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Introductory example (I/III)

Aim: Motion capture, find the motion (position, orientation, velocity and acceleration) of a person 
(or object) over time.

Industrial partner: Xsens Technologies.

ω"

a$g"

m"

Sensors used:

• 3D accelerometer (acceleration)
• 3D gyroscope (angular velocity)
• 3D magnetometer (magnetic field)

17 sensor units are mounted onto the 
body of the person.
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Introductory example (II/III)

1. Only making use of the inertial information.

Movie courtesy of Daniel Roetenberg (Xsens) 
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Introductory example (III/III)

2. Inertial + biomechanical model 3. Inertial + biomechanical model + world model

Movie courtesy of Daniel Roetenberg (Xsens) Movie courtesy of Daniel Roetenberg (Xsens) 
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Sensor unit integrating an IMU and a UWB 
transmitter into a single housing.!

Adding another sensor to the introductory example

In this experiment we also make use of ultra-wideband (UWB).
This allows for indoor positioning as well.
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Sensor fusion - definition

Definition (sensor fusion)

Sensor fusion is the process of using information from several different sensors to infer 
what is happening (this typically includes finding states of dynamical systems and various static 
parameters).

World model

Inference

Dynamic model

Sensor model

...

Sensors
Sensor fusion

...

Applications

Situational 
awareness
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Outlook

These introductory examples leads to several questions, e.g.,

• Can we incorporate more sensors?

• Can we make use of more informative world models?

• How do we solve the inherent inference problem?

• Perhaps most importantly, can this be solved systematically?

1. Probabilistic models of dynamical systems
2. Sensor models
3. World models
4. Formulate and solve an inference problem
5. Surrounding infrastructure

There are quite many interesting problems that can be solved systematically, by addressing the 
following problem areas

This is what we refer to as sensor fusion!
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The story I am telling

2.5 Map 15

(a) Relative probability density for parts of
Xdin’s o�ce, the bright areas are rooms and
the bright lines are corridors that interconnect
the rooms
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Figure 2.7. Probability interpretation of the map.

those would su�ce to give a magnitude of the force. The force is intuitively
directed orthogonally from the wall towards the target and multiple forces can
be added together to get a resulting force a�ecting the momentum of the target.

Equation (2.9) describes how the force is constructed. The function wall
j

(p)
is a convex function giving the magnitude and direction of the force given the
position of the target, p.

f
i

=
ÿ
jœW

wall
j

(p
i

), where W is the set of walls. (2.9)

If positions from other targets are available, repellent forces from them can be
modeled as well, which is thoroughly discussed in [22]. The concept is visualized
in Figure 2.8 where the target T

i

is a�ected by two walls and another target
T

m

, resulting in the force f
i

.

Figure 2.8. Force vectors illustrating the resulting force a�ecting a pedestrian.

2. The dynamical systems exist in a context. 

This requires a world model.

3. The dynamical systems must be able to perceive their own 
(and others’) motion, as well as the surrounding world.

This requires sensors and sensor models.

4. We must be able to transform the measurements 
from the sensors into knowledge about the 

dynamical systems and their surrounding world.

This requires sensor fusion.

World model

Dynamic model

Sensor model

Inference

1. We are dealing with dynamical systems 

This requires a dynamical model.

ẋ = f(x, u, ✓)
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Outline

Sensor fusion

1. Introductory examples
2. Probabilistic models of dynamical systems
3. State inference and the particle filter
4. Rao-Blackwellized particle filter
5. Using world models in solving inference problems

Industrial application examples

1. Fighter aircraft navigation
2. Automotive localization
3. Indoor localization
4. Underwater localization

Concluding experiment

and conclusions
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Probabilistic models of dynamical systems

Basic representation: Two discrete-time stochastic processes,

•             representing the state of the system
•             representing the measurements from the sensors{yt}t�1

{xt}t�1

This type of model is referred to as a state space model (SSM) or a hidden Markov 
model (HMM).

Model = PDF

Dynamics

Measurements

Known inputState

Measurements

Static 
parameters

The probabilistic model is described using two (f and g) probability density functions (PDFs):

xt+1 | xt ⇠ f✓(xt+1 | xt, ut),

yt | xt ⇠ g✓(yt | xt, ut).
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State inference in dynamical systems (I/III)

Aim: Compute a probabilistic representation of our knowledge of the state, based on 
information that is present in the measurements.

The filtering PDF provides a representation of the uncertainty about the state at time t, given 
all the measurements up to time t,

p(xt | y1:t)

The obvious question is now, how do we compute this object?

Markov property

Bayes’ theorem

p(xt | y1:t) = p(xt | yt, y1:t�1) =
p(yt | xt, y1:t�1)p(xt | y1:t�1)

p(yt | y1:t�1)

=
g(yt | xt)p(xt | y1:t�1)

p(yt | y1:t�1)
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State inference in dynamical systems (II/III)

Apparently we need an expression also for the prediction PDF

p(xt | y1:t�1)

Let us start by noting that by marginalization we have

p(xt | y1:t�1) =

Z
p(xt, xt�1 | y1:t�1)dxt�1

p(xt | y1:t�1) =

Z
f(xt | xt�1)p(xt�1 | y1:t�1)dxt�1

Hence, the prediction PDF is given by

p(xt, xt�1 | y1:t�1) = p(xt | xt�1, y1:t�1)p(xt�1 | y1:t�1)

= f(xt | xt�1)p(xt�1 | y1:t�1)

Markov property
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State inference in dynamical systems (IIII/III)

the uncertain information that we have about the state is captured by the filtering PDF, which we 
compute sequentially using a measurement update

and a time update

measurement 
model prediction pdf

p(xt | y1:t�1) =

Z
f(xt | xt�1)| {z } p(xt�1 | y1:t�1)| {z } dxt�1,

filtering pdfdynamic model

We have now showed that for the nonlinear SSM

p(xt | y1:t) =

z }| {
g(yt | xt)

z }| {
p(xt | y1:t�1)

p(yt | y1:t�1)
,

xt+1 | xt ⇠ f(xt | xt�1),

yt | xt ⇠ g(yt | xt),
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State inference - simple special case

Consider the following special case (Linear Gaussian State Space (LGSS) model)

or, equivalently,

xt+1 = Axt +But + vt, vt ⇠ N (0, Q),

yt = Cxt +Dut + et, et ⇠ N (0, R).

It is now straightforward to show that the solution to the time update and measurement update 
equations is given by the Kalman filter, resulting in

p(xt | y1:t) = N
�
xt | bxt|t, Pt|t

�
,

p(xt+1 | y1:t) = N
�
xt+1 | bxt+1|t, Pt+1|t

�
.

xt+1 | xt ⇠ f(xt+1 | xt) = N (xt+1 | Axt +But, Q),

yt | xt ⇠ g(yt | xt) = N (yt | Cxt +Dut, R).
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State inference - interesting case

Obvious question: what do we do in an interesting case, for example when we have a 
nonlinear model including a world model in the form of a map?

• Need a general representation of the filtering PDF
• Try to solve the equations 

as accurately as possible.

p(xt | y1:t) =
g(yt | xt)p(xt | y1:t�1)

p(yt | y1:t�1)
,

p(xt+1 | y1:t) =
Z

f(xt+1 | xt)p(xt | y1:t)dxt,
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State inference - the particle filter (I/II)

p(xt | y1:t)

xt+1 | xt ⇠ f(xt+1 | xt, ut),

yt | xt ⇠ h(yt | xt, ut),

x1 ⇠ µ(x1).

The particle filter provides an approximation of the filter PDF

when the state evolves according to an SSM

The particle filter maintains an empirical distribution made up N samples (particles) and
corresponding weights

bp(x
t

| y1:t) =
NX

i=1

w

i

t

�

x

i
t
(x

t

)

Xiao-Li Hu, Thomas B. Schön and Lennart Ljung.  A Basic Convergence Result for Particle Filtering. IEEE Transactions on 
Signal Processing, 56(4):1337-1348, April 2008.

This approximation converge to the true filter PDF,

“Think of each particle as one simulation of the 
system state. Only keep the good ones.”
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The weights and the particles in 

are updated as new measurements becomes available. This approximation can for example be used 
to compute an estimate of the mean value,

State inference - the particle filter (II/II)

The theory underlying the particle filter has been developed over the past two decades and the 
theory and its applications are still being developed at a very high speed. For a timely tutorial, see

A. Doucet and A. M. Johansen. A tutorial on particle filtering and smoothing: fifteen years later. In Oxford 
Handbook of Nonlinear Filtering, 2011, D. Crisan and B. Rozovsky (eds.). Oxford University Press. 

or my new PhD course on computational inference in dynamical systems

users.isy.liu.se/rt/schon/course_CIDS.html

bp(x
t

| y1:t) =
NX

i=1

w

i

t

�

x

i
t
(x

t

)

bx
t|t =

Z
x

t

p(x
t

| y1:t)dxt

⇡
Z

x

t

NX

i=1

w

i

t

�

x

i
t
(x

t

)dx
t

=
NX

i=1

w

i

t

x

i

t
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Using world models in solving state inference problems

Consider a 1D localization example.

xt+1 = xt + ut + vt,

yt = h(xt) + et.

position
velocity (measured 

input)

measurement 
(altitude)

world model 
(terrain database)

Trajectory 
flown

World model 
(terrain database)
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Filter PDF after 1 measurement p(x1 | y1)



Sensor fusion using world models
Thomas Schön, users.isy.liu.se/rt/schon

Swarm Lab Seminar
Berkeley, CA

Using world models in solving state inference problems

Filter PDF after 1 measurement
p(x1 | y1)
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Using world models in solving state inference problems

The simple 1D localization example is an illustration of a problem involving a multimodal filter PDF

• Straightforward to represent and work with using a PF
• Horrible to work with using e.g. an extended Kalman filter

The example also highlights the key capabilities of the PF: 

1. To automatically handle an unknown and dynamically changing 
number of hypotheses.

2. Work with nonlinear/non-Gaussian models

We have implemented a similar 
localization solution for this 
aircraft (Gripen).

Industrial partner: Saab
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Rao-Blackwellized particle filter (RBPF)

If there is structure in a problem, that should be used in constructing algorithms.

The Rao-Blackwellized particle filter (RBPF) exploits a conditionally linear Gaussian sub-
structure. The conditionally linear Gaussian states are estimated using a Kalman filter (KF) and 
the nonlinear states are estimated using the PF.

The state can be divided into one “nonlinear” state and one “linear” state,

xt =

✓
st

zt

◆

Assume that the state of an SSM can be partitioned according to                         . The SSM is 
then a CLGSS model if the conditional process                     is described by a linear Gaussian 
SSM.

Definition (Conditionally linear Gaussian state space (CLGSS) model):

xt =
�
st

T
zt

T
�T

{zt | s1:t}t�1
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Rao-Blackwellized particle filter (RBPF)

st+1 = fs
t (st) +As

t (st)zt + vst (st),

zt+1 = fz
t (st) +Az

t (st)zt + vzt (st),

yt = ht(st) + Ct(st)zt + et(st),

12 CHAPTER 2. PROBABILISTIC MODELING
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Figure 2.2: Graphical model for the switching linear Gaussian state space model in Definition 7.

2.3.2 Mixed Gaussian state space model

The mixed Gaussian state space model is given by

s

t+1

= f

s

t

(s
t

) +A

s

t

(s
t

)z
t

+ v

s

t

(s
t

), (2.21a)

z

t+1

= f

z

t

(s
t

) +A

z

t

(s
t

)z
t

+ v

z

t

(s
t

), (2.21b)

y

t

= h

t

(s
t

) + C

t

(s
t

)z
t

+ e

t

(s
t

), (2.21c)

where the process noise v
t

(s
t

) = (vs
t

(s
t

)T, vz
t

(s
t

)T)T and the measurement noise e
t

(s
t

) are mutu-
ally independent and they are both white and Gaussian distributed according to

v

t

(s
t

) ⇠ N
✓✓

0
0

◆

,

✓

Q

s(s
t

) Q

sz(s
t

)

(Qsz(s
t

))T Q

z(s
t

)

◆◆

= N (0, Q(s
t

)) , (2.21d)

e

t

(s
t

) ⇠ N (0, R(s
t

)) . (2.21e)

The conditionally linear, Gaussian sub-structure present in the MGSS model can be exploited
in solving various inference problems related to this model class. In Definition 8 we formally
define the Mixed Gaussian state space (MGSS) model using a more compact notation compared
to (2.21), which will resulting in clearer equations in the upcoming inference algorithms.

Definition 8 (Mixed Gaussian state space (MGSS) model) The MGSS model is defined
according to

x

t+1

= f

t

(s
t

) +A

t

(s
t

)z
t

+ v

t

(s
t

), (2.22a)

y

t

= h

t

(s
t

) + C

t

(s
t

)z
t

+ e

t

(s
t

), (2.22b)

where

x

t

=

✓

s

t

z

t

◆

, f

t

(s
t

) =

✓

f

s

t

(s
t

)
f

z

t

(s
t

)

◆

, A

t

(s
t

) =

✓

A

s

t

(s
t

)
A

z

t

(s
t

)

◆

. (2.22c)

The process noise v

t

(s
t

) and the measurement noise e

t

(s
t

) are assumed to be mutually indepen-
dent, white and Gaussian distributed according to (2.21). The initial distribution of the state is
given by s

t

⇠ p(s
t

) and z

1

| s
1

⇠ N (µ(s
1

), P
1

(s
1

)).

The graphical model for the MGSS model is the same as for the switching linear Gaussian state
space model (see Figure 2.2), it is just the nonlinear variable s

t

that is di↵erent.

The augmented state vector consists of a “nonlinear” state and a “linear” state,

xt =

✓
st

zt

◆

The CLGSS model we are considering is defined:

Graphical modelEquations
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Rao-Blackwellized particle filter (RBPF)

By exploiting the tractable CLGSS sub-structure, the RBPF results in more accurate 
estimators (lower variance) than a standard PF.

A direct result of this is that the RBPF can be used for filtering in even more challenging - 
e.g. high-dimensional - models.

p(zt, s1:t | y1:t) = p(zt | s1:t, y1:t) p(s1:t | y1:t)

Compute this density using the Kalman 
filter (closed form expressions)

Target this density using the 
particle filter
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The particle filter targets the nonlinear states, 

Rao-Blackwellized particle filter

p(zt | s1:t, y1:t) = N
�
zt | z̄t|t(s1:t), Pt|t(s1:t)

�
while the conditional KFs - one for each particle - are used for the linear state,

bpN (s1:t | y1:t) =
NX

i=1

wi
t�

�
s1:t � si1:t

�

p(zt, s1:t | y1:t) = p(zt | s1:t, y1:t) p(s1:t | y1:t)

⇡
NX

i=1

wi
tN

⇣
zt | z̄it, P i

t|t

⌘
�
�
s1:t � si1:t

�

The result is a weighted sum of Gaussians

Each particle 
has a KF attached to it
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Rao-Blackwellized particle filter

The RBPF consists of interlinked Kalman 
filters and a particle filter.

p(zt, s1:t | y1:t) ⇡
NX

i=1

wi
tN

⇣
zt | z̄it, P i

t|t

⌘
�
�
s1:t � si1:t

�

Thomas Schön, Fredrik Gustafsson, and Per-Johan Nordlund. Marginalized Particle Filters for Mixed Linear/Nonlinear State-
Space Models. IEEE Transactions on Signal Processing, 53(7):2279-2289, July 2005.

Detailed derivation of the RBPF is available here (with fighter aircraft example):

Software solving a simple example using the RBPF is available here:
users.isy.liu.se/rt/schon/SW_RBPF.html
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Using world models in solving state inference problems
6 Contents

(a) Original map (b) Binary map

(c) Filtered binary map (d) On-road likelihood function

Fig. 2: (a) Original map. (b) Binary map, where the black areas corresponding
to streets are mapped to one, and all other pixels are set to zero (white
color). (c) The local maxima over a 4⇥ 4 region is computed to remove text
information. (d) The resulting map is low-pass filtered to allow for small
deviations from the road boarders, which yields a smooth likelihood function
for on-road vehicles. See Listings 1 for complete Matlab code.

2. As a state noise constraint in the prediction step, so the predicted
position is mostly on a road. Here, the likelihood in Fig. 2(d) is
instrumental.

3. Asmanifold filtering, where the location is represented as the position
along a road segment. This uses the topography of the map in a
natural way.

As indicated explicitly in the first two cases, it is in practice necessary
to allow the vehicle to temporary leave the road network to allow for o↵-
road driving and un-mapped roads such as in parking areas and houses. This

So far, just a simple 1D 
example, we can of course do 
this also in 2D, 3D and xD.
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xD world models

Niklas Wahlström, Manon Kok, Thomas B. Schön and Fredrik Gustafsson. Modeling magnetic fields using Gaussian processes. 
Submitted to the 38th International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Vancouver, Canada, May 2013.

Manon Kok, Niklas Wahlström, Thomas B. Schön and Fredrik Gustafsson. MEMS-based inertial navigation based on a magnetic 
field map. Submitted to the 38th International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Vancouver, Canada, May 2013

Very much work in progress, for some initial results,

Idea: Make use of several different world models. One new world model that we are investigating 
is one that is induced by the magnetic field.

Estimated magnetic content in a table turned upside down.
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Outline

Sensor fusion

1. Introductory examples
2. Probabilistic models of dynamical systems
3. State inference and the particle filter
4. Rao-Blackwellized particle filter
5. Using world models in solving inference problems

Industrial application examples

1. Fighter aircraft navigation
2. Automotive localization
3. Indoor localization
4. Underwater localization

Concluding experiment

and conclusions
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6 Contents

(a) Original map (b) Binary map

(c) Filtered binary map (d) On-road likelihood function

Fig. 2: (a) Original map. (b) Binary map, where the black areas corresponding
to streets are mapped to one, and all other pixels are set to zero (white
color). (c) The local maxima over a 4⇥ 4 region is computed to remove text
information. (d) The resulting map is low-pass filtered to allow for small
deviations from the road boarders, which yields a smooth likelihood function
for on-road vehicles. See Listings 1 for complete Matlab code.

2. As a state noise constraint in the prediction step, so the predicted
position is mostly on a road. Here, the likelihood in Fig. 2(d) is
instrumental.

3. Asmanifold filtering, where the location is represented as the position
along a road segment. This uses the topography of the map in a
natural way.

As indicated explicitly in the first two cases, it is in practice necessary
to allow the vehicle to temporary leave the road network to allow for o↵-
road driving and un-mapped roads such as in parking areas and houses. This

Example 2 - Automotive localization (I/III)

World model

Inference

Dynamic model

Sensor model

Sensors

Sensor fusion

Pose
Accelerometer

Gyroscope

Wheel speeds

Aim: Compute the position of a car.

Industrial partner: Nira dynamics

World model
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(a) PDF before turn. (b) PDF after right turn.

Fig. 3: (a) The prior of the position close to a four-way intersection when
the road segment of the vehicle is known, but its position along the segment
is uncertain, can be modeled with a Gaussian distribution. (b) A few me-
ters after a sensed right hand turn, the posterior distribution becomes very
informative. Picture from [40].

Fig. 4: A non-informative prior of the position close to a four-way intersection
can be modeled using a Gaussian mixture with two modes, both centered at
the intersection, and each one with a large eigenvalue spread in its covariance
matrix along and transversal the road direction. A few meters after a sensed
right hand turn, there are four di↵erent possibilities, leading to a Gaussian
mixture with four modes. Picture from [40].

In manifold filtering, the posterior distribution is constrained to the road-
network while the filter is operating in the on-road mode. A snapshot illustra-
tion is given in Fig. 5, where a Gaussian mixture summarizes the information
from a sensor network.

Even though (mixtures of) Gaussian distributions are feasible representa-
tions of the posterior distribution, a sample based approximative represen-
tation is in many cases even more useful. Fig. 6 illustrates the key idea: to
replace a parametric distribution with samples, or particles.

Example 2 - Automotive localization (II/III)
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Schematic illustration of the idea.
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Example 2 - Automotive localization (III/III)

• Purple: True position
• Blue: Particles
• Light blue: estimate
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Example 3 - Indoor localization (I/III)

Aim: Compute the position of a person moving around indoors using sensors (inertial, 
magnetometer and radio) located in an ID badge and a map.

Industrial partner: Xdin

1.5 Xdin 3

(a) A Beebadge, carrying a number
of sensors and a IEEE 802.15.4 radio
chip.

(b) A coordinator, equipped both
with a radio chip and an Ethernet
port, serving as a base station for the
Beebadges.

Figure 1.1. The two main components of the radio network.

Figure 1.2. Beebadge worn by a man.



Sensor fusion using world models
Thomas Schön, users.isy.liu.se/rt/schon

Swarm Lab Seminar
Berkeley, CA

Example 3 - Indoor localization (II/III)

48 Approach

(a) An estimated trajectory at Xdin’s of-
fice, 1000 particles represented as circles,
size of a circle indicates the weight of the
particle.

(b) A scenario where the filter have not
converged yet. The spread in hypotheses
is caused by a large coverage for a coordi-
nator.

Figure 4.10. Output from the particle filter.

Figure 4.11. Illustration of a problematic case where a correct trajectory (green) is
being starved by an incorrect trajectory (red), causing the filter to potentially diverge.

2.5 Map 15

(a) Relative probability density for parts of
Xdin’s o�ce, the bright areas are rooms and
the bright lines are corridors that interconnect
the rooms
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(b) Cross section of the relative prob-
ability function for a line with di�er-
ent n

Figure 2.7. Probability interpretation of the map.

those would su�ce to give a magnitude of the force. The force is intuitively
directed orthogonally from the wall towards the target and multiple forces can
be added together to get a resulting force a�ecting the momentum of the target.

Equation (2.9) describes how the force is constructed. The function wall
j

(p)
is a convex function giving the magnitude and direction of the force given the
position of the target, p.

f
i

=
ÿ
jœW

wall
j

(p
i

), where W is the set of walls. (2.9)

If positions from other targets are available, repellent forces from them can be
modeled as well, which is thoroughly discussed in [22]. The concept is visualized
in Figure 2.8 where the target T

i

is a�ected by two walls and another target
T

m

, resulting in the force f
i

.

Figure 2.8. Force vectors illustrating the resulting force a�ecting a pedestrian.

PDF of an office environment, the bright areas 
are rooms and corridors (i.e., walkable space).
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Example 3 - Indoor localization (III/III)



Sensor fusion using world models
Thomas Schön, users.isy.liu.se/rt/schon

Swarm Lab Seminar
Berkeley, CA

Example 4 - Underwater localization (I/II)

Aim: Find the position and orientation of an autonomous underwater vehicle. 

Industrial partner: Saab underwater security. 

Work by my colleague Rickard Karlsson.
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Example 4 - Underwater localization (II/II)
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Road target search and tracking - an experiment (I/II)
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Overview of the implemented solution.

Aim: Keep track of all discovered on-road targets and simultaneously search for new on-road 
targets by controlling the pointing direction of a camera gimbal.



Sensor fusion using world models
Thomas Schön, users.isy.liu.se/rt/schon

Swarm Lab Seminar
Berkeley, CA

Road target search and tracking - an experiment (II/II)

Movie kindly provided by Per Skoglar. For technical details see his PhD thesis,

Skoglar, P.  Tracking and planning for surveillance applications. Linköping studies in science and technology. Dissertation No. 1432, June 2012.
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The story I am telling

Quite a few different applications from different areas, all solved using the 
same underlying sensor fusion strategy

• Model the dynamics

• Model the sensors

• Model the world

• Solve the resulting inference problem

and, do not underestimate the “surrounding infrastructure”!

• There is a lot of interesting research that remains to be done!

• The number of available sensors is currently skyrocketing 

• The industrial utility of this technology is growing as we speak!
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Figure 2.7. Probability interpretation of the map.

those would su�ce to give a magnitude of the force. The force is intuitively
directed orthogonally from the wall towards the target and multiple forces can
be added together to get a resulting force a�ecting the momentum of the target.

Equation (2.9) describes how the force is constructed. The function wall
j
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is a convex function giving the magnitude and direction of the force given the
position of the target, p.
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If positions from other targets are available, repellent forces from them can be
modeled as well, which is thoroughly discussed in [22]. The concept is visualized
in Figure 2.8 where the target T

i

is a�ected by two walls and another target
T

m

, resulting in the force f
i

.

Figure 2.8. Force vectors illustrating the resulting force a�ecting a pedestrian.

1.5 Xdin 3

(a) A Beebadge, carrying a number
of sensors and a IEEE 802.15.4 radio
chip.

(b) A coordinator, equipped both
with a radio chip and an Ethernet
port, serving as a base station for the
Beebadges.

Figure 1.1. The two main components of the radio network.

Figure 1.2. Beebadge worn by a man.

p(xt | y1:t) =
h(yt | xt)p(xt | y1:t�1)

p(yt | y1:t�1)
,

p(xt | y1:t�1) =

Z
f(xt | xt�1)p(xt�1 | y1:t�1)dxt�1,

xt+1 | xt ⇠ f✓(xt+1 | xt, ut),

yt | xt ⇠ h✓(yt | xt, ut).

Thank you for your attention!!

Joint work with (in alphabetical order): Fredrik Gustafsson (LiU), Jeroen Hol (Xsens), Rickard Karlsson (Nira 
Dynamics), Johan Kihlberg (Semcon), Manon Kok (LiU), Henk Luinge (Xsens), Per-Johan Nordlund (Saab), Daniel 
Roetenberg (Xsens), Per Skoglar (SenionLab), Simon Tegelid (Xdin), Niklas Wahlström (LiU).


