
AVEC ‘06 

Sensor Fusion for Vehicle Positioning in Intersection Active Safety 

Applications 
 

Tohid Ardeshiri, Sogol Kharrazi, Jonas Sjöberg, Jonas Bärgman, Mathias Lidberg 

  
Chalmers University of Technology 

SE-412 96, Gothenburg, SWEDEN  

 Phone: (+46-73) 599 5340  

 Fax: (+46-31) 772 3690  

 E-mail: tohid.ardeshiri@autoliv.com  

  

Global Positioning System (GPS) is being increasingly used in active safety applications. One field of 

active safety in which navigation information can be used is Intersection Active Safety Applications (IASA) 

which requires a precise and continuous estimate of vehicle position and heading direction to function 

properly. In this paper an implementation of Extended Kalman Filter for estimation of vehicle position and 

heading direction in an intersection active safety application is presented. The algorithm was tested on a 

complex urban trajectory of 2 km long and showed very encouraging results.   
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1. INTRODUCTION  

  

Today most of land navigation systems are based 

primarily on the GPS; however in an intersection active 

safety application (IASA), positioning requirements can 

not be satisfied by GPS alone due to possible occlusions 

by high buildings or heavy foliages and its poor 

precision and low position update frequency. Besides, in 

some intersection active safety applications such as 

vision based or radar based systems, precise vehicle 

heading direction is needed. Thus complementary 

onboard sensors should be implemented in the 

navigation system to achieve the required precision. In 

this paper an implementation of Extended Kalman Filter 

(EKF) [3] is presented.  

The Extended Kalman Filter fuses data from GPS 

receiver and other complementary onboard sensors such 

as differential odometer, yaw rate sensor and 

longitudinal accelerometer to achieve the required 

performance for intersection active safety applications.  

To verify the performance of the fusion algorithm a 

test was conducted in Alingsås, Sweden which showed 

encouraging results.  
  

2. METHOD 

  

The data used for testing the algorithm was 

collected by a test vehicle instrumented for active safety 

studies by Autoliv Development.  

 

2.1 Sensors  

The test vehicle was a standard Volvo V70, which 

was equipped with a GPS receiver (G12), a Cronos unit 

and a fiber optic gyro (FOG) which are further 

explained below. 

GPS receiver collects position data (longitude, 

Latitude and Altitude) and Doppler derived speed and 

heading. The Cronos unit is a measurement device 

which offers direct connection of different components 

like the CAN bus and analog sensors in the vehicle. The 

Cronos out parameters which were used in the fusion 

algorithm are presented in Table 1. Fiber Optic Gyro is 

a high precision commercial fiber optic gyro. 

 

Table 1 Fusion algorithm inputs 

Measurements   Source Sampling 

Frequency 

Longitude
 
 10Hz 

Latitude
 
 10Hz 

Altitude 10Hz 

Ground Speed 10Hz 

Heading
 
 10Hz 

HDOP
 
 

GPS 

 

10Hz 

ABS Speed  50Hz 

Longitudinal 

Acceleration 

50Hz 

Yaw Rate 

Cronos 

50Hz 

Yaw Rate FOG 50Hz 

 
2.2 Extended Kalman Filter 

Extended Kalman Filter (EKF) is an effective and 

versatile procedure for combining noisy sensor outputs 

to estimate the state of a system with uncertain 

dynamics. For the purpose of this paper the noisy 

sensors include GPS receiver, inertial sensors 

(accelerometer and gyroscope) and wheel speed sensor. 

The system state includes position, velocity, 

acceleration, heading (yaw) and heading rate. Uncertain 

dynamics includes unpredictable disturbance of the 

vehicle, whether caused by a human operator or by 
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medium (e.g., wind or turn in the road). General 

formulation of an EKF is 
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where x is the state vector with the initial estimate of  
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and f, z and h are the dynamic model function, 

measurement vector and measurement model function 

respectively. The plant noise, )(tw , and measurement 

noise, )(tv , are assumed to be zero mean white noises.  

Prediction step of an EKF can be described as 
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where Q is the dynamic disturbance covariance matrix 

and P is the error covariance matrix with the initial 

value of 
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in which 
0
~x  is the error of initial estimation of x. 

Correction step of an EKF can be presented as 
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where K is the Kalman gain and R is the sensor noise 

covariance matrix. 

In the problem addressed in this paper, the state 

vector, x, is 

[ ]TYAVhx &ψφθ=       (12) 
where θ  is longitude, φ  is latitude, h is altitude, ψ  

is heading direction, V is velocity, A is acceleration and 

Y&  is vehicle body yaw rate. The dynamic model 

function, f, in the addressed problem is  

( )( ) ( )

T

M

N

T

E AY
hr

V

hr

V
f 









++
= 000

cos

&

φ
   (13) 

where 
Tr  is the transverse radius of curvature, 

Mr is the 

meridional radius of curvature and 
NE VV ,  are the east 

and north coordinates of velocity, respectively. 

Presented sensor fusion algorithm uses three 

sources of measurement; GPS, Crornos and FOG (see 

Table 1) which have different and non-synchronized 

sampling frequency. Therefore in the measurement 

(correction) step of the Kalman filter (Equations 8-11), 

each source was measured and treated separately. In 

other words the measurement vector, z, measurement 

model function, h, measurement sensitivity matrix, H, 

and sensor noise covariance matrix, R, were different 

for each source of measurement as presented in the 

following equations: 
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where subscript GPS stands for the GPS data and 
iZ

σ is 

uncertainty on measurement 
iz . 
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where subscript CNS stands for the Cronos data. 
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where subscript FOG stands for the FOG data.  

Equations 1-25 described the established EKF. For 

more details regarding the sensor fusion algorithm refer 

to [1]. 

  
3. RESULTS  

  

In order to evaluate the developed fusion algorithm, 

it was tested on a complex urban roadway. Fig. 1 shows 

the test trajectory which included narrow streets, 7 

meters width, where triple floor buildings restricted 

view of the sky and created urban canyon conditions. 

 

 

Fig. 1 Test trajectory 

 
Unaided GPS position and associated uncertainty in 

GPS-alone position are presented in Fig. 2. As it can be 

seen GPS derived position is not available in some 

segments of trajectory due to signal blockage by high 
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buildings, and even in most of the segments with GPS 

coverage, position measurement is too uncertain to be 

used in an IASA.  

The estimated trajectory by EKF is presented in Fig. 

3. As it can be seen goals of filling the gaps of GPS 

coverage and giving a smooth and continuous position 

are achieved. 
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Fig. 2 Unaided GPS trajectory and associated 

uncertainty in position 
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Fig. 3 Longitudinal uncertainty (3σ ), plotted 

perpendicular to the vehicle trajectory 

 

Kalman filter maintains two types of variables: 

estimated state vector and covariance matrix. 

Covariance matrix is a measure of estimation 

uncertainty. Estimation uncertainty in position both in 

longitudinal (tangent to vehicle trajectory) and lateral 

direction (perpendicular to vehicle trajectory) is 

presented in Fig. 3 and Fig. 4.  During GPS blockage 

periods uncertainty in both directions increases. 

Uncertainty increase in longitudinal direction is mostly 

due to integration of speed uncertainty during this time, 

while lateral uncertainty increase is primarily due to 

uncertainty in heading which can cause large lateral 

position uncertainty in long distances. It can also be 

observed that lateral uncertainty changes to longitudinal 

uncertainty as the vehicle turns in an intersection. It can 

be concluded that accurate estimation of speed and 

heading is crucial for proper functioning of the fusion 

algorithm. In Fig. 5 estimation uncertainty in lateral and 

longitudinal directions are overlaid for better 

comparison.   
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Fig. 4 Lateral uncertainty (3σ ), plotted perpendicular to 

the vehicle trajectory. 
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Fig. 5 Lateral and longitudinal uncertainties 

 

As mentioned in introduction, precise estimation of 

heading direction is a requirement for an intersection 

active safety application. Although a high precision 

commercial fiber optic gyro was used in the test vehicle, 

still yaw rate needed to be fused with other 

measurements for compensation of errors caused by 

integration of noisy yaw rate measurement. In addition 

absolute heading direction was needed as an initial 

value for integration of yaw rate. 

Fig. 6 shows estimated heading direction by EKF, 

GPS Doppler derived heading direction and integrated 

yaw rate collected from fiber optic gyro. As it can be 

seen the EKF succeeded in filtering the noisy GPS 

Doppler derived heading direction based on the yaw rate 

measurements.  
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Fig. 6 Heading measurements and estimated heading  

 

For better presentation of heading direction 

estimation by established EKF, “difference between 

Doppler derived heading and integrated yaw rate” and 

“difference between estimated heading and integrated 

yaw rate” are given in Fig. 7. It can be observed that 

difference between estimated heading direction and 

integrated yaw rate is not constant and is affected by 

GPS heading direction and other fused measurements.  
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Fig. 7 “Difference between integrated yaw rate and 

Doppler drived heading” and “Difference between 

integrated yaw rate and estimated heading” 

 

Fig. 8 shows heading estimation uncertainty which 

goes below 1 degree after first 40 seconds and increases 

slightly during GPS blockage. 
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Fig. 8 Heading estimation uncertainty 

 

4. CONCLUSION  

 

A sensor fusion algorithm for vehicle positioning in 

intersection active safety applications, based on Kalman 

filtering is presented. The developed extended Kalman 

filter integrates complementary onboard sensors and 

GPS data to achieve continuous and precise position and 

heading direction of the vehicle. 

The system was tested on a complex urban roadway 

where GPS signal occlusion was observed frequently. 

The GPS was available in only about 70% of the total 

trajectory length. The integrated positioning system 

provided very encouraging results.  

 Heading estimate became more precise by fusion 

of Doppler derived heading and yaw rate from Fiber 

Optic Gyro. Heading estimation uncertainty was about 1 

degree. The yaw rate sensors used in this paper were 

expensive non-automotive grade equipment; however 

considering the sensor developments, these results can 

be obtained by automotive grade sensors in near future.  

Position estimation uncertainty both in longitudinal 

(tangent to vehicle trajectory) and lateral direction, 

during GPS coverage, was 0.3 m in average. The 

increase in longitudinal uncertainty is about 0.5m for 

each 100m of GPS blockage, and this value for lateral 

uncertainty is about 1.5m for each 100m of GPS 

blockage.  
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