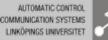
Representing and working with uncertainty in dynamical systems

Thomas Schön Division of Automatic Control Linköping University Sweden

www.control.isy.liu.se/~schon

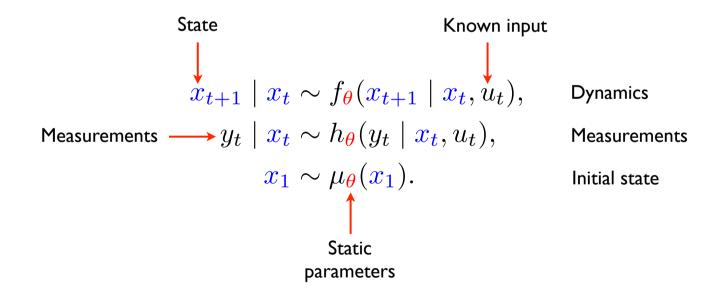
Special thanks to: Jeroen Hol (Xsens Technologies), Lennart Ljung (LiU), Johan Kihlberg (Xdin), Fredrik Lindsten (LiU), Henk Luinge (Xsens Technologies), Michael Jordan (Berkeley), Brett Ninness (University of Newcastle), Per-Johan Nordlund (Saab), Simon Tegelid (Xdin) and Adrian Wills (University of Newcastle).

Representing and working with uncertainty in dynamical systems Thomas Schön, <u>schon@isy.liu.se</u>



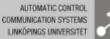
Dynamical systems

What is a dynamical system?



"The present state of a dynamical system depends on its history."

Representing and working with uncertainty in dynamical systems Thomas Schön, <u>schon@isy.liu.se</u>



Outline

I. Representation - probabilistic state space models (SSM's)

2. State inference

- a) General solution
- b) LGSS models and the Kalman filter
- c) Sensor fusion example
- d) Particle filter for general SSM's via positioning examples

3. Parameter inference

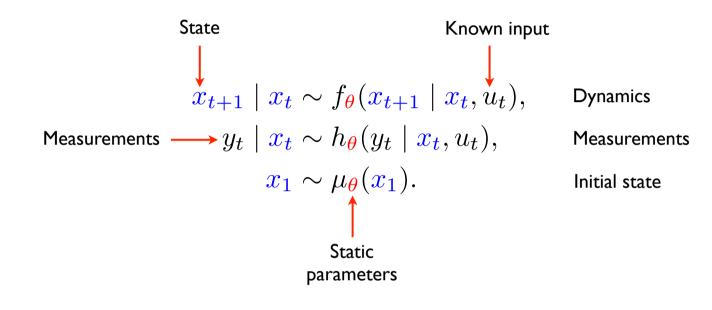
- a) Problem formulation
- b) Bayesian solution particle MCMC
- c) System identification example semiparametric Wiener model

 $\begin{aligned} x_{t+1} \mid x_t &\sim f_{\theta}(x_{t+1} \mid x_t, u_t), \\ y_t \mid x_t &\sim h_{\theta}(y_t \mid x_t, u_t), \\ x_1 &\sim \mu_{\theta}(x_1). \end{aligned}$

Representing and working with uncertainty in dynamical systems Thomas Schön, <u>schon@isy.liu.se</u>

Probabilistic models of dynamical systems

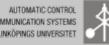
We often model a dynamical system using **probability density functions (pdf's)**



Model = pdf

The state process is hidden (latent) and it is observed indirectly via the measurement process.

This type of model is referred to as a **state space model (SSM)** or a **hidden Markov model (HMM)**.



Probabilistic models of dynamical systems

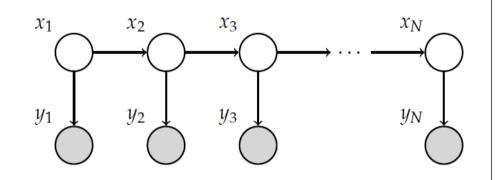
Alternative model formulation I (common in engineering):

Uncertainty in the model

$$\begin{aligned} x_{t+1} &= \widetilde{f}_{\theta}(x_t, u_t) + v_{\theta, t}, \\ y_t &= \widetilde{h}_{\theta}(x_t, u_t) + e_{\theta, t}, \\ x_1 &\sim \mu_{\theta}(x_1). \end{aligned}$$

Uncertainty in the measurements

Alternative model formulation 2 (graphical model):



The state is a variable that contains all information about the past and the present of a system, which is needed in order to predict the future.

It is the Markov property

$$p(x_{t+1} \mid x_1, \dots, x_t) = p(x_{t+1} \mid x_t)$$

that allows for this.

The use of probabilistic models

The SSM can be used to answer many questions, where two of the most common are:

State inference: Infer the states from the available measurements.
 Parameter inference: Infer the static model parameters from the available measurements.

Answering the second question typically involves solving various state inference problems.

System identification deals with the problem of finding a dynamical model based on measurements of the input signal and the output signal,

$$u_{1:N} = \{u_1, \dots, u_N\}, \qquad y_{1:N} = \{y_1, \dots, y_N\}.$$

Sensor fusion is the process of using information from **several different** sensors to **learn (estimate)** what is happening (this typically includes states of various dynamical systems and various static parameters).

State inference

The **aim** is to compute a probabilistic representation of our knowledge of the state, based on information that is present in the measurements.

The **filtering probability density function (pdf)** provides a good representation of the uncertainty about the state at time t, given the measurements up to time t,

 $p(x_t \mid y_{1:t})$

The obvious question is now, how do we compute this object?

Bayes' theorem

$$p(x_t \mid y_{1:t}) = p(x_t \mid y_t, y_{1:t-1}) \stackrel{\downarrow}{=} \frac{p(y_t \mid x_t, y_{1:t-1})p(x_t \mid y_{1:t-1})}{p(y_t \mid y_{1:t-1})}$$
$$= \frac{h(y_t \mid x_t)p(x_t \mid y_{1:t-1})}{p(y_t \mid y_{1:t-1})}$$

Markov property

Representing and working with uncertainty in dynamical systems Thomas Schön, <u>schon@isy.liu.se</u>

AUTOMATIC CONTROL COMMUNICATION SYSTEMS LINKÖPINGS UNIVERSITET

State inference

Need an expression also for the prediction pdf

 $p(x_t \mid y_{1:t-1})$

Let us start by noting that by marginalization we have

$$p(x_t \mid y_{1:t-1}) = \int p(x_t, x_{t-1} \mid y_{1:t-1}) dx_{t-1}$$

$$p(x_t, x_{t-1} \mid y_{1:t-1}) = p(x_t \mid x_{t-1}, y_{1:t-1}) p(x_{t-1} \mid y_{1:t-1})$$

$$= f(x_t \mid x_{t-1}) p(x_{t-1} \mid y_{1:t-1})$$

Hence, the prediction pdf is given by

Markov property

$$p(x_t \mid y_{1:t-1}) = \int f(x_t \mid x_{t-1}) p(x_{t-1} \mid y_{1:t-1}) dx_{t-1}$$

Representing and working with uncertainty in dynamical systems Thomas Schön, <u>schon@isy.liu.se</u> Complex modeling, Convergence and Uncertainty Quantification Uppsala, Sweden

AUTOMATIC CONTROL COMMUNICATION SYSTEMS LINKÖPINGS UNIVERSITET

State inference - summarizing the development

We have now showed that for the nonlinear SSM

```
\begin{aligned} x_{t+1} \mid x_t \sim f(x_t \mid x_{t-1}), \\ y_t \mid x_t \sim h(y_t \mid x_t), \end{aligned}
```

the uncertain information that we have about the state is captured by the filtering pdf, which we compute sequentially using a **measurement update**

$$p(x_t \mid y_{1:t}) = \frac{\overbrace{h(y_t \mid x_t)}^{\text{measurement}} prediction pdf}{\frac{h(y_t \mid x_t)}{p(x_t \mid y_{1:t-1})}},$$

and a time update

$$p(x_t \mid y_{1:t-1}) = \int \underbrace{f(x_t \mid x_{t-1})}_{t-1} \underbrace{p(x_{t-1} \mid y_{1:t-1})}_{t-1} dx_{t-1},$$

dynamic model

filtering pdf

Representing and working with uncertainty in dynamical systems Thomas Schön, <u>schon@isy.liu.se</u>

State inference - simple special case (LGSS)

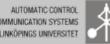
Consider the following special case (Linear Gaussian State Space (LGSS) model)

$$\begin{aligned} x_{t+1} &= Ax_t + Bu_t + v_t, & v_t \sim \mathcal{N}(0, Q), \\ y_t &= Cx_t + Du_t + e_t, & e_t \sim \mathcal{N}(0, R). \end{aligned}$$

or, equivalently,

$$\begin{aligned} x_{t+1} \mid x_t \sim f(x_{t+1} \mid x_t) &= \mathcal{N}(x_{t+1} \mid Ax_t + Bu_t, Q), \\ y_t \mid x_t \sim h(y_t \mid x_t) &= \mathcal{N}(y_t \mid Cx_t + Du_t, R). \end{aligned}$$

Gaussian variables and linear transformation implies that the mean and the covariance captures everything there is to know.



State inference - simple special case (LGSS)

Measurement update

$$p(x_t \mid y_{1:t}) = \frac{h(y_t \mid x_t)p(x_t \mid y_{1:t-1})}{p(y_t \mid y_{1:t-1})}$$

$$p(x_t \mid y_{1:t}) = \mathcal{N}\left(x_t \mid \widehat{x}_{t|t}, P_{t|t}\right)$$

$$\widehat{x}_{t|t} = \widehat{x}_{t|t-1} + K_t (y_t - C\widehat{x}_{t|t-1} - Du_t),$$

$$K_t = P_{t|t-1}C^T (CP_{t|t-1}C^T + R)^{-1},$$

$$P_{t|t} = P_{t|t-1} - K_t CP_{t|t-1}$$

innovation

decrease uncertainty

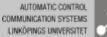
Time update

$$p(x_{t+1} \mid y_{1:t}) = \int f(x_{t+1} \mid x_t) p(x_t \mid y_{1:t}) dx_t$$

$$p(x_{t+1} \mid y_{1:t}) = \mathcal{N}(x_{t+1} \mid \hat{x}_{t+1|t}, P_{t+1|t})$$

$$\widehat{x}_{t+1|t} = A\widehat{x}_{t|t} + Bu_t,$$

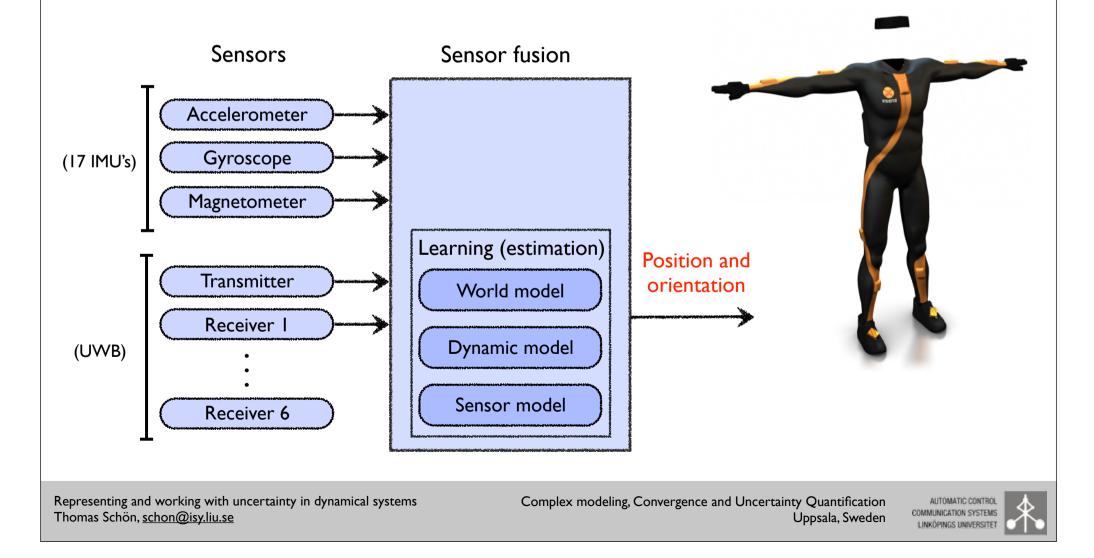
$$P_{t+1|t} = AP_{t|t}A^T + Q$$
increase
uncertainty



State inference - a sensor fusion example (I/III)

Aim: Estimate the position and orientation of a human (i.e. human motion) using measurements from inertial sensors and ultra-wideband (UWB).

Industrial partner: Xsens Technologies



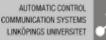
State inference - a sensor fusion example (II/III)

The sensors

Sensor unit integrating an IMU and a UWB transmitter into a single housing.

- Inertial measurements @ 200 Hz
- UWB measurements @ 50 Hz
- Mobile transmitter and 6 stationary, synchronized receivers at known positions.
- Time-of-arrival (TOA) measurements

Representing and working with uncertainty in dynamical systems Thomas Schön, <u>schon@isy.liu.se</u>



Outline

I. Representation - probabilistic state space models (SSM's)

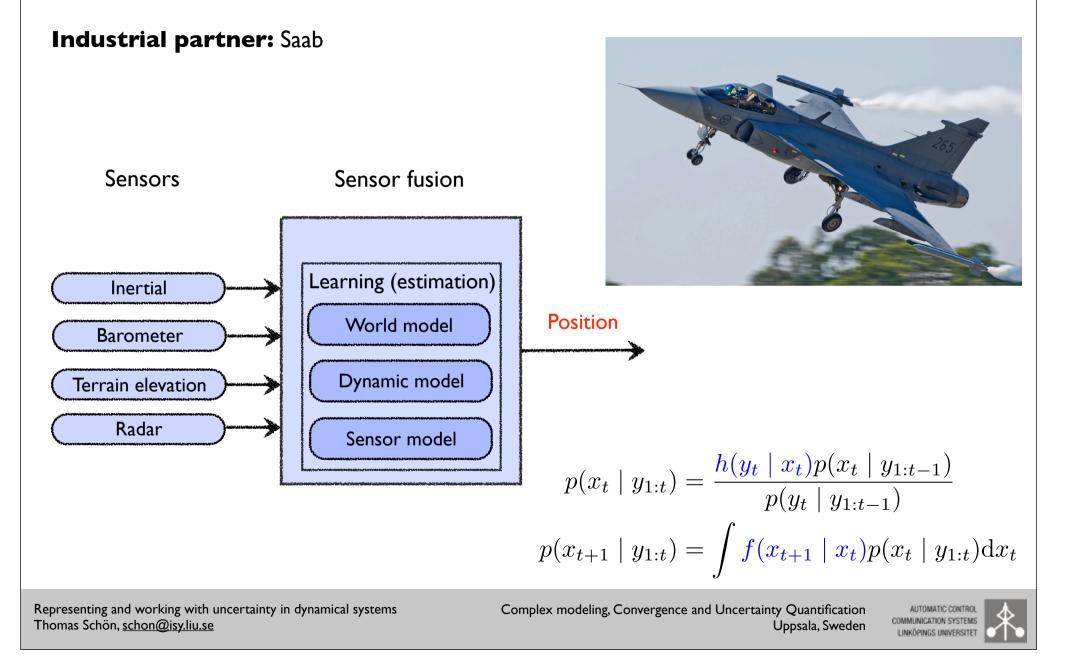
2. State inference

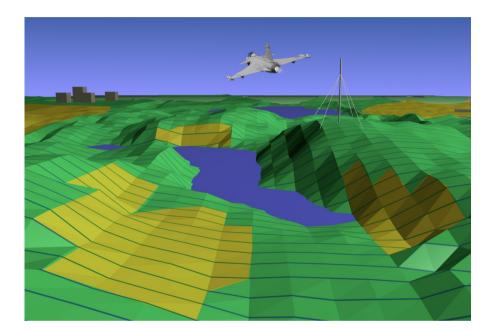
- a) General solution
- b) LGSS models and the Kalman filter
- c) Sensor fusion example
- d) Particle filter for general SSM's via positioning examples

3. Parameter inference

- a) Problem formulation
- b) Bayesian solution particle MCMC
- c) System identification example semiparametric Wiener model

Aim: Find the position, velocity and orientation of a fighter aircraft.



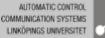




"Think of each particle as one simulation of the system state (in the movie we are visualizing the horizontal position). Only keep the good ones."

Show movie

Representing and working with uncertainty in dynamical systems Thomas Schön, <u>schon@isy.liu.se</u>



The **idea** in the particle filter (member of the larger family of Sequential Monte Carlo (SMC) methods) is to use the following nonparametric representation of the filtering pdf

$$p(x_t \mid y_{1:t}) \approx \sum_{i=1}^{N} w_t^i \delta_{x_t^i}(x_t), \qquad \sum_{i=1}^{N} w_t^i = 1, \quad w_t^i \ge 0, \forall i$$

The weights and the particles are then updated as new measurements becomes available.

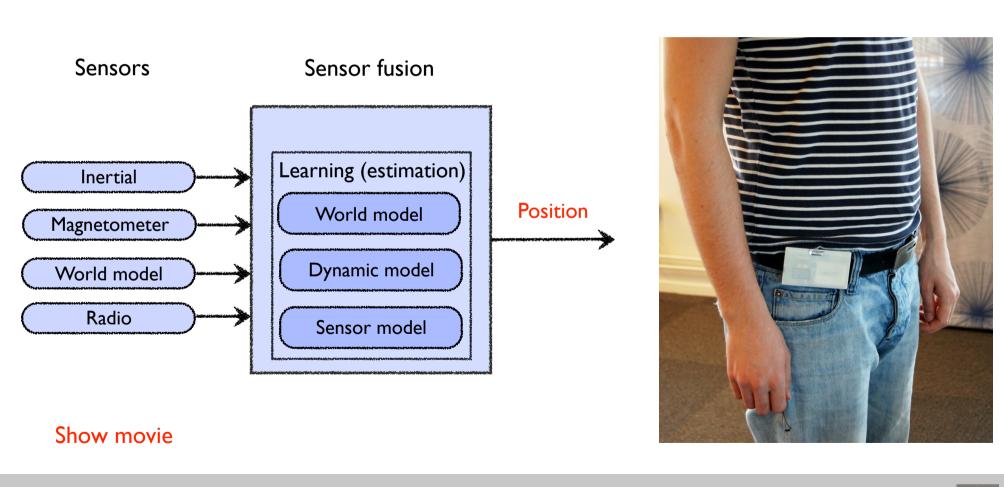
This implies that the multidimensional integrals are replaced by finite sums, which is manageable,

"
$$\delta + \int \rightarrow \sum$$
"

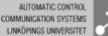
Representing and working with uncertainty in dynamical systems Thomas Schön, <u>schon@isy.liu.se</u>

Aim: Compute the position of a person moving around indoors using sensors located in an ID badge.

Industrial partner: Xdin



Representing and working with uncertainty in dynamical systems Thomas Schön, <u>schon@isy.liu.se</u>



Parameter inference - system identification

System identification deals with the problem of estimating a dynamical model based on measurements of the input signal and the output signal,

 $u_{1:N} = \{u_1, \dots, u_N\}, \qquad y_{1:N} = \{y_1, \dots, y_N\}.$

This involves **parameter inference** (among other things). Two approaches:

I. Maximum Likelihood (ML): Computes the point estimate of the parameters that makes the observed measurements as likely as possible,

$$\widehat{\boldsymbol{\theta}}^{\mathrm{ML}} = \underset{\boldsymbol{\theta}}{\mathrm{arg\,max}} \ p_{\boldsymbol{\theta}}(y_{1:N})$$

2. **Bayesian:** All variables are now assumed to be stochastic, hence the parameters are no longer deterministic variables. Compute

$$p(\boldsymbol{\theta} \mid y_{1:N})$$

Monte Carlo and Markov chain Monte Carlo (MCMC)

Monte Carlo methods provides computational solutions, where the obtained accuracy is only limited by our computational resources.

An MCMC method simulates a Markov chain where the stationary distribution is given by the target distribution of interest.

These samples can then be used to compute various estimates.

There are **constructive strategies** for doing this and some of the most popular are the Gibbs sampler and the Metropolis Hastings sampler.

Particle MCMC (PMCMC)

The **aim** in particle Markov chain Monte Carlo (PMCMC) is to compute

```
p(\theta, x_{1:T} \mid y_{1:T})
```

or some of its marginals distributions, e.g.,

```
p(\theta \mid y_{1:T})p(x_{1:T} \mid y_{1:T})
```

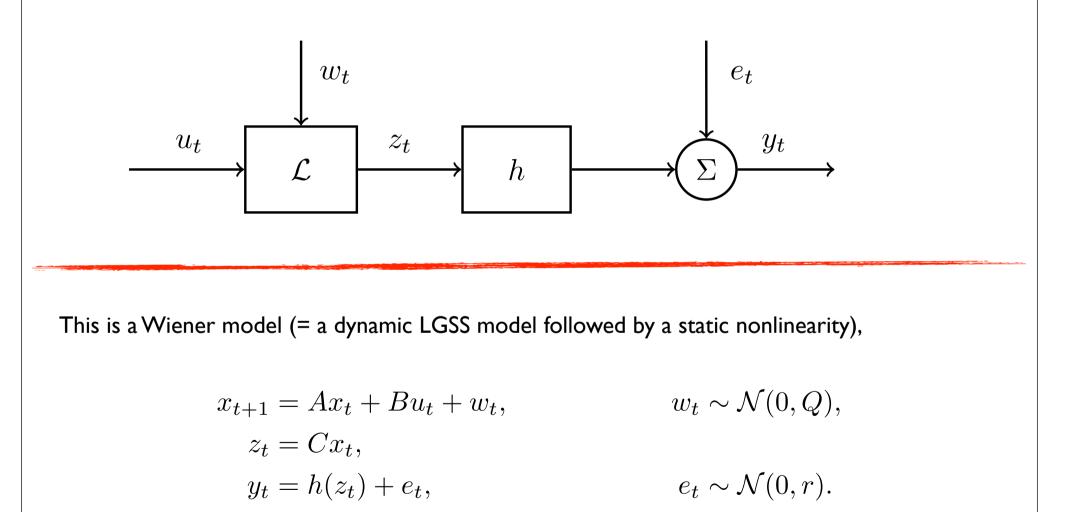
when the model is given by

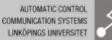
 $\begin{aligned} x_{t+1} \mid x_t \sim f_{\theta}(x_{t+1} \mid x_t, u_t), \\ y_t \mid x_t \sim h_{\theta}(y_t \mid x_t, u_t). \end{aligned}$

The **fundamental idea** is to make use of a sequential Monte Carlo (SMC) sampler to construct a proposal for an MCMC sampler.

Semi-parametric Wiener model

Rather than describing a general solution, let us be very specific and consider an example,





Semi-parametric Wiener model

--- N

Recall that the task is to find the dynamical model based on measurements of the input signal and the output signal,

$$u_{1:N} = \{u_1, \dots, u_N\}, \qquad y_{1:N} = \{y_1, \dots, y_N\}.$$

The red parts of the model below are inferred from data.

$$x_t \in \mathbb{R}^n,$$

$$x_{t+1} = Ax_t + Bu_t + w_t, \qquad w_t \sim \mathcal{N}(0, Q),$$

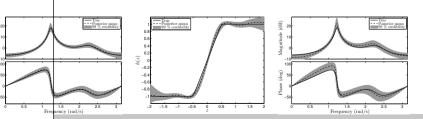
$$z_t = \begin{pmatrix} 1 & 0 & \dots & 0 \end{pmatrix} x_t,$$

$$y_t = h(z_t) + e_t, \qquad e_t \sim \mathcal{N}(0, r)$$

 (Σ)

 $h(\cdot)$

 \mathcal{G}

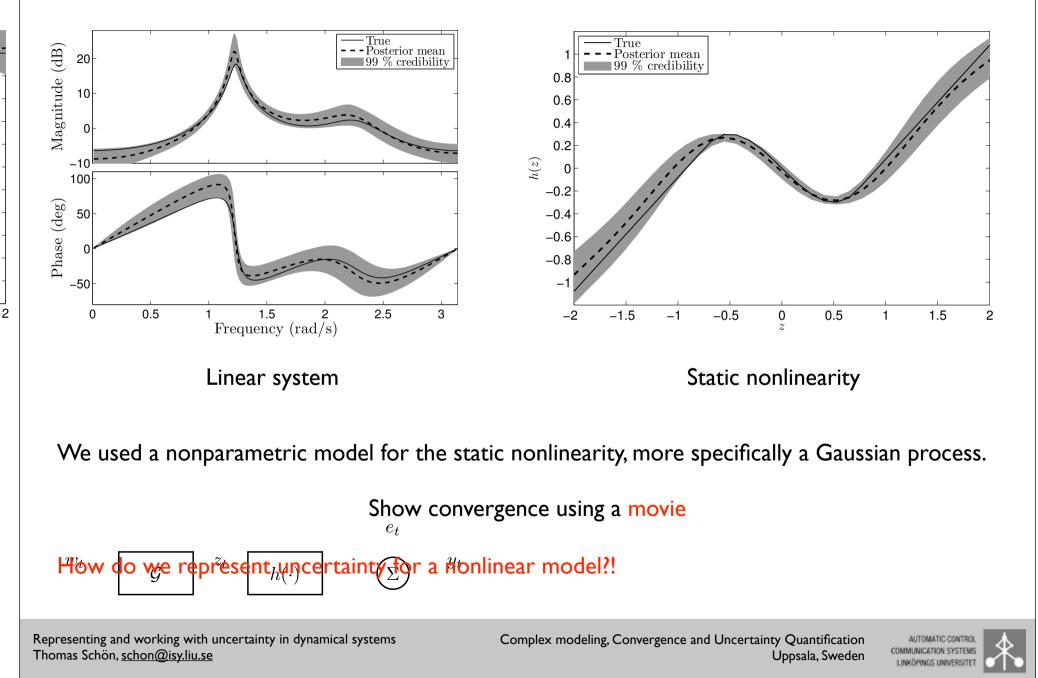


Representing and working with uncertainty in dynamical systems Thomas Schön, <u>schon@isy.liu.se</u> 0.6 0.4 0.2 0.6 0.4 0.2 0.6 0.4 0.6 0.5 1.152

Complex modeling, Convergence and Uncertainty Quantification Uppsala, Sweden

AUTOMATIC CONTROL COMMUNICATION SYSTEMS LINKÖPINGS UNIVERSITET

Semi-parametric Wiener model - representing uncertainty



Conclusions

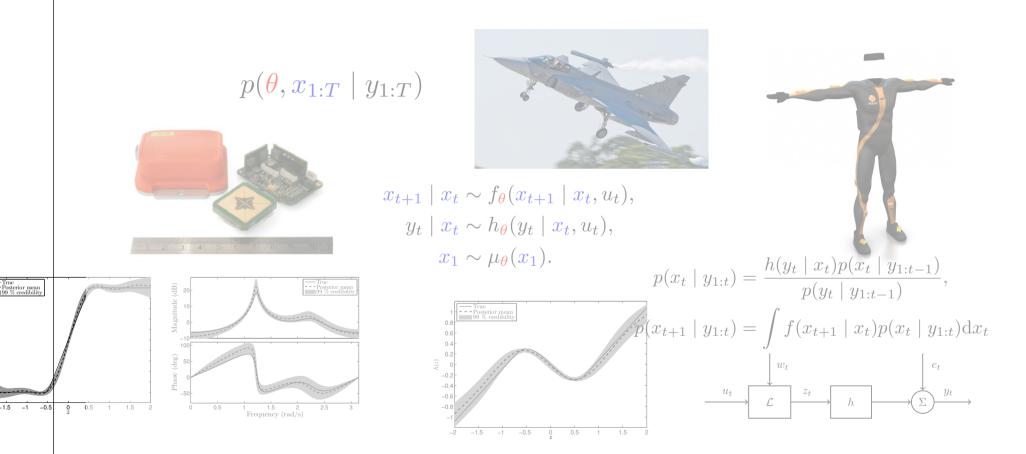
• **Take home message:** Given the computational tools that we have today it can be rewarding to resist the linear Gaussian convenience!

- There are by now a lot of tools that allows us to do this (e.g., SMC, PMCMC).
- There is a lot of **interesting research** that remains to be done!
- The industrial utility of the sensor fusion technology is growing as we speak!

Throughout the talk I have touched upon a lot of methods that clearly deserves much more time than I gave them in this tutorial presentation.

Tomorrow and on Thursday I am giving an intensive course on this in Brussels, for details, see http://www.rt.isy.liu.se/~schon/CourseBrussels2012/index.html

Representing and working with uncertainty in dynamical systems Thomas Schön, <u>schon@isy.liu.se</u>



Special thanks to: Jeroen Hol (*Xsens Technologies*), Lennart Ljung (*LiU*), Johan Kihlberg (*Xdin*), Fredrik Lindsten (*LiU*), Henk Luinge (*Xsens Technologies*), Michael Jordan (*Berkeley*), Brett Ninness (*University of Newcastle*), Per-Johan Nordlund (*Saab*), Simon Tegelid (*Xdin*) and Adrian Wills (*University of Newcastle*).

Representing and working with uncertainty in dynamical systems Thomas Schön, <u>schon@isy.liu.se</u>

