
Modelling Received Signal Strength from On-Vehicle BLE Beacons
Using Skewed Distributions: A Preliminary Study

Bashar I. Ahmad†, Tohid Ardeshiri†, Pat Langdon, and Simon J. Godsill
Signal Processing and Communications Laboratory,
Engineering Department, University of Cambridge

Trumpington Street, Cambridge, UK, CB2 1PZ
Email: {bia23, ta417, pml24, sjg30}@cam.ac.uk

Thomas Popham
Research & Technology

Jaguar Land Rover
Whitley, Coventry, UK CV3 4LF

Email: tpopham@jaguarlandrover.com

Abstract—This paper describes a study on modelling the
Received Signal Strength Indicator (RSSI) measured by the
smartphone of a vehicle user. The present transmissions are
emitted by dedicated radio frequency sources, such as Bluetooth
Low Energy (BLE) beacons, mounted to the vehicle to determine
the driver/passenger(s) proximity or relative position(s). Based on
empirical data, a model of the measurements noise, which utilises
skewed distributions, is proposed to capture inconsistencies in
reception and the impact of occlusions on the RSSI profile
in an automotive setting, for example occlusions in car parks.
Experimental data is used to demonstrate the suitability of the
introduced model.

I. INTRODUCTION

Recent advances in sensing, data storage and communica-
tions technologies have led to the introduction of new smart
vehicle functionalities aimed at offering a personalised and
more pleasant driving experience [1]. In this context, there
are substantial benefits to be gained from determining the
proximity or the location of the driver relative to the vehicle,
as early as possible, prior to the start of a journey. For
example, activating key-fob scanner, adjusting seats as per
learnt preferences, pre-configuring the infotainment system,
warming/cooling the vehicle, to name a few. In this paper, we
address the modelling aspect of determining the proximity or
location of a vehicle user from his/her smartphone data.

There has been a growing interest in leveraging the smart-
phone versatile set of sensors, including a Global Navigation
Satellite Systems (GNSS) receiver and Inertial Measurement
Unit (IMU), for automotive applications, e.g. traffic state esti-
mation [2], navigation [3], [4], and driver assistance [5], [6].
Whilst the ubiquitous location-based services on smartphones
can enable determining the user proximity to the vehicle,
their achieved location accuracy in indoor (e.g. underground
or covered car parks) or even urban environments is con-
siderably poor [7]. Aided GNSS services also have stringent
power consumption and quickly drain the phone battery. This
is particularly important if localisation is to be performed
continuously and seamlessly without being prompted by the
user. Therefore, there is a need for a cheap and power
efficient solution that permits locating the smartphone of the
driver/passenger relative to the vehicle.

†The first two authors made an equal contribution to this work.

Fig. 1: Vehicle with six iBeacons, each transmitting at regular
intervals.

Several alternative technologies to perform smartphone-to-
vehicle positioning exist, for instance utilising the vehicle
and/or smartphone IMUs [8], [9], bluetooth and audio ranging
[10], wearables [11], [12], voice recognition [13], Near Field
Communication (NFC) [14] and others. Majority of such
solutions address locating the smartphone inside the vehicle,
e.g. in the driver or passenger side. This is motivated by
applications such as limiting the smartphone functionalities
if it is located in the driver side to minimise distractions,
identifying the driver/passenger(s), customising infotainment
and others. In this study, we are primarily interested in the
smartphone position (i.e. the driver/passenger location with
respect to the car) whilst users approach the vehicle before
starting a journey. Nevertheless, the accurate positioning of
the smartphone within the vehicle can also be addressed with
the same technology discussed below.

Amongst out-of-vehicle positioning solutions suitable for
mobile phones and not reliant on GNSS are those based on:
1) Radio Frequency (RF) signal strength, either from RF trans-
missions already present (e.g. WiFi and cellular), or emitted
by dedicated transmitters (e.g. installed NFC or Bluetooth
transmitters), and 2) Pedestrian Dead Reckoning (PDR) from



IMU data [7]. The latter’s performance can be relatively poor
due to the low data quality from a typical smartphone IMU
and the arbitrary position of the phone (for instance in hand,
pocket, bag, etc.). This is particularly noticeable in the absence
of GNSS measurements, albeit intermittent, and/or absence
of detailed map information. Hence, we explore here the RF
signal strength option.

In this paper, we specifically treat the problem of mod-
elling RSSI measurements from Bluetooth low energy beacons
mounted to the vehicle (e.g. see Figure 1). Data from a pilot
experimental study is presented and subsequently utilised to
propose as well as validate the measurements noise model.
Ultimately, combining the PDR with RSSI-based methods
can improve the positioning performance [7]. However, this
is outside the scope of this study, whose chief purpose is
to formulate a suitable RSSI measurements model that can
be used in future work to enhance the driver-passenger(s)
localisation from on-vehicle RF transmitters.

Employing BLE beacons or tags, namely iBeacons, is driven
by their low cost, the availability of a Bluetooth receiver in
most mobile phones, their remarkably low power consumption
requirements and relatively long range (can be up to 200m
[15]) in comparison to NFC [16]–[18]. The RSSI captures
the attenuation of radio signals of known transmission powers
during propagation and has been widely applied in indoor
localisation systems [7], [19], [20]. Whilst RSSI can achieve
relatively accurate positioning results in setups where the
transmitter is in Line of Sight (LoS) and the smartphone is
moving in a simple environment, it suffers from significant
performance degradation in complex situations due to occlu-
sions and multipath fading, e.g. in car parks. Thus, here we
collect data from a number of on-vehicle iBeacons, namely six,
to capture the effect of such occlusions. For example, Figure
1 shows vehicle with six iBeacons, one in the front and one
in the back in addition to one above each of the door handles.
These beacons advertise their presence, including an ID and
transmitted power at 1m, every fixed interval.

The rest of the paper is organized as follows. In the next
section, the common log-distance model is outlined and the
modelling problem is stated. In Section III, the proposed
skewed distribution measurement noise model is introduced.
The experimental setup for the RSSI data collected is detailed
and the proposed modelling approach is validated in Section
IV. Conclusions are drawn in Section V.

II. BACKGROUND AND PROBLEM FORMULATION

At time instant tk, the RSSI measurement, i.e. mi,k, per-
taining to the ith transmitter can be modelled by the classical
log-distance model, also known as Okumura-Hata model, as
per

zi,k = Pi,0 − αi log(Ri,k) + wk, i = 1, 2, ...N, (1)

where Pi,0 is the transmitted power in dB (including at a fixed
distance, e.g. 1m, thus, incorporating antenna gain, etc.), αi is
the path loss coefficient and Ri,k = ‖p(tk)− si‖2 is the range
such that p(tk) and si are the locations of the smartphone

(a) Line of sight measurements.

(b) Non-line of sight measurements.

Fig. 2: Fitted log-distance model for various ranges.

and the ith transmitter, respectively [7], [21]; 2-dimensional
coordinates of positions are assumed throughout this paper.
Whereas, wk represents the noise due to the shadowing effects
and possibly occlusions. The simple model in (1) is one of the
most commonly used path loss models and it is adopted here.

A Gaussian measurement noise, wk v N (0,Σ), in (1) is
often assumed, i.e. it has a symmetric distribution [7], [19].
The objective of this study is to show from experimental data
that due to occlusions and the Non-Line of Sight (NLoS)
measurements from one or more of the N transmitters, the
Gaussian assumption does not hold in the addressed auto-
motive application. Instead, a skewed distribution model is
proposed. Capturing the impact of NLoS measurements using
a skewed distribution has the potential to lead to significantly
more accurate location/proximity estimates, for instance see
[22] where a skew-t likelihood is incorporated for time-of-
arrival measurements.

Figure 2 shows the model in (1) fitted, via linear regression,
to a limited set of RSSI data measured by a smartphone from
four beacons (two on each side of the vehicle, see Figure
1); the smartphone position (i.e. range) is accurately known.
Further details on the setup are given in Section IV. The phone
logs simultaneously the LoS (e.g. from beacons S2 and S3 on
the driver side in Figure 1) and NLoS (e.g. from beacons S5

and S6 on the front passenger side, which is the right hand
side in the UK) at several ranges; no obstacles exist between



the smartphone and vehicle. It can be easily seen from Figure
2a that the model in (1) is representative of the recorded LoS
data with observations up to 120m away. Whereas, for the
beacons occluded by the vehicle most of the measurements
are collected within a 20m range and the previously fitted
model is not applicable.

III. PROPOSED MODELLING FRAMEWORK FOR NOISE

Since the maximum received power cannot exceed that
transmitted by the BLE beacon, it is intuitive to assume
that the RSSI noise can only belong to a limited range of
positive values. Whereas, due to occlusions, RF signal can
be substantially attenuated and, thereby, the likelihood of wt

in (1) taking large negative values should be captured by
the model. This implies that a skewed distribution, rather
than a symmetric one, which is more heavy tailed to the
left hand side, is expected to better model the measurement
noise in the addressed automotive application. In this paper,
we proposed modelling the RSSI measurements from different
beacons as independently univariate skewed distributions. A
distribution that is particularly suitable is univariate skew-t,
which is described below for completeness, see [22]–[24] for
more details.

The univariate skew t-distribution is parameterised by its
location parameter µ ∈ R, spread parameter σ ∈ R+, shape
parameter δ ∈ R and degrees of freedom ν ∈ R+. Its
Probability Density Function (PDF) is described by

ST(z;µ, σ2, δ, ν) = 2 t(z;µ, δ2 + σ2, ν) T(z̃; 0, 1, ν + 1),
(2)

such that t(z;µ, σ2, ν)is the PDF of Student’s t-distribution,
and z̃ is defined by

z̃ ,
(z − µ)δ

σ

√
ν + 1

ν(δ2 + σ2) + (z − µ)2
. (3)

Whereas, the Cumulative Distribution Function (CDF) of
Student’s t-distribution with degrees of freedom ν and scale 1
is denoted by T(z̃; 0, 1, ν). The skew t-distribution, according
to the definitions in (2)-(3), was originally introduced in the
multivariate form in [25]–[27]. Furthermore, expressions for
the first two moments of the univariate skew t-distribution with
the parameterisation in (2) can be found in [28], [29].

In Figure 3 the PDF of ST(z; 0, 1, δ, 4) is plotted for three
values of δ, and in Figure 4 the PDF of ST(z; 0, 1, 1, ν) is
displayed for three values of ν. It can be noticed that increasing
δ increases its skewness, whereas decreasing ν increases the
distribution heavy-tailedness.

A useful representation of the skew t-distribution is the
hierarchical representation [30]

z|u, λ ∼ N (µ+ δu, λ−1σ2), (4a)

u|λ ∼ N+(0, λ−1), (4b)

λ ∼ G
(ν

2
,
ν

2

)
, (4c)

Fig. 3: The PDF of ST(x; 0, 1, δ, 4) for different values of δ;
δ = 0 gives Student’s t-distribution, and increasing δ increases
the skewness.

Fig. 4: The PDF of ST(z; 0, 0.5,−2, ν) for different values of
ν; ν =∞ gives the skew normal distribution, and decreasing
ν increases heavy-tailedness.

where u and λ are scalar random variables and N+(m, s2)
denotes the truncated normal distribution with closed positive
orthant as support, location parameter m, and scale-parameter
s. Furthermore, G(α, β) is the gamma distribution with shape
parameter α and rate parameter β. The hierarchical represen-
tation (4) can be used to generate samples from the skew
t-distribution for parameter inference for fitting likelihood
functions as well as approximate filtering and smoothing using
variational Bayes as in [22] and [23]. The parameters of
the skew t-distribution can also found using the maximum
likelihood principle. That is for J independent measurements
with known true values and error zj the parameter Ω ,{
µ, σ2, δ, ν

}
is given by

Ω̂ = arg max
Ω

J∏
j=1

ST(zj | Ω) (5)

which can be solved by a gradient based optimization solver
and others, e.g. [31].

Although skewed t-distribution was described in this sec-
tion, other skewed distribution such as skew normal, Rayleigh,
gamma and mixture distribution, e.g. Gaussian mixtures, can
be utilised; several distributions are examined in Section IV-B.
Whilst the resultant likelihoods for all these distributions can
be used in a particle filter or analytical sequential filters within
a Bayesian filtering framework, [23], [24] offer a filtering and
a smoothing framework using variational Bayes method for
skew t likelihood. Whereas, skew normal likelihood requires
a moment matching step in its measurement update. Gaussian



Fig. 5: The vehicle used in the experiment. The three visible
beacons (out of the six) are indicated by the colored squares
in the left picture. The right picture depicts the portable RTK
satellite navigation system (Leica GS08+) held by the user.

mixture filtering methods entail a mixture reduction step [32].
We recall that the inference aspect is outside the scope of this
paper.

IV. EXPERIMENTAL VALIDATION

A. Set-up and Data Collection Procedure

In this study, data is collected simultaneously from six iBea-
cons [16] mounted around a Vauxhall Insignia car as per Fig-
ure 1 using a Samsung Galaxy S6 smartphone. Estimote Long
Range Beacons are employed here [15]; they have a long cov-
erage with reconfigurable advertisement interval T and trans-
mitted power (set at 10dBm). Additionally, a Leica GS08+
RTK satellite navigation system is utilised to obtain accurate
position/range measurements of the smartphone/vehicle-user,
hence produces ground-truth positioning data. It has a reliable
horizontal and vertical accuracies (pole height is 1.5m) of 5mm
and 10mm , respectively. Figure 5 depicts the vehicle with
the beacons as well as the portable RTK satellite navigation
system held by the user.

Whilst at least two (out of the six) beacons are occluded
at any point in time (i.e. without a LoS with the smartphone)
by the test vehicle, the RSSI and RTK data is collected in
a large empty car park. Nevertheless, the scenario where a
car is parked next to the test vehicle with beacons is also
considered as shown in Figure 6. The smartphone collects
data from all six beacons every, approximately, 1.2 seconds
(i.e. six RSSI observations from all six beacons), whereas the
RTK system data rate is approximately 1Hz. Figure 7 depicts
the layout of the overall track sampled by the smartphone. It
pertains to experiments collected over three full days, where
the user is constantly moving in the vicinity of the vehicle
for considerable durations. After sorting and removing ambi-
guities (e.g. due to intermittent loss of the RTK service and
smartphone system interruptions), over 140min of continuous
measurements are extracted. All positioning data is rotated,
converted to meters and aligned with the test vehicle, which
represents the origin as can be noticed from Figures 7.

It is worth noting that it is inevitable that the user’s body as
well as hand holding the smartphone, and the RTK system
pole might, sometimes (however infrequent), obstruct the
smarphone’s direct line of sight to the beacons, especially
given the length of the conducted experiments. Therefore, LoS

Fig. 6: Occluded scenario with a car parked on the right hand
side of the vehicle instrumented with iBeacons.

Fig. 7: The layout of the overall track sampled by the smart-
phone (red square is the test vehicle with beacons).

describe the scenario where no major physical object (e.g.
vehicle) is obstructing the smartphone-beacon line of sight.

B. Data Analysis

Figure 8 exhibits the coverage area of each of the six sen-
sors/beacons in the empty car park scenario. Due to physical
restrictions of the car park (e.g. size-shape), the areas to the
right and rear of the car are sampled more densely and at
longer ranges as seen in the figure. Nonetheless, assuming
symmetry between the left and right sides of the car as well as
between front and the rear, the measurements can be mirrored
to create a symmetrical surveyed area around the car. The
following observations are made from Figure 8: 1) the sensor
range can be up to 140m in LoS (see sub-plot for beacon
S4) and up to 20m in NLoS conditions, 2) the measurements
are significantly more dense near the car and they become
gradually sparse as the range smartphone departs from the
car, and 3) front and back beacons have the widest coverage
areas. It is also expected that a car parked to the right or left
of the test vehicle will have a similar impact to that seen in
the NLoS region per beacon in Figure 8 (i.e. reduce coverage
region).

Since the accurate position of the smartphone is available
via the RTK system (albeit the system’s remarkably low



Fig. 8: Sensor coverage area for each beacon (S1 to S6, each in a sub-plot). The black line-with-dots is the smartphone location
as per the GPS, red circles are the location of the RSSI measured by a smartphone for each beacon, green star is the beacon
location and green polygon represents the convex hull of the position of RSSI measurements from each beacon.

Fig. 9: Histogram of the RSSI measurements noise from all six
beacons and logged data points; various skewed distributions
fitted to data are shown.

localisation uncertainty), the RSSI measurements error wt can
be calculated directly from (1). Figure 9 depicts the histogram
of the measurements noise/error from all of the collected RSSI
data. The figure also shows a few suitable asymmetric/skewed
distributions that can be fitted, e.g. see the ML criterion in
(5), to the empirical log RSSI measurements noise. Namely,
the figure displays the fitted distributions (from): a) skew-t, b)
gamma (shifted and flipped to represent the negative values as
well as the skewness to the left hand side), and c) Gaussian
mixture model with two components; Rayleigh is not shown
here due to the poor fit. Whereas, Figure 10 exhibits the
histogram of the noise for the LoS and NLoS measurements

separately.
It can be noticed from Figure 9 that the measurements noise
distribution is clearly asymmetric with notable skewness to
the left due to the impact of occlusions and possibly fading.
Thus, it cannot be easily modelled by a Gaussian distribution.
The skew t-distribution discussed in Section III closely fits
the data in Figure 9. It is a strong candidate for devising a
suitable inference routine to establish the range or relative
position of the smartphone using data from all the available
sensors/beacons, e.g. see [22], [23]. Furthermore, the proposed
skewed likelihood functions can be used in a Sequential Monte
Carlo framework also known as particle filtering. This aspect
will be addressed in future work. As expected, Figure 10 also
shows that more samples are visible in LoS, albeit including
possible obstructions by the user’s hand, etc. Whereas, the
NLoS error is nearly symmetric, see the coverage areas
analysis in Figure 8. Combining the LoS and NLoS results
in the skewness of the noise distribution.

Finally, to demonstrate the difficulties that can arise from
directly inferring the range from the RSSI measurements
model in (1), i.e.

R̂i,k = exp

(
zi,k − Pi,0

−αi

)
, (6)

and without a priori knowledge of the LoS and NLoS mea-
surements as is the case in practice, Figure 11 shows the
Okumura-Hata model fitted to the overall logged data. It is
clear from Figure 11 that the measurements model can notably
misrepresent the position/range information due to noise and
occlusions. Error in the range estimates from (6) can be in the



(a) Line of sight.

(b) Non-line of sight.

Fig. 10: RSSI measurement noise from LoS and NLoS beacons
(together they form the data in Figure 9).

Fig. 11: Log-distance model from all collected data from six
beacons (i.e. LoS and NLoS data).

region of 50m up to 100m from the data in Figure 11.

C. Final Remarks

Occlusions can also be induced by any other objects or
material obstructing the smartphone-beacon LoS, for instance,
car park pillars, other pedestrians, and/or if the phone is in the

user’s pocket, handbag, etc. Moreover, the locations of the RF
sources on the vehicle can be modified, e.g. a beacon mounted
to the car roof can have a wider coverage area; the use of
six beacons was in fact motivated by covering the majority
of the driver/passenger(s) approach directions. It is noted that
to be able to locate the user with respect to the vehicle (i.e.
not only estimating range), data from the available beacons
(preferably all) need to be fused and several well-established
fusion techniques from wireless sensor network and tracking
areas exist. Nevertheless, most approaches assume a symmet-
ric measurement noise models or even adopt a deterministic
formulation, e.g. see [33] for an overview.

Whilst in this paper a pilot experimental study is conducted
focusing on data modelling, it presents a clear indication that
skewed distributions present themselves as strong candidates
to accurately model the RSSI measurement noise from BLE
transmitters (or any other RF source) in automotive settings.
Thereby, such models can potentially achieve more accurate
localisation results. In this context, occlusions can even be
employed as a feature to enhance localisation from a number
of beacons with varying coverage areas, rather than being
treated as a nuisance.

V. CONCLUSIONS

Data from an experimental study with on-vehicle BLE
beacons is presented and a skewed distribution model of
the RSSI measurement noise is proposed. This skewness is
demonstrated utilising the collected empirical data. This pre-
liminary study serves the purpose of motivating and paving the
way for formulating an inference framework that incorporates
or even exploits this skewness in the RSSI profile induced by
occlusions and multipath fading in automotive applications.
Such an inference framework is expected to outperform algo-
rithms which assume a symmetrical noise distribution such as
nonlinear least squares type and Kalman filter type algorithms.

Subsequent work can leverage this information (e.g. assume
a skew t-distributed measurement noise in lieu of the common
Gaussian model) to achieve more accurate estimations of the
driver/passengers location with respect to vehicle using RSSI
measurements from on-vehicle beacons and possibly utilising
built-in smartphone sensors, such as the inertia measurement
unit.
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