Estimation of Linear Systems using a Gibbs Sampler

Adrian Wills*, Thomas B. Schön**, Fredrik Lindsten**, Brett Ninness*

*School of EECS, University of Newcastle, Australia.

**Division of Automatic Control, Linköping University, Sweden
A linear, Gaussian state space (LGSS) model is defined by

\[
x_{t+1} = Ax_t + Bu_t + v_t,
\]
\[
y_t = Cx_t + Du_t + e_t,
\]

where

\[
\begin{pmatrix}
x_1 \\
v_t \\
e_t
\end{pmatrix} \sim \mathcal{N}\left(\begin{pmatrix}
\mu \\
0 \\
0
\end{pmatrix}, \begin{pmatrix}
P_1 & 0 & 0 \\
0 & Q & S \\
0 & S^T & R
\end{pmatrix}\right).
\]

This can equivalently be written as \(x_1 \sim \mathcal{N}(x_1 \mid \mu, P_1)\),

\[
\begin{pmatrix}
x_{t+1} \\
y_t
\end{pmatrix} \mid x_t \sim \mathcal{N}\left(\begin{pmatrix}
x_{t+1} \\
y_t
\end{pmatrix} \mid \begin{pmatrix}
A & B \\
C & D
\end{pmatrix}\begin{pmatrix}
x_t \\
u_t
\end{pmatrix}, \begin{pmatrix}
Q & S \\
S^T & R
\end{pmatrix}\right).\]
A more compact formulation of the LGSS model is provided by,

\[
\begin{align*}
\zeta_t \mid x_t & \sim \mathcal{N} (\zeta_t \mid \Gamma z_t, \Pi), \\
x_1 & \sim \mathcal{N} (x_1 \mid \mu, P_1) .
\end{align*}
\]

where

\[
\begin{align*}
\xi_t & \triangleq (x_{t+1}^T | y_t) , \\
\zeta_t & \triangleq (x_t^T | u_t) , \\
\Gamma & \triangleq \begin{pmatrix} A & B \\ C & D \end{pmatrix} , \\
\Pi & \triangleq \begin{pmatrix} Q & S \\ S^T & R \end{pmatrix} .
\end{align*}
\]

The parameters are defined as (using set notation)

\[
\theta = \{ \Gamma, \Pi \}.
\]

Goal: Identify the LGSS model by computing \(p(\theta \mid Y) \), where \(\theta = \{ \Gamma, \Pi \} \) and \(Y \triangleq y_{1:N} \) (assume known initial state).
A Markov chain Monte Carlo (MCMC) sampler is a method for generating samples from a target distribution (here $p(\theta \mid Y)$) by simulating a Markov chain with this target distribution as its stationary distribution.

Key question: How do we construct a Markov chain with $p(\theta \mid Y)$ as its stationary distribution?

There are several constructive methods available for doing this and the **Gibbs sampler** is one of them.
A *blocked* Gibbs sampler, sampling from \(p(\theta, X \mid Y) \) is given by

1. Given \(\theta^k \), generate a sample of the state trajectory,

\[
X^k \sim p(X \mid Y, \theta^k).
\]

2. Then, given \(X^k \) generate a sample of the parameters \(\theta^{k+1} \),

\[
\theta^{k+1} \sim p(\theta \mid X^k, Y).
\]

Based on the empirical distribution from the Gibbs sampler

\[
\hat{p}(\theta \mid Y) = \sum_{m=1}^{M} \frac{1}{M} \delta_{\theta^m}(\theta),
\]

we can compute the following estimate

\[
E_{p(\theta \mid Y)} \left[f(\theta) \right] = \int f(\theta)p(\theta \mid Y)d\theta \approx \frac{1}{M} \sum_{m=1}^{M} f(\theta^m).
\]
Task: Generate a sample $x_{1:N}$ from $p(x_{1:N} \mid y_{1:N})$.

An efficient way of doing this can be found by noting that

$$p(x_{1:N+1} \mid y_{1:N}) = p(x_{N+1} \mid y_{1:N}) \prod_{t=1}^{N} p(x_t \mid x_{t+1}, y_{1:t})$$

and then employing the following strategy

- Sample $x_{N+1} \sim p(x_{N+1} \mid y_{1:N})$.
- Sample $x_N \sim p(x_N \mid x_{N+1}, y_{1:N})$.
- ...
- Sample $x_1 \sim p(x_1 \mid x_2, y_1)$.

Adrian Wills, Thomas B. Schön, Fredrik Lindsten and Brett Ninness
Estimation of Linear Systems using a Gibbs Sampler
The backward kernel can be computed by noting that

\[
p(x_t \mid x_{t+1}, y_{1:t}) = \frac{p(x_{t+1} \mid x_t) p(x_t \mid y_{1:t})}{p(x_{t+1} \mid y_{1:t})} = \mathcal{N}(x_t \mid \mu_t, M_t),
\]

where

\[
\mu_t = M_t \left(A^T Q^{-1} (x_{t+1} - Bu_t) + P_{t|t}^{-1} \hat{x}_{t|t} \right),
\]

\[
M_t = P_{t|t} - P_{t|t} A^T (A P_{t|t} A^T + Q)^{-1} A P_{t|t}.
\]

Here, \(\hat{x}_{t|t} \) and \(P_{t|t} \) are provided by the Kalman filter.

This is a so called **backwards simulator**.

(See the paper for details and a square root implementation)
Task: Generate a sample θ from $p(\theta \mid x_{1:N+1}, y_{1:N})$.

As usual we have

$$p(\theta \mid x_{1:N+1}, y_{1:N}) \propto p(x_{1:N+1}, y_{1:N} \mid \theta) p(\theta)$$

Recall that $\theta = \{\Gamma, \Pi\}$, where Γ and Π are random matrices.

We will make use of a conjugate prior, which for this model is given by the **matrix normal inverse Wishart (MNIW)** distribution.
The likelihood \(\mathcal{L}(X) \triangleq \{x_1, \ldots, x_{N+1}\}, Y \triangleq \{y_1, \ldots, y_N\} \)

\[
p(X, Y | \theta) = \prod_{t=1}^{N} \mathcal{N}(\xi_t | \Gamma z_t, \Pi)
\]

\[
= \frac{1}{(2\pi)^{Nd/2} |\Pi|^{N/2}} \exp \left(-\frac{1}{2} \text{Tr} \left(\Pi^{-1} \sum_{t=1}^{N} (\xi_t - \Gamma z_t)(\xi_t - \Gamma z_t)^T \right) \right),
\]

can using

\[
\Xi \triangleq (\xi_1, \xi_2, \ldots, \xi_N), \quad Z \triangleq (z_1, z_2, \ldots, z_N),
\]

be written as

\[
p(X, Y | \theta) = \frac{1}{(2\pi)^{Nd/2} |\Pi|^{N/2}} \exp \left(-\frac{1}{2} \text{Tr} \left((\Xi - \Gamma Z)^T \Pi^{-1} (\Xi - \Gamma Z) I \right) \right)
\]

\[
= \mathcal{M}\mathcal{N}(\Xi | \Gamma Z, I, \Pi).
\]
The \mathcal{MNIW} distribution makes use of

$$p(\Gamma, \Pi) = p(\Gamma \mid \Pi)p(\Pi),$$

and it places

- a matrix normal distribution (generalisation of the multivariate Normal to the matrix case) on $\Gamma \mid \Pi$,
- and an inverse Wishart distribution on Π (generalisation of the inverse Gamma to the matrix case).

(See the paper for details and a square root implementation)
The blocked Gibbs sampler

Iterate the following

1. Given θ^k, generate a sample of the state trajectory,

$$X^k \sim p(X \mid Y, \theta^k).$$

2. Then, given X^k generate a sample of the parameters θ^{k+1},

$$\theta^{k+1} \sim p(\theta \mid X^k, Y).$$

to obtain an empirical approximation of the posterior distribution

$$\hat{p}(\theta \mid Y) = \frac{1}{M} \sum_{m=1}^{M} \delta_{\theta^m}(\theta).$$
Numerical example 1

Adrian Wills, Thomas B. Schön, Fredrik Lindsten and Brett Ninness
Estimation of Linear Systems using a Gibbs Sampler
In this example we are concerned with a 6th order system shown in the Bode plot below (solid blue).

![Bode Plot](image-url)
As a means of utilising the empirical distribution

$$\hat{p}(\theta \mid Y) = \sum_{m=1}^{M} \frac{1}{M} \delta_{\theta m}(\theta)$$

provided by the Gibbs sampler, we first consider the conditional mean estimate of the transfer function $G(z) = C(zI - A)^{-1}B + D$ (dashed red).

Based on this estimate, we designed two controllers,

1. A “slow” controller with a nominal phase margin of $\varphi = 22^\circ$.
2. A “fast” controller with a nominal phase margin of $\varphi = 14^\circ$.
The pdf’s of the phase margin for the given data set $p(\varphi | Y)$.

![Graph showing the pdf's of phase margin for Slow and Fast Controllers.](image)
Conclusions

• Derived a Gibbs sampler to compute $p(\theta \mid Y)$ for LGSS models.
• Numerically robust square root implementations provided.
• Opens up for uncertainty descriptions of nonstandard objects.

• The same strategy can be employed for nonlinear systems! See presentation tomorrow if you are interested:
 Fredrik Lindsten, Thomas B. Schön and Michael I. Jordan, A semiparametric Bayesian approach to Wiener system identification. At 16.50 – 17.10 in Meeting Studio 201 A/B.

• New PhD course, for more information,
 www.control.isy.liu.se/~schon/courses.html