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Abstract – Synthetic Aperture Radar (SAR) equip-
ment is an all-weather radar imaging system that can
create high resolution images by means of utilising the
movement of the flying platform. Accurate knowledge
of the flown trajectory is essential in order to get fo-
cused images. Recently SAR systems are becoming more
used on smaller and cheaper flying platforms like Un-
manned Aerial Vehicles (UAV). Since UAVs in general
have navigation systems with poorer performance than
manned aircraft, the resulting images will inevitably be
unfocused. At the same time, the unfocused images
carry the information about the platforms trajectory
that can be utilised. Here a way of using SAR images
and their focus measure in a sensor fusion framework
in order to simultaneously obtain both improved images
and trajectory estimate is presented. The method is il-
lustrated on a simple simulated example with promising
results. Finally a discussion about the results and future
work is given.

Keywords: Synthetic Aperture Radar, auto-focusing,
estimation, optimisation

1 Introduction
A general method for creating the high resolution radar
images from low resolution radar data, or real aperture
images, is to use relative motion between radar antenna
and the imaged scene and integrate all the partial real
aperture images taken along the flown trajectory, [1].
Traditionally this operation is performed in the fre-
quency domain with Fast Fourier transforms. The com-
mon denominator of these methods is that they assume
that the aircraft’s (or antenna’s) flown path is linear
and that is generally not the case in practice. If the
trajectory is not linear the integration will result in an
unfocused image. It is possible to partly correct for the
deviation from the nonlinear trajectory but then the
methods become computationally inefficient. Another
approach is to perform integration in time domain by
means of solving the back-projection integral, [5]. This

Figure 1: Illustration of the back-projection method for
creating of the SAR images. Figure is not to scale.

process is illustrated in Figure 1 where two points are
imaged. Each column of the low resolution real aper-
ture radar image on the bottom is back-projected to
the sub images, which means that column is mapped to
the two-dimensional sub image. These sub images are
in turn summed to the final synthetic aperture radar
image on the top. The simulation plots of this setup
is also depicted in Figure 2. Even in this process it is
assumed that the radar antenna’s flown path is linear
with constant altitude and heading, but the method can
be extended to non-linear tracks as well. However exact
inversion is not guaranteed. The main disadvantage of
this method is the large amount of operations required
to create an image which is proportional to O(N×M2)
for M ×M pixels image using an aperture with N po-
sitions. However by means of coordinate transforma-
tion, an approximated solution to exact back-projection
can be performed which is called Fast Factorised Back-
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(a) Real aperture radar image
of the two points.
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(b) Synthetic aperture radar
image of the two points.

Figure 2: Real and synthetic aperture radar images of
the two point scene.

projection, see [7]. This algorithm is proportional to
M2 logN operations, which for large N implies an im-
portant saving. With this faster algorithm it should
be possible to create images in real time, possibly in
dedicated hardware. Since back-projection algorithms
are dependent on knowledge of antenna’s position in
order to get focused images, the image focus can be
measured and used for estimation of the trajectory. An
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(a) Focused SAR image of two
point targets.
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(b) Unfocused SAR image of
two point targets with σ = 0.5.

R
a

n
g

e
 p

ix
e

ls

Azimuth pixels

Simulated SAR image with σ = 1.5

20 40 60 80 100 120

20

40

60

80

100

120

(c) Unfocused SAR image of
two point targets with σ = 1.5.
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(d) Unfocused SAR image of
two point targets with σ = 3.

Figure 3: Example SAR images with different per-
turbed trajectories.

example of this is depicted in Figure 3, where two point
targets are imaged. In Figure 3a, a linear path is simu-
lated, which results in a perfectly focused image. In the
other three images the variation in range position was
added as N (0, σ2) where σ = {0.5, 1.5, 3} and the im-
ages are created with an assumption that the path was
linear. This gives unfocused images as depicted. Tradi-
tional methods for auto-focusing are mostly open-loop
type methods where either SAR images or raw radar

data are used, for example Phase Gradient Auto-focus
(PGA), [6, 8, 3]. The significant common denominator
for all these methods is that the image is created with
assumptions on linear flight trajectory and focusing is
done afterwards in an open-loop way discarding even-
tual flight path information. This is a consequence of
the off-line image generating process where the trajec-
tory is no longer interesting. In the setup where SAR

Figure 4: Top: SAR architecture where navigation data
is used in an open-loop manner. Middle: SAR architec-
ture where navigation and SAR data is used together
in a decentralised sensor fusion framework. Bottom:
SAR architecture where navigation and SAR data is
used together in a centralised sensor fusion framework.

images are generated on-line an idea is to use informa-
tion from the image unfocusing and navigation system
together and in a sensor fusion framework try to obtain
the best solution to both focusing and navigation simul-
taneously. This can be implemented in a centralised or
decentralised manner, as depicted in Figure 4.

2 Sensor Fusion Framework
In order to use a sensor fusion framework, the usual
approach is to define a discrete time dynamical model
of the system

xt+1 = f(xt, ut, wt) (1a)

yt = h(xt, ut) + et (1b)



where xt are states of the system, ut are known inputs,
wt is system noise with variance Qt, et is measure-
ment noise with variance Rt, yt are measurements, f
describes dynamics of the system and h is the measure-
ment equation that relates measurements and states of
the system. In this case, the dynamics of the system
can be usual 6-DOF aircraft dynamics. Since focus of
the image depends on the unknown trajectory, one so-
lution is to solve following minimisation problem

min
x0, w1:N

γFF (x0:N ) + γs

N∑
k=1

||yk − h(xk, uk))||2Rk
(2a)

s.t. xt+1 = f(xt, ut, wt) (2b)

where γF and γs are the weights. In Equation (2a),
F (x0:N ) is a function of the SAR image I created from
the radar measurements and is of the type “how focused
is the image?”. Since the SAR image is a function of
the trajectory x0:t, F is also function of it. For the
purpose of determining F some measure of the image
focus must be used. This is the subject of Section 4.

3 System model
In this setup following 2-DOF INS time discrete dy-
namics is used, [2], as a specialisation of the general
dynamics (1a):

xt+1 = Fxt +Gwt (3a)

F =

 I2 TsI2
T 2
s

2 I2
02×2 I2 TsI2
02×2 02×2 I2

 (3b)

G =

T 3
s

6 I2
T 2
s

2 I2
TsI2

 (3c)

xt = [Xt Yt v
X
t vYt aXt aYt ]T (3d)

wt = [wX
t wY

t ]T (3e)

where Ts is the sampling time, X is the position in az-
imuth direction and Y is the position in range direction,
vX and vY are the velocities in the X- and Y -directions
respectively and aX and aY are the accelerations in X-
and Y -directions respectively. This model is used for
the whole trajectory. Since this model is linear and
time invariant the stationary Kalman filter can be used
to estimate xt giving x̂t and its corresponding covari-
ance Pt. The covariance of the estimate, due to the fact
that system is time invariant and linear, will converge
to the stationary covariance P̄ which can be calculated
as

P̄ = FP̄FT − FP̄HT (HP̄HT +R)−1HP̄FT +GQGT

(4)

where F and G are defined above, and H is the lin-
earised measurement equation h(xt, ut) (in our simula-
tion case it is chosen as H = I6 since we assume that all

Parameter Accuracy (1-σ) Stat. acc. (1-σ)

Position 3 m 0.093 m
Velocity 0.4 m/s 0.012 m/s

Acceleration 0.06 m/s2 0.015 m/s2

Table 1: Accuracy and stationary accuracy for the nav-
igation parameters

states are measured). For a typical navigation system
used in an UAV, the performance for these parameters
(assumed to be measurement noise) can be summarised
according to Table 1 and Q, which represents distur-
bance on states like wind turbulence, can be taken as
diag{0.25, 0.25}. With these values, the stationary co-
variance is as given in the third column in Table 1.

4 Focus Measures
One common focus measure in SAR or image processing
literature is image entropy calculated as

F1(I) = −
256∑
k=1

pk log2(pk) (5)

where pk is an approximated grey level distribution of
the M ×N grey-scale image Iij = |Ĩij | where Ĩij is the
complex-valued SAR image and it can be obtained from
the image histogram calculated as

pk =
{# of pixel values |Ĩij |} ∈ [k − 1, k]

MN
(6a)

k ∈ [1, 256] (6b)

The more focused the image is, the lower the entropy
is, see for example [4] or [9]. Histograms for the images
in Figure 3 are given in Figure 5. Note the log-scale on
the y-axis. An alternative definition of entropy is, [10],

F2(Ĩ) = −
M∑
i=1

N∑
j=1

pij ln(pij) (7a)

pij =
|Ĩij |2∑M

i=1

∑N
j=1 |Ĩij |2

(7b)

where a complex-valued SAR image Ĩ is used directly
instead of the grey-scale SAR image I.

4.1 Focus Measure Performance

Entropy 1 and 2 focus measures are tested and com-
pared on a SAR image according to Figure 6 and the
results are depicted in Figure 7 where standard devia-
tions 1−σ, 2−σ and 3−σ are also drawn. This image
is chosen since it is more informative than the image
in Figure 3. In this simulation setup the state noise
in model (3) is set to zero, i.e. the trajectory is com-
pletely deterministic. This is done in order to illustrate
the focus measure functions Fi in a two dimensional
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(a) Histogram of the focused
image.
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(b) Histogram of the unfocused
image with σ = 0.5.
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(c) Histogram of the unfocused
image with σ = 1.5.
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(d) Histogram of the unfocused
image with σ = 3.

Figure 5: Histograms for the images in Figure 3.
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Figure 6: SAR image with a more informative scene
than in Figures 2 and 3.
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(a) Entropy 1 focus measure.
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(b) Entropy 2 focus measure.

Figure 7: Focus measures for the image in Figure 6 with
standard deviation ellipses.

plot, since the trajectory, and consequently the focus
measure, is then only dependent on the initial values.
In these figures it can be seen that entropy 2 has a con-
vex and pretty nice behaviour around the true value of
the initial state. However it looks very flat along the
velocity direction which indicates that it is very difficult
to estimate that particular state. The entropy 1 mea-
sure has, on the other hand, a sharp minimum for the
correct value of the initial state but many local minima.
This means that the two entropy measures complement
each other perfectly, and can be used in combination to
obtain the global minimum of the focus measure.

5 Search Methods
As demonstrated in Section 4.1, the entropy 2 measure
can be used to, with a local minimisation method, for
example gradient search, come close to the global min-
imum and then entropy 1 can be used to obtain the
global minimum. Note also that only the focus mea-
sure is used to find estimate of the states i.e. γs is set
to zero while γF is set to one in Equation (2a).

5.1 Gradient Search

As mentioned above, the measure F2 can be used as a
first step to get near the global minimum, since it ap-
pears to be convex. However it is very flat in the prox-
imity of global minimum, and then some other measure
can be used to find the global minimum, for example
F1 due to its sharp minimum for correct values. Since
focus of the images strongly depends only on the two
initial states, vX0 and aY0 , a gradient search can be in
that case formulated as Gauss-Newton search

xi+1 = xi − µiR(xi)−1∇F (xi) (8a)

x0 =

[
v̂X0
âY0

]
(8b)

∇F (x) =

[
∂F
∂vX

0
∂F
∂aY

0

]
(8c)

R(x) = ∇F (x) · (∇F (x))T (8d)

and µi is a step size with µ0 = 1. An initial estimate,
x0, can be taken from the navigation system. In some



cases, R can be singular or close to singular and this
would cause problems. In this case the search procedure
is modified to Levenberg-Marquardt procedure where R
is calculated as

R(x) = ∇F (x) · (∇F (x))T + λI (9)

and λ is chosen as a small number, usually λ ∼ 10−6.
In order to demonstrate the behaviour of the gradi-

ent search for this setup, a simulation of the search
procedure is illustrated in Figures 9 and 10. Here,
the algorithm is initiated with different starting points
x0 = [vX0 , aY0 ]T based on the stationary covari-
ance of the states in the system. Those values

0 500 1000 1500 2000 2500 3000
−15

−10

−5

0

5

10

T1

T2

T3

T4

T5

Azimuth direction [m]

R
a

n
g

e
 d

ir
e

c
ti
o

n
 [

m
]

Example trajectories

Figure 8: Trajectory examples for different initial values
of the velocity and acceleration.

are [100.005, 0.005]T , [99.99, 0.01]T , [99.995, 0.02]T ,
[100.02, −0.01]T and [100.005, −0.035]T . The trajec-
tories generated with these initial values are illustrated
in Figure 8. In Figure 9, the gradient search based on
the entropy measure F2 is illustrated and we can see
that the solutions converge to the flat ridge-like area
close to the correct acceleration, but not necessarily to
the correct velocity. In Figure 10, a gradient search
where entropy measure F1 is used is depicted. In this
case, the algorithm is initiated with the solution from
the entropy F2 search. It can be seen that this minimi-
sation strategy works pretty well, although one solution
is stuck in a local minimum. In that case the velocity
error is the largest one of all errors. It is interesting
to see how the image created with the solution that
is stuck in the local minima of the entropy measure
F1 looks like compared to the unfocused image that it
started with. As illustrated in Figure 11, it can be seen
that the image created with values from the minimisa-
tion procedure is very close to the focused image and
much better than the unfocused image that it started
with. The probable explanation for this comes from the
fact that small azimuth direction velocity errors do not
influence the final image much due to the quantisation
effects. However the estimate of the navigation state is
not correct.
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Figure 9: Search trajectory for five different values of
x0 on entropy 2 focus measure.
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Figure 10: Search trajectory for entropy 1 focus mea-
sure with x0 given by the entropy 2 gradient search.

5.2 Global Grid Search

As seen in Section 5.1, local search methods will not
work completely satisfactory on this problem and some
kind of global method must be used if global minimum
is sought. The most straightforward approach is to
use grid search and find global minimum of the loss
function (2a). This can be done in an iterative man-
ner where the last iteration’s result is an input to the
next. The iterations are initialised with the state es-
timates from the navigation system or pure measure-
ments if all states are measured, and the initial grid
size can be chosen based on the state estimate covari-
ance or measurement noise covariance. The grid size
can be changed between iterations since it is assumed
that each iteration makes the estimate better. The per-
formance of such an estimator will depend on the grid
resolution which in turn directly influences how much
time the estimation takes, so there is a fundamental
balance between performance and speed. A trajectory
with initial values [0 0 99.99 0 0 0.01]T is simulated
and radar measurements are collected along it. These
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(a) Image created with error in
velocity of 0.02 m/s and in ac-
celeration of −0.01 m/s2.
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(b) Image created with error in
velocity of 0.014 m/s and in ac-
celeration of −0.0003 m/s2.
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(c) Focused image as a refer-
ence.

Figure 11: Resulting images from the minimisation pro-
cedure with starting point [100.02, − 0.01]T .
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(a) Unfocused SAR image gen-
erated with noisy trajectory.
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(b) Focused SAR image gener-
ated with estimated trajectory
with two free parameters.
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(c) Focused SAR image gener-
ated with estimated trajectory
with four free parameters.

Figure 12: Resulting images generated from the min-
imisation procedure based on a grid method.

values are chosen just to obtain a trajectory with some
movement. Measurement noise is added to the trajec-
tory and an image is created with this noisy trajec-
tory. The obtained image is according to Figure 12a.
The trajectory is then estimated with the procedure
above where only initial states are estimated and the
trajectory is then calculated with the dynamical model
(3). The state noise wt is set to zero in this setup.
In Figure 12b only vX0 and aY0 are set as free parame-
ters and the others are set to zero, i.e. the true values.
In Figure 12c both X− and Y−direction initial veloc-
ities and accelerations are free parameters while initial
positions are set to zero. The estimate of the initial
states is [v̂X0 âY0 ]T = [99.996 0.011]T in the first case
and [v̂X0 v̂Y0 âX0 âY0 ]T = [99.891 0.015 0.005 0.008]T .
It can be seen that both image and state estimate are
worse if four parameters are set free, which is natural
since the problem is much harder in that case. The
quality of the state estimate and image focusing is also
dependent on the grid resolution which in this simula-
tion case was not so fine due to the execution time.

6 Conclusions and Future Work
Here we presented the method which is based on the de-
centralised sensor fusion framework and demonstrated
that it has potential of obtaining more focused images
and fairly accurate estimates of the navigation states.
As it can be seen from the simulation examples of the
simple scene and the usage of the entropy focus mea-
sure, the method for simultaneous auto-focusing and
estimation of the navigation states works fairly well al-
though not perfect. It looks like there are some fun-
damental limitations in the possibility to estimate all
states accurately from the focus measure, as in the case
of velocity in azimuth direction. Nevertheless, even in
the case where the velocity estimate is not so good,
the image is much more focused than the one which is
started with, so the method works fairly well if only
focused images are the goal.

The next step to take is to use more of the centralised
sensor fusion framework and use raw radar measure-
ment data directly similar to the well known Phase Gra-
dient Auto-focus. This approach leads to more filtering-
like methods, where EKF or similar can be used to ob-
tain the estimates of the states.
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