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Abstract— The expectation maximisation (EM) algorithm has
proven to be effective for a range of identification problems. Un-
fortunately, the way in which the EM algorithm has previously
been applied has proven unsuitable for the commonly employed
innovations form model structure. This paper addresses this
problem, and presents a previously unexamined method of EM
algorithm employment. The results are profiled, which indicate
that a hybrid EM/gradient-search technique may in some cases
outperform either a pure EM or a pure gradient-based search
approach.

I. INTRODUCTION

The expectation maximisation (EM) algorithm is an it-
erative search technique for solving maximum likelihood
estimation problems. It is an alternative to the more common
gradient-based search approaches and it has proven useful in
applications where gradients are difficult to compute. It is
also well regarded for its numerical stability [1].

The method has its origins in the statistics literature [2],
but has been widely applied in very many other areas such
as image processing [3], econometrics [4], epidemiology [5,
6] and speech recognition [7], just to mention a few.

It has also be employed in the context of this paper, which
is system identification. This includes work on time-series
modeling [8], ARX modeling with censored data [9, 10],
estimation of linear and bilinear state-space systems [11, 12],
frequency domain estimation [13], and non-linear system
estimation [14–16, 18].

A fundamental step in designing an EM algorithm is the
choice of the so-called “missing data”. In some cases, it
literally is missing, in that measurements are censored [9,
10]. However, in most applications of the EM algorithm it is
the “wished-for” data that if it were available, would make
the estimation problem more straightforward. For example, in
all of the following previous works [8, 11–16, 18] the missing
data is chosen as the underlying system state sequence.

The essence of the EM algorithm is to then replace this
wished-for data with estimates formed by an appropriate
smoothing algorithm. For example, in the linear state-space
case [11] Kalman smoothed state estimates are used.

Unfortunately, this creates a difficulty in employing the
EM algorithm when the state-space system is in innovations
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form. This arises due to the associated deterministic relation-
ship between states and measurements. This is significant,
since it precludes the application of the EM algorithm to
a range of transfer function structures and continuous time
models accommodating non-regularly sampled data. This
difficulty was first recognised in [19].

The contribution of this paper is to develop and illustrate a
solution to this problem, whose foundation is the use of just
the initial state as the missing data. The utility of the resulting
EM-based estimation algorithm that ensues is profiled via a
simulation study.

II. PROBLEM FORMULATION

The very well known general discrete-time linear time-
invariant state-space model is

xt+1 = Axt + But + wt, (1a)
yt = Cxt + Dut + εt, (1b)

where xt ∈ Rn is the system state, yt ∈ Rp is the output,
ut ∈ Rm is the input, and t is the time index. The terms wt

and εt are sequences of i.i.d. random variables.
As is widely appreciated [20], this model has an associated

“innovations form” representation

xt+1 = Axt + But + Ket, (2a)
yt = Cxt + Dut + et, (2b)

where et is again an i.i.d. random variable sequence. Both et

and the initial state x1 are assumed to be Gaussian distributed
according to

et ∼ N (0, R), R > 0, (3a)
x1 ∼ N (µ, P1), P1 > 0. (3b)

For future reference, we note that an alternate formulation
of (2) is

yt = ŷt|t−1 + et, (4a)
ŷt|t−1 = Cxt + Dut, (4b)
xt+1 = (A−KC)xt + (B −KD)ut + Kyt, (4c)

where ŷt|t−1 , E{yt | Yt−1} is the mean square optimal
one-step ahead predictor of yt given the past observations
Yt−1 , [y1, · · · , yt−1], which implies that this predictor
depends on the initial state x1.

With this in mind, the work here considers the estimation
of the system quantities

A,B, C, D, K, R, P1, µ (5)



in this innovations form structure on the basis of measure-
ments

UN , [u1, · · · , uN ], YN , [y1, · · · , yN ], (6)

of observed input-output responses. Again, for future refer-
ence, the non-zero terms that define the system matrices (5)
will be assumed collected into a vector θ of parameters that
define the system (2).

This is a very well studied problem for which a standard
solution methodology has evolved. This involves gradient-
based search techniques to determine the minima of the
prediction error or the negative log-likelihood criteria. This is
a generally reliable approach, although difficulties can arise
with capture in local minima, and computational load for
systems of high state and input-output dimension.

In relation to these latter problems, the work [11] has
established that when employing the model structure (1),
these problems can be lessened by employing the EM
algorithm as an alternative to a gradient-based search.

The topic of this paper is to extend that work to the
innovations form structure (2). One motivation for this is to
allow the EM algorithm to be applied to the popular transfer
function model structure

yt = G(q, θ)ut + H(q, θ)et. (7)

Here θ represents a vector parametrizing the functions G and
H which are rational in the shift operator q.

A further motivation is to allow the EM algorithm to
be applied to continuous-time modeling accommodating
measurements that are obtained at irregularly spaced time
intervals [21].

Unfortunately, the approach used in [11] for implementing
the EM algorithm is not directly applicable to the innovations
form model (2). This is due to the fact that according to (4c),
the state is a deterministic function of the observations yt,
ut and the initial state x1. Key to the work in [11] and
related approaches to employing the EM algorithm [8, 12–
16, 18] is the consideration of the joint log-likelihood of the
observations and the state sequence. Due to the determinism
present in (4c), this likelihood will have a Dirac delta
form, and hence be unsuitable for the purposes of parameter
estimation.

The remainder of this paper is devoted to addressing
this problem and profiling the performance of the solution
obtained.

III. THE EXPECTATION MAXIMISATION (EM)
ALGORITHM

This paper employs the maximum likelihood framework,
wherein an estimate θ̂ML of an unknown parameter vector θ
is obtained by solving a particular optimisation problem

θ̂ML = arg max
θ

Lθ(YN ). (8)

The cost Lθ(YN ) to be maximised is the log-likelihood
function defined as

Lθ(YN ) , log pθ(YN ), (9)

where pθ(YN ) is the joint probability density function for
the observed stochastic observations YN .

The EM algorithm is a method for computing θ̂ML that is
very general and addresses a wide range of applications. Key
to both its implementation and theoretical underpinnings is
the consideration of a joint log-likelihood function of both
the measurements YN and the “missing data” Z

Lθ(YN , Z) = log pθ(YN , Z). (10)

The missing data Z consist of measurements that while not
available, would be useful to the estimation problem. The
choice of Z is a design variable in the deployment of the
EM algorithm.

Importantly, by the definition of conditional probability,
the likelihood (9) and the “complete data” likelihood (10)
are related according to

log pθ(YN ) = log pθ(Z, YN )− log pθ(Z | YN ). (11)

Denote by θk an estimate of the likelihood maximiser θ̂ML,
and therefore denote by pθk

(Z | YN ) the conditional density
of the missing data Z, given observations of the available
data YN and depending on the choice θk.

This permits the following expression eventuating from
taking conditional expectations relative to pθk

(Z | YN ) of
both sides of (11).

log pθ(YN ) =
∫

log pθ(Z, YN )pθk
(Z | YN )dZ

−
∫

log pθ(Z | YN )pθk
(Z | YN )dZ

= Eθk
{log pθ(Z, YN ) | YN}︸ ︷︷ ︸

,Q(θ,θk)

− Eθk
{log pθ(Z | YN ) | YN}︸ ︷︷ ︸

,V(θ,θk)

. (12)

The difference between the likelihood Lθk
(YN ) at the esti-

mate θk and the likelihood Lθ(YN ) at an arbitrary value of
θ is then expressible in terms of these newly defined Q and
V functions as

Lθ(YN )− Lθk
(YN ) = (Q(θ, θk)−Q(θk, θk))

+ (V(θk, θk)− V(θ, θk)) . (13)

It can be simply established that

V(θk, θk)− V(θ, θk) ≥ 0, (14)

since it is the Kullback–Leibler divergence metric between
two densities [22].

As a result, if a new estimate θk+1 of θ̂ML is obtained
such that relative to the previous estimate θk, it holds
that Q(θk+1, θk) > Q(θk, θk), then necessarily via (14)
Lθk+1(YN ) > Lθk

(YN ).
This observation leads to the EM algorithm, which iterates

between forming Q(θ, θk) using an estimate θk of θ̂ML and
then maximising Q(θ, θk) with respect to θ to obtain a new
better estimate θk+1.



Algorithm 3.1: Expectation Maximisation Algorithm

1) Set k = 0 and initialize θ0 such that Lθ0(YN ) is finite.
2) Expectation (E) step: Compute

Q(θ, θk) = Eθk
{log pθ(Z, YN ) | YN} . (15)

3) Maximisation (M) step: Compute

θk+1 = arg max
θ

Q(θ, θk). (16)

4) If not converged, update k := k + 1 and return to step
2.

The text [23] is an excellent reference for readers seeking
more information about the EM algorithm and its properties.

IV. AN EM ALGORITHM FOR INNOVATIONS FORM
MODELS

In the many previous works [8, 12–16, 18], the EM algo-
rithm has been applied by choosing the missing data as the
unmeasured state sequence, i.e.,

Z = {x1, · · · , xN}. (17)

As already mentioned, due to the deterministic relationship
(4c), if this strategy is applied to the innovations form
model (2), the joint density pθ(YN , Z) will have a Dirac-
delta form, and hence be unsuitable.

A main contribution of this paper is to establish that this
difficulty can be overcome by choosing the missing data
simply as the unobserved initial state value Z = x1. The
so-called “E-step” in which the required expectation (15) is
evaluated may then be achieved by the following lemma.

Lemma 4.1: With regard to the innovations form model
structure (2), and with the choice Z = x1, the function
Q(θ, θk) defined by (15) is given as (with constants and
common factors unimportant to the estimation process ig-
nored)

Q(θ, θk) = − log det P1 −N log det R

− Tr
{
P−1

1

(
(x̂1|N − µ)(x̂1|N − µ)T + P1|N

)}
− Tr

{
R−1

N∑
t=1

εtε
T
t

}
− Tr

{
R−1

N∑
t=1

CPtC
T

}
(18)

where

x̂1|N , Eθk
{x1 | YN} (19a)

P1|N , Covθk
{x1 | YN} (19b)

εt , yt − ŷt|t−1 (19c)
ŷt|t−1 = Eθk

{yt | Yt−1} (19d)

Pt , Covθk
{xt | Yt−1} (19e)

Proof: By repeated application of Bayes’ rule

pθ(x1, YN ) = pθ(x1)
N∏

t=1

pθ(yt | Yt−1, x1). (20)

Therefore by the definition (12), the choice Z = x1 implies

Q(θ, θk) =
∫

log pθ(x1, YN )pθk
(x1|YN ) dx1

=
∫

log pθ(x1)pθk
(x1|YN ) dx1+

N∑
t=1

∫
log pθ(yt | Yt−1, x1)pθk

(x1|YN ) dx1. (21)

Since the innovations et and the initial state x1 are assumed
to have the Gaussian distribution (3), the densities above
will also be Gaussian. This allows the explicit evaluation
(neglecting constant terms)∫

log pθ(x1)pθk
(x1|YN ) dx1 = −1

2
log det P1

− 1
2

∫
‖x1 − µ‖2

P−1
1

pθk
(x1 | YN ) dx1. (22)

Similarly, using the representation (4)∫
log pθ(yt | Yt−1, x1) pθk

(x1|YN ) dx1 = −1
2

log det R

− 1
2

∫ ∥∥yt − ŷt|t−1

∥∥2

R−1 pθk
(x1 | YN ) dx1. (23)

Using the fact that xT Ax = Tr{AxxT } allows (22) to be
re-expressed according to∫

‖x1 − µ‖2
P−1

1
pθk

(x1 | YN )dx1

= Tr
{
P−1

1

(
(x̂1|N − µ)(x̂1|N − µ)T + P1|N

)}
. (24)

Similarly, (23) may be reformulated as∫ ∥∥yt − ŷt|t−1

∥∥2

R−1 pθk
(x1 | YN ) dx1

= Tr
{
R−1εtε

T
t

}
− Tr

{
R−1CPt CT

}
. (25)

The required terms (19a) and (19b) can be obtained by a
Kalman smoother [24]. The term (19d) may be computed
by the formulation (4b) and (4c). Finally, according to (4c),
the term (19e) may evaluated recursively according to

P
1/2
t+1 = (A−KC)P 1/2

t , Pt = P
1/2
t P

T/2
t . (26)

With the computation of the E-step (15) delivering Q(θ, θk)
addressed, our attention now turns to the M-step (16), where
its maximising argument must be found to deliver the next
iterate θk+1.

In the previous work [8, 11] employing the model struc-
ture (1), the system matrices fully parametrized, and missing
data choice (17), the M-step has been demonstrated to
involve a linear regression, and hence solvable in closed
form.

It has already been mentioned how this work differs in
that it addresses the innovations form (2). Another important
difference is that in order to be relevant to transfer function
and continuous-time modeling applications, it allows for
constraints in the formulation of the system matrices (5).
These two factors combine to complicate the M-step so that



a closed form expression for the maximiser θk+1 does not
exist.

To address this, let θ be partitioned as

θT = [ηT , βT ]T , (27)

where η parametrizes P1, R and µ, and β parametrizes
A,B, C, D, K. Typically, while there may be constraints on
how β parametrizes the associated system matrices, none
exist for the formulation of P1, R (except for the fact that
they have to be positive semi-definite matrices) and µ. This
can be exploited by noting that in this case, (18) is clearly
globally maximised with respect to µ by the choice

µ = x̂1|N . (28)

With this value substituted into (18), the terms involving P1

become
− log det P1 − Tr

{
P−1

1 P1|N
}

. (29)

Furthermore, by basic matrix calculus [25]

− ∂

∂P1

(
log det P1 − Tr

{
P−1

1 P1|N
})

= −P−1
1 −P−1

1 P1|NP−1
1

(30)
which is clearly zero for the choice

P1 = P1|N (31)

which is then a stationary point of (18). By an identical
argument

R =
1
N

N∑
t=1

εtε
T
t + CPtC

T (32)

is also a stationary point of (18). These values (28), (31)
and (32) substituted into (18) deliver a “concentrated” form
Q̃(β, θk) that depends only on β as follows

Q̃(β, θk) = − log det

(
1
N

N∑
t=1

εtε
T
t + CPtC

T

)
. (33)

Unfortunately, it is not possible to determine stationary
points of this function in closed form. The solution to this
difficulty, proposed here, is the employment of a gradient-
based search technique which has the general quasi-Newton,
form whereby an estimate βi of the maximiser of Q̃(β, θk)
is updated to a better one βi+1according to

βi+1 = βi + µipi, pi = Higi. (34a)

gi = Q̃′(βi, θk) ,
∂

∂β
Q̃(β, θk)

∣∣∣∣
β=βi

. (34b)

Here Hi is a positive definite matrix that delivers a search
direction pi by modifying the gradient direction, and µi is a
step length. The authors have found that a BFGS formulation
for Hi with back-stepping line-search for µi is effective [26].

In order to implement this, it is necessary to develop an
expression for the gradient (34b). This is established by the
following lemma.

Lemma 4.2: The gradients of the Q̃(β, θk) with respect to
β are given by

∂Q̃(β)
∂βi

= −2
N∑

t=1

εT
t R(β)−1 ∂εt

∂βi
(35)

−
N∑

t=1

Tr
{

R(β)−1 ∂CPtC
T

∂βi

}
, (36)

where R(β) is given by

R(β) ,
1
N

N∑
t=1

εtε
T
t + CPtC

T (37)

and the terms in these expressions may be computed recur-
sively according to

∂εt

∂βi
= − ∂C

∂βi
x̂t − C

∂x̂t

∂βi
− ∂B

∂βi
, (38a)

∂x̂t+1

∂βi
=

∂A

∂βi
x̂t + A

∂x̂t

∂βi
+

∂B

∂βi
ut +

∂K

∂βi
εt + K

∂εt

∂βi
,

(38b)

∂CPtC
T

∂βi
=

∂C

∂βi
PtC

T + C
∂Pt

∂βi
CT + CPt

∂CT

∂βi
, (38c)

∂Pt+1

∂βi
=

(
∂A

∂βi
− ∂K

∂βi
C −K

∂C

∂βi

)
Pt (A−KC)T

+ (A−KC)
∂Pt

∂βi
(A−KC)T

+ (A−KC) Pt

(
∂A

∂βi
− ∂K

∂βi
C −K

∂C

∂βi

)T

,

(38d)
∂x̂1

∂βi
= 0,

∂P1

∂βi
= 0. (38e)

Proof: The result follows by standard application of the
product rule for differentiation, and basic results of matrix
calculus.

A. Final Algorithm

Combining the above E and M steps results in the
following EM algorithm for identifying state-space models
in innovations form.

Algorithm 4.1: EM for identification of innovation models

1) Set k = 0 and initialize θ0 such that Lθ0(YN ) is finite.
2) Expectation (E) step:

Based on θk and its associated A,B, C, D, K, R, µ, P1

system parameters, run a Kalman smoother to obtain
x̂1|N and P1|N .

3) Maximisation (M) step:
Use a quasi-Newton search algorithm to maximise
Q(θk+1, θk) over θk+1.

4) If not converged, update k := k + 1 and return to step
2.

V. NUMERICAL EXAMPLES

In order to demonstrate the efficacy of the above algo-
rithm, it is applied to two examples in this section. The first
considers an output-error (OE) system in the form of (2)



where K = 0. The second example considers a second-order
innovations model in the form of (2) with K 6= 0.

To show that the algorithm is relatively insensitive to the
choice of initial value, a Monte-Carlo simulation is per-
formed over randomized initial parameter values. In each run,
the measured input/output data remains the same, and only
the initial parameter values for the algorithm are randomized.
In this way, it is expected that the algorithm should produce
very similar parameter estimates for each run.

A. Output-error model

Consider the following output-error model

xt+1 = axt + but, (39a)
yt = xt + dut + et, (39b)

where the noise process is given by et ∼ N (0, r) and
the initial state is assumed distributed according to x1 ∼
N (µ, p1). For the purposes of the simulation here, the true
parameters are given by

θ? =
[
a? b? d? r? µ? p?

1

]
=
[
0.5 1 0 0.1 0 1

]
(40)

The above system was used to generate N = 100 output
measurements YN for a Gaussian distributed input signal
ut ∼ N (0, 1).

Based on the data YN and UN , a Monte–Carlo simulation
was performed with M = 100 runs; in each run the initial
parameter value θ0 was constructed by drawing the individual
elements from a uniform random number generator between
0 and 1. That is, for each run, the same data is used, but the
initial value is random.

In the first instance, the EM Algorithm 4.1 was used
to generate parameter estimates. To gauge its utility, the
average negative log-likelihood cost is shown in Figure 1
as a function of iteration number. Also shown are the best
and the worst case cost trajectories out of all the runs. Note
that instances where the algorithm failed to reduce the cost
to within 10% of the minimum value are not shown. The
number of failures is provided in Table I.

I: Number of failed runs for the three algorithms.

DGS EM EM+GS
Output-Error 10 0 0

Innovations 70 1 0

On the one hand these results look promising, and on
the other hand it is difficult to gauge the performance of
Algorithm 4.1 in isolation. Therefore, by way of comparison,
a standard method of minimizing the negative log-likelihood
−Lθ(YN ) was also employed. Specifically, the same BFGS
quasi-Newton algorithm that was used for EM was also used
to minimise −Lθ(YN ) directly. In this case the gradient was
obtained from the Kalman Filter.

The results for directly minimizing −Lθ(YN ) are denoted
by DGS (for Direct Gradient Search). Again, the average
and worst/best case results are shown in Figure 1, where
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1: Negative log-likelihood cost against iteration number for
the Output-Error model (39). Top: direct gradient search on
log-likelihood cost; Middle: EM algorithm 4.1; Bottom: hy-
brid EM + gradient search. In each plot, the red-dashed lines
indicate the best and worst case search performance and the
blue-solid line indicates average search performance.

failed runs have been removed. The number of failed runs
are provided in Table I.

The number of failures for direct gradient search (DGS) is
significantly more than for EM in this case. At the same time,
it was observed that (when successful) the direct gradient
search often provides rapid convergence to the minimum.

This observation is well recognised within the statistics
literature. For example, the work in [27] studies a number
of accelerated algorithms that include hybrid combinations
of direct gradient search on −Lθ(YN ) and EM iterations.
Motivated by their findings, a third algorithm is trialed here
that combines both the EM and the DGS variants.

In particular, the EM algorithm is employed until |Lθk+1−
Lθk

| ≤ ε|Lθk
− Lθ0 |, where ε = 0.1 in this case. At this

point the direct gradient search algorithm is used to further
refine the estimate. Results from this hybrid EM and DGS
algorithm are shown in Figure 1. It is worth noting that there
were no failed runs for this case.

B. Innovations model

Consider a second-order innovations model in the form of
(2) where the system matrices are parametrized via

A =
[
θ1 1
0 θ2

]
, B =

[
θ3

θ4

]
, C =

[
1 1

]
, D = θ5,

K =
[
θ6

θ7

]
, R = θ2

8, x1 =
[

θ9

θ10

]
,

P1 =
[
θ11 0
θ12 θ13

] [
θ11 0
θ12 θ13

]T



and where the true parameter values for θ are given by

θ?
1 = 0.9 θ?

2 = 0.1 θ?
3 = 1 θ?

4 = 1 θ?
5 = 0.1

θ?
6 = 0.2 θ?

7 = 0.3 θ?
8 =

√
0.1 θ?

9 = 0 θ?
10 = 0

θ?
11 = 1 θ?

12 = 0 θ?
13 = 1

In a similar manner to the previous Output-Error example,
the above system was used to generate N = 100 output
measurements YN for a Gaussian distributed input signal
ut ∼ N (0, 1).

Using this data, and again employing random initial values
for θ0 in the same way as for the Output-Error case, a Monte-
Carlo simulation was performed over M = 100 runs.

For the same reasons mentioned above, three algorithms
are trialed for this case. Namely, the expectation maximisa-
tion algorithm (EM), the direct gradient search for the like-
lihood function (DGS), and a hybrid of the two algorithms
in accordance with the findings of [27].

The results are shown in Figure 2. Again any failures of
the algorithms to achieve a cost within 10% of the minimum
value have been removed from the plots. The number of
failures for each algorithm are provided in Table I.
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2: Negative log-likelihood cost against iteration number
for Innovations model. Top: direct gradient search on log-
likelihood cost; Middle: EM algorithm in 4.1; Bottom: hybrid
EM + gradient search. In each plot the red-dashed lines
indicate the best and worst case search performance and
the blue-solid line indicates average search performance.

VI. CONCLUSION

This paper has derived a new approach to the employment
of the EM algorithm for estimating innovations form model
structures. A profile of the method in two simple simulation
examples illustrates promising performance. Additionally,
the use of a hybrid approach of handing over from EM-
based iterations to gradient-based search iterations appears
to provide both enhanced robustness and convergence rate.

Further theoretical analysis and more detailed simulation
studies are required before any general conclusions on this

topic can be made. Nevertheless, the initial results presented
here indicate that further study may indeed be warranted.
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Stochastic Systems. Chapman and Hall, 1999.
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