj
· · · eTsω̂1R0 =

= eTsω̂i
∂Ri−1

∂ωj
, j < i (34)

where all partial derivatives are calculated in the previous
recursive step and the last term is calculated as

∂Ri

∂ωi
=
∂eTsω̂i

∂ωi
Ri−1. (35)

For example, the first three time steps these calculations are
as follows:

R1 = eTsω̂1R0 (36a)

∂R1

∂ω1
=
∂eTsω̂1

∂ω1
R0 (36b)

R2 = eTsω̂2R1 (36c)
∂R2

∂ω1
= eTsω̂2

∂R1

∂ω1
(36d)

∂R2

∂ω2
=
∂eTsω̂2

∂ω2
R1 (36e)

R3 = eTsω̂3R2 (36f)
∂R3

∂ω1
= eTsω̂3

∂R2

∂ω1
(36g)

∂R3

∂ω2
= eTsω̂3

∂R2

∂ω2
(36h)

∂R3

∂ω3
=
∂eTsω̂3

∂ω3
R2. (36i)

In this example, it can be seen that in order to calculate the
rotation matrix and its derivative at time step t, eTsω̂t and



∂eTsω̂3/∂ω3 must be calculated once and all other terms are
available from the previous time step calculations.

Since the new parametrisation is used, we need to use
measurements of the angular velocity yrt from (11) directly
in the equation system instead of (23). It should also be
mentioned that there is an closed form expressions for both the
exponential eTsω̂t and the for the partial derivative ∂eTsω̂t/∂ωt

which can be calculated by using Rodrigue’s formula, [12],

eTsω̂ = I +
ω̂

‖ω‖
sin(Ts‖ω‖) +

ω̂2

‖ω‖2
(1− cos(Ts‖ω‖))

(37)

but for brevity the derivative expression is not explicitly given
here.

VII. CONCLUSIONS AND FUTURE PROSPECTS

In this work we have analysed the conditionally linear structure
of the visual-inertial estimation problem in 2D. A fomulation
was proposed by splitting the problem into into two (intercon-
nected) conditionally linear systems. The first system assumes
known rotations while the linear motion and landmarks are
unknown. The second system has the opposite assumption.
The main benefit of doing this split is the efficiency of
the solution. Furthermore, the measurement noise becomes
parameter dependent in both systems which is treated with
WLS that result in bias reduction and improved consistency.

We also give a suggestion on how the total system can
be solved in an iterative manner, by combining the Block
Coordinate Descent and the Iteratively Reweighted Least
Squares approaches. Comparison of the estimation results from
these methods under different noise assumptions shows that
parameter dependence in the noise must be used if good
estimates are sought.

So far, we have treated only the 2D case because of the
(conditional) linearity for both linear and rotational parame-
ters. For the 3D case, this is not as simple and the rotation
estimation step must be exchanged for the non-linear method.
No experiments are done in this case, but we show how the
Jacobian can be efficiently calculated in a recursive manner.

In the future, experiments with both simulated and real
3D data should be performed and the performance of both
parameter accuracy as well as execution time analysed in more
detail.
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