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Abstract: This paper develops and illustrates methods for the identification of Wiener model
structures. These techniques are capable of accommodating the “blind” situation where the
input excitation to the linear block is not observed. Furthermore, the algorithm developed here
can accommodate a nonlinearity which need not be invertible, and may also be multivariable.
Central to these developments is the employment of the Expectation Maximisation (EM)
method for computing maximum likelihood estimates, and the use of a new approach to particle
smoothing to efficiently compute stochastic expectations in the presence of nonlinearities.
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1. INTRODUCTION

A common framework for nonlinear models of dynam-
ical systems is to work with combinations of memory-
less nonlinear blocks and linear dynamic blocks. This
is known as block-oriented models. The most common
of these are Hammerstein, Wiener, Hammerstein-Wiener
and Wiener-Hammerstein models. They correspond to a
cascade combination of one or two linear dynamic models
and one or two memoryless nonlinear blocks, e.g. Ljung
(1999). Also more general, feedback variants have been
discussed, e.g. by Schoukens et al. (2003) and Hsu et al.
(2006).

Perhaps the most powerful and interesting example of
simple block-oriented models is the Wiener model illus-
trated in Figure 1. The literature on estimation of Wiener
models has been extensive; among many references we
may mention Bai (2002); Westwick and Verhaegen (1996);
Wigren (1993); Zhu (1999). It may be noted that most
of the references deal with special cases of the general
configuration in Figure 1. Typical restrictions imposed in
prior work include: 1) The nonlinearity f is invertible; 2)
The measurement noise et is absent. The first restriction
excludes many common nonlinearities, such as dead-zones
and saturations, and the second does not reflect most prac-
tical applications. These and other issues are discussed in
detail in Hagenblad et al. (2008); Wills and Ljung (2010).

In many cases it may happen that the input wt is not avail-
able for measurement. This is the case e.g. for vibration
analysis (Peeters and Roeck, 2001). To be able to handle
that, some assumption about the character of w must
be introduced, typically that it is a stationary Gaussian
stochastic process with unknown, but rational, spectral
density. Merging such an input with the process noise gives
a structure depicted in Figure 1. Formally we then have a
case of time-series modeling with the output described as
a stationary stochastic process with a spectral density to
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be determined, followed by a memoryless nonlinearity. In
recent years, the term blind identification, cf Abed-Meraim
et al. (1997), has been used for this situation, in analogy
with “blind equalization”, and also perhaps to stress that
w in Figure 1 is a “physical signal”, it is just that it cannot
be measured.

While some of the general techniques for the estimation of
Wiener models could be applied to the “blind identification
of Wiener models” (like the one in Wills and Ljung
(2010)), relatively few papers directly dealing with this
problem have been published. An exception is the recent
contribution by Vanbaylen et al. (2009), which defines a
maximum likelihood method. It is however subject to the
restriction (1) mentioned above.

The objective with the current paper is to give a treatment
of blind identification of the Wiener model in Figure 1
allowing for nose and nonlinearities that may be multi-
variable and non-invertible.

2. PROBLEM FORMULATION

This paper addresses the problem of identifying the un-
known parameter vector θ that specifies a Wiener model
structure illustrated in Figure 1. Importantly, the paper
considers the “blind” estimation problem in which only
an output record YN , {y1, . . . , yN} is available, and the
input wt is not measured.

For this purpose, the following model structure is em-
ployed

wt

et

L(ϑ) f(·, η)
ytxt

Fig. 1. The Wiener model structure. A linear time-
invariant system L followed by a memoryless nonlin-
earity f .



ξt+1 = Aξt + wt, (1a)
xt = Cξt, (1b)
yt = f(xt, η) + et. (1c)

Here ξt ∈ Rnξ is the state vector of a linear system
L(ϑ) driven by a Gaussian i.i.d. process wt ∼ N (0, Q).
The system matrices A ∈ Rnξ×nξ , C ∈ Rnx×nξ and
Q ∈ Rnξ×nξ are fully parametrized (no elements are fixed)
by the vector

ϑ = [vec{A}T , vec{C}T , vec{Q}]T (2)
where vec{·} generates a vector from a matrix by stacking
its columns on top of one another.

The memoryless nonlinearity component f(xt, η) : Rnx →
Rny is parametrized by the vector η. This mapping and its
parametrization may be quite general. Common situations
such as basis function expansions (polynomials, splines,
neural networks), piecewise linear expansions, or specific
types such as dead-zones or saturations are all allowed.

Finally, the measurement noise et is a Gaussian i.i.d.
process modeled as et ∼ N (0, R) which is independent
of wt. The full Wiener model is then described by the
parameter vector

θ = [ϑT , ηT , vec{R}T ]T . (3)

In what follows, it will be useful to note that the Wiener
model (1) may also be represented by the following prob-
abilistic description

ξt+1 ∼ p(ξt+1 | ξt) = pw(ξt+1 −Aξt), (4a)
yt ∼ p(yt | ξt) = pe(yt − f(Cξt, η)). (4b)

This paper examines the formation of an estimate θ̂ of θ
via the maximum likelihood (ML) approach

θ̂ = argmax
θ

Lθ(YN ), Lθ(YN ) , log pθ(YN ) (5)

Here pθ(YN ) denotes the joint density of the measurements
YN and via subscript makes explicit that according to the
model (1) it will depend upon θ, and likewise for Lθ(YN ).
Note that since the logarithm is a monotonic function,
the maximiser θ̂ of the “log likelihood” Lθ(YN ) is also the
maximiser of the “likelihood” pθ(YN ).

The log-likelihood can by repeated use of Bayes’ rule be
written as

Lθ(YN ) =
N∑

t=1

log pθ(yt | Yt−1), pθ(y1 | Y0) , pθ(y1)

(6)
which reduces the problem of computing Lθ(YN ) to that
of computing the prediction density pθ(yt | Yt−1). In the
linear and time invariant case this can be simply computed
using a Kalman filter.

However, due to the memoryless nonlinearity component
f(·, η), computing pθ(yt | Yt−1) is far less straightforward
for the Wiener model structure (1). One strategy that
might suggest itself would be to use sequential impor-
tance resampling, more colloquially known as “particle
filtering” (Doucet and Johansen, 2011) to numerically
approximate the prediction density.

However, as discussed in Schön et al. (2011), this approach
delivers an approximation Lθ(YN ) which is not a contin-
uous, much less differentiable, function of θ, which makes
the problem of computing its maximiser θ̂ intractable.

To address these difficulties, this paper takes the same
approach as in Schön et al. (2011), and employs the

expectation-maximisation (EM) algorithm (Dempster et al.,
1977; McLachlan and Krishnan, 2008) to compute the
maximiser θ̂, since this approach avoids the need to di-
rectly compute Lθ(YN ) or its derivatives. Sequential im-
portance sampling methods are still employed, but criti-
cally this is by way of using particle smoothers as opposed
to particle filters.

3. THE EXPECTATION MAXIMISATION (EM)
ALGORITHM

The EM algorithm is a method for computing the ML
estimate θ̂ that is very general and addresses a wide
range of applications. Key to both its implementation and
theoretical underpinnings is the consideration of a joint
log-likelihood function of both the measurements YN and
“missing data” Z

Lθ(YN , Z) , log pθ(YN , Z). (7)
The missing data Z consist of measurements that while
not available, would be useful to the estimation problem.
The choice of Z is a design variable in the deployment of
the EM algorithm.

Importantly, the log-likelihood log pθ(YN ) and the joint
log likelihood log pθ(YN , Z) are related by the definition of
conditional probability according to

log pθ(YN ) = log pθ(Z, YN )− log pθ(Z | YN ). (8)

Let θk denote an estimate of the likelihood maximiser θ̂.
Further, denote by pθk

(Z | YN ) the conditional density
of the missing data Z, given observations of the available
data YN and depending on the choice θk.

These definitions allow the following expression, which is
obtained by taking conditional expectations of both sides
of (8) relative to pθk

(Z | YN ).

log pθ(YN ) =
∫

log pθ(Z, YN )pθk
(Z | YN )dZ

−
∫

log pθ(Z | YN )pθk
(Z | YN )dZ

= Eθk
{log pθ(Z, YN ) | YN}︸ ︷︷ ︸

,Q(θ,θk)

−Eθk
{log pθ(Z | YN ) | YN}︸ ︷︷ ︸

,V(θ,θk)

.

(9)
Employing these newly defined Q and V functions, we can
express the difference between the likelihood Lθ(YN ) =
log pθ(YN ) at an arbitrary value of θ and the likelihood
Lθk

(YN ) at the estimate θk as
Lθ(YN )− Lθk

(YN ) = (Q(θ, θk)−Q(θk, θk))
+ (V(θk, θk)− V(θ, θk)))︸ ︷︷ ︸

≥0

. (10)

The positivity of the last term in the above equation
can be established by noting that it is the Kullback–
Leibler divergence metric between two densities (Gibson
and Ninness, 2005). As a consequence if we obtain a
new estimate θk+1 such that Q(θk+1, θk) > Q(θk, θk),
then it follows that Lθk+1(YN ) > Lθk

(YN ). So that,
by increasing the Q function we are also increasing the
likelihood Lθ(YN ).

This leads to the EM algorithm, which iterates between
forming Q(θ, θk) and then maximising it with respect to θ
to obtain a better estimate θk+1.

The Expectation and Maximisation steps are quite in-
volved for the Wiener model considered in this work and



Algorithm 1 : Expectation Maximisation Algorithm
(1) Set k = 0 and initialize θ0 such that Lθ0(YN ) is finite.
(2) Expectation (E) step: Compute

Q(θ, θk) = Eθk
{log pθ(Z, YN ) | YN} . (11)

(3) Maximisation (M) step: Compute
θk+1 = arg max

θ
Q(θ, θk). (12)

(4) If not converged, update k := k+1 and return to step
2.

are therefor treated separately in Sections 4.1 and 4.2
below. The algorithm in its general form was first pre-
sented by Dempster et al. (1977), and we refer the reader
to McLachlan and Krishnan (2008) as an excellent refer-
ence work on the method.

4. THE EM ALGORITHM FOR WIENER MODEL
STRUCTURES

As mentioned earlier, the specification of the missing data
Z is the principle design variable when employing the
EM algorithm. In this work, it is taken as the record for
t ∈ [1, N ] of the underlying state vector ξt in the model
structure (1). That is

Z = {ξ1, . . . , ξN}. (13)
Applying the EM algorithm then reduces to the consid-
eration of how the E-step is computed (how Q(θ, θk) can
be computed) and how the M-step is achieved (how the
maximiser of Q(θ, θk) with respect to θ is calculated).

4.1 Expectation Step

The starting point for addressing the computation of
Q(θ, θk) is its definition (9) for which the following decom-
position is useful, and which is achieved by using Bayes’
rule and the Markov property of the model structure (1).

Lθ(YN , Z) = log pθ(YN |Z) + log pθ(Z)

=
N−1∑
t=1

log pθ(ξt+1|ξt) +
N∑

t=1

log pθ(yt|ξt). (14)

Application of the conditional expectation operator Eθk
{· |

YN} to both sides of (14) then yields
Q(θ, θk) = I1 + I2, (15)

where

I1 =
N−1∑
t=1

∫ ∫
log pθ(ξt+1|ξt) pθk

(ξt+1, ξt|YN ) dξt dξt+1,

(16a)

I2 =
N∑

t=1

∫
log pθ(yt|ξt) pθk

(ξt|YN ) dξt. (16b)

In the Gaussian case, and in the absence of the memoryless
nonlinearity f(·, η), the associated densities would be
Gaussian, and they and the associated expectations could
be computed by an optimal linear smoother (Gibson and
Ninness, 2005).

In contrast, with f(·, η) present the situation is much less
straightforward, and it seems the exact computation of the
above expectations is intractable.

To address this difficulty, this paper will employ sequential
importance resampling (SIR) methods, which are more
colloquially known as “particle” techniques. Underpinning

these approaches, is the central idea of generating a user
chosen number M of random realisations (particles) ξi

t,
i = 1, . . . ,M from the smoothing density of interest
ξi
t ∼ p(ξt | YN ).

These realisations are then used to form the following
approximation to multi-dimensional integrals that may
involve an arbitrary (integrable) function g(·)

1
M

M∑
i=1

g(ξi
t) ≈

∫
g(ξt) p(ξt | YN ) dξt. (17)

As the user chosen number of particles M tends to infinity,
the approximation in (17) tends to equality with probabil-
ity one, and hence the quality of approximation for finite
M improves as M grows (Hu et al., 2008).

Generating random realisations from the smoothing den-
sity requires a preceding step of generating realisations
ζi
t for i = 1, . . . ,M from the filtering density p(ξt | Yt).

The following algorithm for achieving this has now be-
come a benchmark, although there are many variants on
it (Doucet et al., 2001; Arulampalam et al., 2002; Ristic
et al., 2004).

Algorithm 2 Particle Filter
1: Initialize particles, {ζi

0}Mi=1 ∼ pθ(ζ0) and set t = 1;
2: Predict the particles by drawing M i.i.d. samples

according to

ζ̃i
t ∼ pθ(ζ̃t|ζi

t−1), i = 1, . . . ,M. (18)

3: Compute the importance weights {wi
t}Mi=1,

wi
t , w(ζ̃i

t) =
pθ(yt|ζ̃i

t)∑M
j=1 pθ(yt|ζ̃j

t )
, i = 1, . . . ,M.

(19)

4: For each j = 1, . . . ,M draw a new particle ζj
t with

replacement (resample) according to,

P(ζj
t = ζ̃i

t) = wi
t, i = 1, . . . ,M. (20)

5: If t < N increment t 7→ t + 1 and return to step 2,
otherwise terminate.

The development of particle smoothing methods is much
less mature. However, the recent work by Douc et al.
(2010) has developed a new approach that is both compu-
tationally efficient, and has the great advantage of generat-
ing realisations from the complete joint smoothing density
p(ξ1, . . . , ξN | YN ).

Central to this new work is the use of what is known as
“rejection sampling” in order to generate realisations from
a certain “target” density, which as established in Douc
et al. (2010) should be taken as p(ξt+1 | ξt). Via the
model (1), this may be expressed as

p(ξt+1 | ξt) = (2π)−1/2|Q|−nξ/2f(ξt+1, ξt, θ), (21)
where

f(ξt+1, ξt, θ) , exp
(
−1

2
(ξt+1 −Aξt)T Q−1(ξt+1 −Aξt)

)
.

(22)
This latter function is then central to the following Al-
gorithm 3 which is a rejection sampling based parti-
cle smoother, and a variant on the approach developed
by Douc et al. (2010).

The realisations ξi
t generated by Algorithm 3 from the joint

smoothing density p(ξ1, . . . , ξN | YN ) may then be used



Algorithm 3 Rejection Sampling Based Particle
Smoother
1: Run the particle filter (Algorithm 2) and store all

the generated particles ζi
t for t = 1, . . . , N and i =

1, . . . ,M ;
2: Set t = N and initialize the smoothed particles ξi

N =
ζi
N for i = 1, . . . ,M ;

3: for i = 1 : M do
4: Draw an integer j randomly according to j ∼

U([1, . . . ,M ]) where the later is the uniform distri-
bution over the integers 1, . . . ,M ;

5: Draw a real number τ randomly according to τ ∼
U([0, 1]) where the latter is the uniform distribution
over the real numbers in the interval [0, 1];

6: if τ < f(ξi
t, ζ

j
t−1, θ) then

7: return to step 4;
8: end if
9: Set ξi

t−1 = ζj
t−1.

10: end for
11: if t > 1 then
12: Decrement t 7→ t− 1. Return to step 4
13: else
14: Terminate;
15: end if

to approximately compute the integrals I1 and I2 given
in (16) as follows,

I1 ≈ Î1 =
1
M

N−1∑
t=1

M∑
i=1

log pθ(ξi
t+1 | ξi

t), (23a)

I2 ≈ Î2 =
1
M

N∑
t=1

M∑
i=1

log pθ(yt|ξi
t). (23b)

4.2 Maximisation Step

As mentioned above, the second step of the EM algo-
rithm, called the M-step, involves maximising the Q(θ, θk)
function over θ. Note that according to Section 4.1 it is
not tractable to work with the true Q function. Rather,
as outlined above in Section 4.1, this paper considers an
approximation obtained using particle methods, which is
given by (23a)–(23b) and restated here for reference

Q̂(θ, θk) = Î1(A,Q) + Î2(C, η,R). (24)
Since these two terms are parametrized independently,
then maximising Q̂ can be achieved by independently
maximising Î1 over A and Q, and Î2 over C, η and R.

Maximising Î1: according to (1a) and (4a) and the fact
that wt is Gaussian distributed via wt ∼ N (0, Q), the term
Î1 can be expressed as

Î1(A,Q) =
1
M

N−1∑
t=1

M∑
i=1

log pθ(ξi
t+1 | ξi

t)

= κ− (N − 1)M
2M

log det(Q)

− 1
2M

N−1∑
t=1

M∑
i=1

(ξi
t+1 −Aξi

t)
T Q−1(ξi

t+1 −Aξi
t)

= κ− (N − 1)
2

log det(Q)

− 1
2
Trace

{
Q−1(Φ−ΨAT −AΨT + AΣAT )

}
, (25)

where κ is a constant term, and

Φ ,
1
M

N−1∑
t=1

M∑
i=1

ξi
t+1(ξ

i
t+1)

T , (26a)

Ψ ,
1
M

N−1∑
t=1

M∑
i=1

ξi
t+1(ξ

i
t)

T , (26b)

Σ ,
1
M

N−1∑
t=1

M∑
i=1

ξi
t(ξ

i
t)

T . (26c)

It can be shown that (26c) can be maximised by the
following choices for A and Q

A = ΨΣ−1, Q =
1

N − 1
[
Φ−ΨΣ−1ΨT

]
. (27)

Maximising Î2: again, according to (1c) and (4b) and
using the assumption that et ∼ N (0, R), the second term
Î2 can be expressed as

Î2(C, η,R) =
1
M

N∑
t=1

M∑
i=1

log pθ(yt | ξi
t)

= γ − NM

2M
log det(R)

− 1
2M

N∑
t=1

M∑
i=1

(yt − f(Cξi
t, η))T R−1(yt − f(Cξi

t, η))

= γ − N

2
log det(R)− 1

2
Trace

{
R−1F (C, η)

}
, (28)

where γ is a constant and

F (C, η) ,
1
M

N∑
t=1

M∑
i=1

(yt − f(Cξi
t, η))(yt − f(Cξi

t, η))T .

(29)
The choice

R =
1
N

F (C, η) (30)

maximises Î2(C, η,R) over R. Inserting this solution into
Î2 provides

Î2(C, η) = γ − N

2
log det(

1
N

F (C, η))− 1
2
Trace {NI}

(31)

Hence, it remains to maximise Î2 in (31) over C and η. The
function Î2 is nonlinear in the parameters and, in general,
it is not feasible to obtain an analytical solution for its
maximum. Hence, we employ the standard approach of
maximising Î2 via a gradient based search, which is now
outlined. It is convenient to define a joint parameter vector

β = [vec {C}T ηT ]T . (32)
The gradient based search approach updates the parame-
ter β via

β ← β + αρ. (33)
Here the vector ρ is given by the Gauss-Newton search
direction (Dennis and Schnabel, 1983) defined as

ρ = H(β)−1g(β), (34)
where the j’th element of the gradient vector g is given by

gj(β) ,
∂Î2(β)
∂βj

= −N

M∑
i=1

ri
t(β)T F−1(β)

∂ri
t(β)

∂βj
, (35a)

ri
t(β) , yt − f(Cξi

t, η). (35b)



and the (p, m)’th element of the scaling matrix H is given
by

H(p,m)(β) = N

M∑
i=1

∂ri
t(β)T

∂βp
F−1(β)

∂ri
t(β)

∂βm
. (36)

Based on this choice for ρ, it can be shown that there exists
an α > 0 so that Î2(β + αg(β)) > Î2(β), which we achieve
using a backstepping line search in this paper.

In terms of computing the gradient vector g and the scaling
H, it is necessary to compute the derivatives

∂ri
t(β)

∂βj
= −∂f(Cξi

t, η)
∂βj

. (37)

For the C parameters it follows via the chain rule that
∂f(Cξi

t, η)
∂vec {C}j

=
∂f(x, η)

∂x

∣∣∣∣
x=Cξi

t

∂Cξi
t

∂vec {C}j
. (38)

The derivatives of the first term on the right hand side
of (38) will be case dependent and it is difficult to
say anything in general. This is also the case for the
η parameters. A summary of the M-step is provided in
Algorithm 4.

Algorithm 4 M-step
Given the current parameter values θk and a positive scalar
ε, perform the following:
1: Compute A and Q via (27), (26a), (26b) and (26c);
2: Initialise β = [vec {Ck} ηT

k ]T .
3: while ‖g(β)‖ < ε do
4: Compute ρ = H(β)−1g(β);
5: Set α = 1;
6: while Î2(β + αρ) < Î2(β) do
7: Update α← α/2;
8: end while
9: Set β ← β + αρ;

10: end while
11: Set [vec

{
Ck+1

}
ηT

k+1]
T = β.

12: Compute Rk+1 via (30), using the new estimates Ck+1
and ηk+1 just obtained.

5. SIMULATION EXAMPLE

Here we consider a Wiener system with two measurements,
as depicted in Figure 2. The linear dynamic block is a 2’nd
order resonant system, whose transfer function H is given
by

H(q) =
q−1 + 0.3q−2

1− q−1 + 0.9q−2
. (39a)

The true nonlinearities f1 and f2 are given by a saturation
function and a deadzone function, respectively.

f1(x) =

η1 : x > η1

x : η2 ≤ x ≤ η1

η2 : x < η2

(39b)

f2(x) =

x− η3 : x > η3

0 : η3 ≤ x ≤ η4

x− η4 : x < η4

(39c)

where the true parameter values are given by
η1 = 0.1, η2 = −1.3, η3 = 0.8, η4 = −0.2. (39d)

In terms of the estimation model structure, we used a
2’nd order model for the linear dynamic system and the

wt

e1
t

H(q, ϑ)

f1(·, η)
y1

t

e2
t

y2
t

f2(·, η)

Fig. 2. Block diagram of blind Wiener model with two
outputs.

nonlinearities were modeled as a saturation and deadzone,
respectively.

For the purposes of estimation, N = 1000 samples of
the outputs were simulated using (39) with the noise
source wt ∼ N (0, 1). The measurements were corrupted
by Gaussian noise et ∼ N (0, 0.1× I2).

The initial values for η̂ were chosen as η̂i = ηi

10 to
reflect that they are unknown. The parameters for the
linear dynamic block were initialised by estimating a 2’nd
order state-space model using a subspace algorithm based
on the measurements {y2

1 , . . . , y2
N} from the deadzone

nonlinearity.

Using the above initial parameter values, the EM method
was employed to provide ML estimates based on M = 100
particles. The EM algorithm was terminated after just 100
iterations. The results of 100 Monte Carlo runs are shown
in Figures 3–5. For each run, different noise realisations
were used according to the distributions specified above.

These figures demonstrate the utility of the proposed
algorithm in that the estimates appear to be good, even
though the initial estimates are clearly far from accurate.
These results are encouraging, especially given the very
modest number of M = 100 of particles employed.

Fig. 3. Bode plot of estimated (grey) and true (blue)
systems for the example studied in Section 5.



Fig. 4. Estimated (grey) and true (blue) memoryless
nonlinearities for the example studied in Section 5.

Fig. 5. Estimated (grey) and true (blue) memoryless
nonlinearities for the example studied in Section 5.

6. CONCLUSION

This paper has considered the problem of identifying pa-
rameter values for Wiener systems where the input sig-
nal is not known, and the measurements are corrupted
by noise. The proposed method caters for systems with
potentially multiple outputs, and importantly, the static
nonlinearities associated with the Wiener system are al-
lowed to be quite general. Specifically, they do not need to
be invertible.

This identification problem was specified using a maximum
likelihood formulation, which depends on an underlying
prediction density. The key technical difficulty in solving
this problem is that the prediction density cannot be
straightforwardly characterized. The impact is that the
likelihood function cannot be straightforwardly evaluated,
let alone maximised.

Against this, the paper employs the expectation maximi-
sation (EM) algorithm, which does not need to evaluate
the likelihood nor directly maximise it. The results of this
new approach were profiled on several examples and the
performance is very promising.
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