
J Intell Robot Syst
DOI 10.1007/s10846-008-9301-y

Particle Filter SLAM with High Dimensional
Vehicle Model

David Törnqvist · Thomas B. Schön ·
Rickard Karlsson · Fredrik Gustafsson

Received: 26 May 2008 / Accepted: 1 December 2008
© Springer Science + Business Media B.V. 2009

Abstract This work presents a particle filter method closely related to Fastslam
for solving the simultaneous localization and mapping (slam) problem. Using the
standard Fastslam algorithm, only low-dimensional vehicle models can be handled
due to computational constraints. In this work, an extra factorization of the problem
is introduced that makes high-dimensional vehicle models computationally feasible.
Results using experimental data from an unmanned aerial vehicle (helicopter) are
presented. The proposed algorithm fuses measurements from on-board inertial
sensors (accelerometer and gyro), barometer, and vision in order to solve the slam
problem.

Keywords Rao-Blackwellized/marginalized particle filter · Sensor fusion ·
Simultaneous localization and mapping · Inertial sensors · UAV · Vision

1 Introduction

The main task in localization/positioning and tracking is to estimate, for instance,
the position and orientation of the object under consideration. The particle filter (pf)
[13, 18] has proved to be an enabling technology for many applications of this kind, in

D. Törnqvist (B) · T. B. Schön · R. Karlsson · F. Gustafsson
Division of Automatic Control, Department of Electrical Engineering,
Linköping University, 581 83 Linköping, Sweden
e-mail: tornqvist@isy.liu.se

T. B. Schön
e-mail: schon@isy.liu.se

R. Karlsson
e-mail: rickard@isy.liu.se

F. Gustafsson
e-mail: fredrik@isy.liu.se

J Intell Robot Syst

particular when the observations are complicated nonlinear functions of the position
and heading [19]. Furthermore, the Rao-Blackwellized particle filter (rbpf), also
denoted the marginalized particle filter (mpf) [1, 5, 7, 14, 15, 32], enables estimation
of velocity, acceleration, and sensor error models by utilizing any linear Gaussian
substructure in the model, which is fundamental for performance in applications as
surveyed in [33]. As described in [32], the rbpf splits the state vector xt into two parts,
one part xp

t , which is estimated using the pf, and another part xk
t , where Kalman filters

are applied. Basically, it uses the following factorization of the posterior distribution
of the state vector, which follows from Bayes’ rule,

p
(
xp

1:t, xk
t |y1:t

) = p
(
xk

t |xp
1:t, y1:t

)
p

(
xp

1:t|y1:t
)
, (1)

where y1:t � {y1, . . . , yt} denotes the measurements up to time t. If the model is
conditionally linear Gaussian, i.e., if the term p(xk

t |xp
1:t, y1:t) is linear Gaussian, it can

be optimally estimated using the Kalman filter, whereas, for the second factor, a pf is
necessary.

Simultaneous localization and mapping (slam) is an extension of the localization
or positioning problem to the case where the environment is unmodeled and has
to be mapped online. An introduction to the slam problem is given in the survey
papers [2, 16] and the recent book [38]. From a sensor point of view, there are two
ways to tackle this problem. The first way is to use only one sensor, such as vision, see,
e.g., [9–11, 17], and the second way is to fuse measurements from several sensors. This
work considers the latter. The Fastslam algorithm introduced in [26] has proved to be
an enabling technology for such applications. Fastslam can be seen as a special case
of rbpf/mpf, where the map state mt, containing the positions for all landmarks used
in the mapping, can be interpreted as a linear Gaussian state. The main difference is
that the map vector is a constant parameter with a dimension increasing over time,
rather than a time-varying state with a dynamic evolution over time. The derivation
is completely analogous to (1) and makes use of the following factorization

p (x1:t, mt|y1:t) = p (mt|x1:t, y1:t) p (x1:t|y1:t) . (2)

The Fastslam algorithm was originally devised to solve the slam problem for mobile
robots, where the dimension of the state vector is small, typically consisting of
three states (2D position and a heading angle) [38]. This implies that all platform
states must be estimated by the pf, which is computationally demanding for high-
order models. Note that there have been successful applications with a higher state
dimension, see [37], where a six-dimensional state vector was used. However, for yet
higher state dimensions, relying purely on the pf will still be problematic.

Parallelling the evolution of pf applications to high dimensional state vectors, the
aim of this contribution is to build on our earlier work [22, 34] which unify the ideas
presented in [32] and [35]. This is done in order to extend the Fastslam algorithm
[26] to be able to cope with high dimensional state vectors as well. Basically, the
main result follows from

p
(
xp

1:t, xk
t , mt|y1:t

) = p
(
mt|xk

t , xp
1:t, y1:t

)
p

(
xk

t |xp
1:t, y1:t

)
p
(
xp

1:t|y1:t
)
. (3)

The derived algorithm is applied to experimental data from an autonomous aerial
vehicle using the rmax helicopter platform (Fig. 1), although the framework is
general and could be applied to other platforms as well. The main navigation sensor

J Intell Robot Syst

Fig. 1 The Yamaha RMAX
helicopter used in the
experiments. The on-board
system is equipped with an imu
sensor (accelerometer and
gyro) and a vision sensor. The
on-board gps receiver is used
for evaluation only

unit consists of three accelerometers, three gyros, a pressure sensor, and a camera. A
global positioning system (gps) is used only for evaluation purposes.

In Section 2, the problem under consideration is formulated in more detail. The
proposed algorithm is given and explained in Section 3. This algorithm is then applied
to solve the SLAM problem for a unmanned aerial vehicle (uav) in Section 4. This
section also provides a thorough explanation of the model used and how the vision
measurements are computed. Finally, the conclusions are given in Section 5.

2 Problem Formulation

The aim of this work is to solve the slam problem when the state dimension of the
platform (uav) is too large to be estimated by the pf. This section provides a more
precise problem formulation and introduces the necessary notation.

The total state vector to be estimated at time t is

xt =
((

xp
t

)T (
xk

t

)T
mT

t

)T
, (4)

where xp
t denotes the states of the platform that are estimated by the pf, and xk

t
denotes the states of the platform that are linear-Gaussian given information about
xp

t . These states, together with the map (landmarks) mt, are estimated using Kalman
filters. The map states mt consists of the entire map at time t, i.e.,

mt = (
mT

1,t . . . mT
Mt,t

)T
, (5)

where m j,t denotes the position of the jth map entry and Mt denotes the number of
entries in the map at time t.

The aim of this work can be formalized as trying to estimate the following filtering
probability density function (pdf),

p
(
xp

t , xk
t , mt|y1:t

)
. (6)

J Intell Robot Syst

In other words, a nonlinear filtering problem is solved, providing an estimate of (6).
The key factorization, which makes it possible to solve this problem successfully, is

p
(
xp

1:t, xk
t , mt|y1:t

) = p
(
xp

1:t|y1:t
)

︸ ︷︷ ︸
pf

p
(
xk

t |xp
1:t, y1:t

) Mt∏

j=1

p
(
m j,t|xp

1:t, y1:t
)

︸ ︷︷ ︸
(extended) Kalman filter

, (7)

where the trajectory xp
1:t is estimated to make the last factorization possible. It is also

assumed that m j,t is independent of xk
t , which will be seen in the model (8). In order

to devise an estimator for (6), a system model and a measurement model are needed.
The former describes the dynamic behavior of the platform, that is how the state
xt evolves over time. The measurement model describes the sensors, i.e., it consists
of equations relating the measurements yt to the state xt. A general algorithm is
sought, which is applicable to many different platforms (aircraft, helicopters, cars,
etc.). Hence, the model structure should be as general as possible,

xp
t+1 = f p

t

(
xp

t

) + Ap
t

(
xp

t

)
xk

t + Gp
t

(
xp

t

)
w

p
t , (8a)

xk
t+1 = f k

t

(
xp

t

) + Ak
t

(
xp

t

)
xk

t + Gk
t

(
xp

t

)
wk

t , (8b)

m j,t+1 = m j,t, (8c)

y1,t = h1,t
(
xp

t

) + C1,t
(
xp

t

)
xk

t + e1,t, (8d)

y(j)
2,t = h2,t

(
xp

t

) + Hj,t
(
xp

t

)
m j,t + e(j)

2,t , (8e)

where j = 1, . . . , Mt and the noise for the platform states is assumed white and
Gaussian distributed with

wt =
(

w
p
t

wk
t

)
∼ N (0, Qt), Qt =

(
Qp

t Qpk
t

(
Qpk

t

)T
Qk

t

)

. (8f)

To simplify the notation in the rest of the paper, denote f p
t

(
xp

t

)
with f p

t , Ap
t

(
xp

t

)
with

Ap
t , and so on. The measurement noise is assumed white and Gaussian distributed

according to

e1,t ∼ N (0, R1,t), (8g)

e(j)
2,t ∼ N

(
0, R j

2,t

)
, j = 1, . . . , Mt. (8h)

Finally, xk
0 is Gaussian,

xk
0 ∼ N

(
x̄0, P̄0

)
, (8i)

and the density for xp
0 can be arbitrary, but it is assumed known.

There are two different measurement models, (8d) and (8e), where the former
only models quantities related to the platform, whereas the latter also involves the
map states. Section 4 describes a detailed application example using experimental
data, where (8d) is used to model inertial sensors and a pressure sensor and (8e) is
used to model a camera.

J Intell Robot Syst

3 Particle Filter for SLAM Utilizing Structure

This section is devoted to deriving and explaining the proposed slam algorithm on
a rather detailed level. However, when we make use of standard results, we just
provide the necessary references. The algorithm is given first and the steps are then
discussed in more detail.

3.1 Algorithm

The algorithm presented in this paper draws on several rather well known algorithms.
It is based on the rbpf/mpf method [1, 5, 7, 14, 15, 32]. The Fastslam algorithm [26]
is extended by not only including the map states in the linear part, but also the
states corresponding to a linear Gaussian substructure present in the model for the
platform. Assuming that the platform is modeled in the form (8), the slam algorithm
utilizing structure is given in Algorithm 1.

The following theorem will give all the details for how to compute the Kalman
filtering quantities. It is important to stress that all embellishments available for the
pf can be straightforwardly incorporated into Algorithm 1. To give one example, the
so-called Fastslam 2.0 makes use of an improved proposal distribution in step 6b [27].

Theorem 1 Using the model given in (8), the conditional probability density functions
for xk

t and xk
t+1 are given by

p
(
xk

t |xp
1:t, y1:t

) = N
(
x̂k

t|t, Pt|t
)
, (10a)

p
(
xk

t+1|xp
1:t+1, y1:t

) = N
(
x̂k

t+1|t, Pt+1|t
)
, (10b)

where

x̂k
t|t = x̂k

t|t−1 + Kt
(
y1,t − h1,t − Ctx̂k

t|t−1

)
, (11a)

Pt|t = Pt|t−1 − Kt S1,t KT
t , (11b)

S1,t = Ct Pt|t−1CT
t + R1,t, (11c)

Kt = Pt|t−1CT
t S−1

1,t , (11d)

and

x̂k
t+1|t = Āk

t x̂k
t|t + Gk

t

(
Qkp

t

)T(
Gp

t Qp
t

)−1
zt + f k

t + Lt
(
zt − Ap

t x̂k
t|t

)
,

Pt+1|t = Āk
t Pt|t

(
Āk

t

)T + Gk
t Q̄k

t

(
Gk

t

)T − Lt S2,t LT
t , (12a)

S2,t = Ap
t Pt|t

(
Ap

t

)T + Gp
t Qp

t

(
Gp

t

)T
, (12b)

Lt = Āk
t Pt|t

(
Ap

t

)T
S−1

2,t , (12c)

J Intell Robot Syst

Algorithm 1 (PF for SLAM utilizing structure)
1. Initialize N particles according to

xp,(i)
1|0 ∼ p

(
xp

1|0
)

,

xk,(i)
1|0 = x̄k

1|0,

Pk,(i)
1|0 = P̄1|0, i = 1, . . . , N.

2. If there are new map-related measurements available, compute the necessary
correspondences to the existing states, otherwise proceed to step 3.

3. Compute the importance weights according to

γ
(i)
t = p

(
yt|xp,(i)

1:t , y1:t−1

)
, i = 1, . . . , N,

and normalize γ̃
(i)
t = γ

(i)
t /

∑N
j=1 γ

(j)
t .

4. For each i = 1, . . . , N draw a new particle x(i)
t|t with replacement (resample)

according to,

Pr
(

x(i)
t|t = x(j)

t|t
)

= γ̃
(j)
t , j = 1, . . . , N.

5. If there is a new map-related measurement, perform map estimation and man-
agement (detailed below); otherwise, proceed to step 6.

6. Particle filter prediction and Kalman filter (for each particle i = 1, . . . , N)

(a) Kalman filter measurement update,

p
(
xk

t |xp
1:t, y1:t

) = N
(

xk
t |x̂k,(i)

t|t , P(i)
t|t

)
,

where x̂k,(i)
t|t and P(i)

t|t are given in (11).
(b) Time update for the nonlinear state,

xp,(i)
t+1|t ∼ p

(
xt+1|xp,(i)

1:t , y1:t
)

.

(c) Kalman filter time update,

p
(
xk

t+1|xp
1:t+1, y1:t

) = N
(

xk
t+1|t|x̂k,(i)

t+1|t, P(i)
t+1|t

)
,

where x̂k,(i)
t+1|t and P(i)

t+1|t are given by (12).

7. Set t := t + 1 and repeat from step 2.

where

zt = xp
t+1 − f p

t , (13a)

Āk
t = Ak

t − Gk
t

(
Qkp

t

)T(
Gp

t Qp
t

)−1
Ap

t , (13b)

Q̄k
t = Qk

t − (
Qkp

t

)T(
Qp

t

)−1
Qkp

t . (13c)

Proof The proof is derived in [32] for the case without map features but with linear
Gaussian dynamics as a substructure. The extension, including the linear Gaussian
map substructure, falls within the same framework. ��

J Intell Robot Syst

3.2 Likelihood Computation

In order to compute the importance weights {γ (i)
t }N

i=1 in Algorithm 1, the following
likelihoods have to be evaluated

γ
(i)
t = p

(
yt|xp,(i)

1:t , y1:t−1
)
, i = 1, . . . , N. (14)

The standard method of performing this type of computation is simply to marginalize
the Kalman filter variables xk

t and {m j,t}Mt
j=1 according to

p
(

yt|xp,(i)
1:t , y1:t−1

)
=

∫
p
(
yt, xk

t , mt|xp,(i)
1:t , y1:t−1

)
dxk

t dmt, (15)

where

p
(
yt, xk

t , mt|xp,(i)
1:t , y1:t−1

) = p
(
yt|xk

t , mt, xp,(i)
t

)

×p
(
xk

t |xp,(i)
1:t , y1:t−1

) Mt∏

j=1

p
(
m j,t|xp,(i)

1:t , y1:t−1
)
. (16)

Consider the case where both y1,t and y2,t are present, i.e., yt = (
yT

1,t yT
2,t

)T
. Note that

the cases where either y1,t or y2,t are present are obviously special cases. First of all,
the measurements are conditionally independent given the state, implying that

p
(
yt|xk

t , mt, xp,(i)
t

) = p
(
y1,t|xk

t , xp,(i)
t

) Mt∏

j=1

p
(
y(j)

2,t |xp,(i)
t , m j,t

)
. (17)

Now, inserting (17) into (16) gives

p
(
yt, xk

t , mt|xp,(i)
1:t , y1:t−1

) = p
(
y1,t|xk

t , xp,(i)
t

)
p
(
xk

t |xp,(i)
1:t , y1:t−1

)

×
Mt∏

j=1

p
(
m j,t|xp,(i)

1:t , y1:t−1
)

p
(
y(j)

2,t |xp,(i)
t , m j,t

)
, (18)

which, inserted in (15) finally results in

p
(
yt|xp,(i)

1:t , y1:t−1
) =

∫
p
(
y1,t|xk

t , xp,(i)
t

)
p
(
xk

t |xp,(i)
1:t , y1:t−1

)
dxk

t

×
Mt∏

j=1

∫
p
(
y(j)

2,t |xp,(i)
t , m j,t

)
p
(
m j,t|xp,(i)

1:t , y1:t−1
)
dm1,t · · · dmMt,t.

(19)

All the densities present in (19) are known according to

p
(
xk

t |xp
1:t, y1:t−1

) = N
(
xk

t |x̂k
t|t−1, Pt|t−1

)
, (20a)

p
(
m j,t|xp

1:t, y1:t−1
) = N

(
m j,t|m̂ j,t−1, � j,t−1

)
, (20b)

p
(
y1,t|xk

t , xp
t

) = N
(
y1,t|h1,t + Ctxk

t , R1
)
, (20c)

p
(
y(j)

2,t |xp
t , m j,t

) = N
(
y(j)

2,t |h2,t + Hj,tm j,t, R j
2

)
. (20d)

J Intell Robot Syst

Here, it is important to note that the standard Fastslam approximation (lineariza-
tion) has been invoked in order to obtain (20d). That is, the measurement equation
often has to be linearized with respect to the map states m j,t in order to comply
with (8e). The reason for this approximation is that we want to use a model suitable
for the rbpf/mpf; otherwise, the dimension will be much too large for the pf to handle.
Using (20), the integrals in (19) can now be solved, resulting in

p
(

yt|xp,(i)
1:t , y1:t−1

)
= N

(
y1,t|h1,t + Ctx̂

k,(i)
t|t−1, Ct P

(i)
t|t−1CT

t + R1
)

×
Mt∏

j=1

N
(
y(j)

2,t |h2,t + Hj,tm̂ j,t−1, Hj,t� j,t−1(Hj,t)
T + R j

2

)
. (21)

3.3 Map Estimation and Map Management

A simple map consists of a collection of map point entries {m j,t}Mt
j=1, each parameter-

ized by:

– m̂ j,t—estimate of the position (three dimensions)

– � j,t—covariance for the position estimate

Note that this is a very simple map parametrization. Each particle has an entire
map estimate associated to it. Step 5 of Algorithm 1 consists of updating these map
estimates in accordance with the new map-related measurements that are available.
First of all, if a measurement has been successfully associated to a certain map entry,
it is updated using the standard Kalman filter measurement update according to

m j,t = m j,t−1 + K j,t
(
y(j)

2,t − h2,t
)
, (22a)

� j,t = (
I − K j,t HT

j,t

)
� j,t−1, (22b)

K j,t = � j,t−1 HT
j,t

(
Hj,t� j,t−1 HT

j,t + R2
)−1

. (22c)

If an existing map entry is not observed, the corresponding map estimate is simply
propagated according to its dynamics, i.e., it is unchanged

m j,t = m j,t−1, (23a)

� j,t = � j,t−1. (23b)

Finally, initialization of new map entries has to be handled. If h2,t(xp
t , m j,t) is bijective

with respect to the map m j,t, this can be used to directly initialize the position from
the measurement y2,t. However, this is typically not the case, implying that we cannot
uniquely initialize the position of the corresponding map entry. This can be handled
in different ways. In Section 4 the vision sensor and different techniques are briefly
discussed.

4 Application Example

In this section, we provide a description of the slam application, where Algorithm 1
is used to fuse measurements from a camera, three accelerometers, three gyros,

J Intell Robot Syst

and an air-pressure sensor. The sensors are mounted on the rmax helicopter shown
previously in Fig. 1. The main objective is to find the position and orientation of the
sensor from sensor data only, despite problems such as biases in the measurements.
The vision system can extract and track features that are used in slam to reduce the
inertial drift and the bias in the inertial measurement unit (imu) sensor.

The dynamic model used to explain the helicopter motion is introduced in
Section 4.1, together with measurement models for the various sensors. Further de-
tails regarding the uav platform are provided in Section 4.2. Finally, the experimental
setup and the results are given in Section 4.3 and Section 4.4, respectively.

4.1 Model

The basic part of the state vector consists of position pt ∈ R
3, velocity vt ∈ R

3, and
acceleration at ∈ R

3, all described in an earth-fixed reference frame. Furthermore,
the state vector is extended with bias states for acceleration b a,t ∈ R

3 and angular
velocity bω,t ∈ R

3 in order to account for sensor imperfections. The state vector also
contains the angular velocity ωt and a unit quaternion qt, where the latter is used to
parametrize the orientation of the uav.

In order to relate the model to the rbpf/mpf framework, the state vector is split into
two parts, one estimated using Kalman filters xk

t and one estimated using the pf xp
t .

In our case, xp
t contains the orientation and position; the other states are contained

in xk
t . This will give a linear system for xk

t given xp
t , as will be seen in the model (27).

Hence, define

xk
t = (

vT
t aT

t (bω,t)
T (b a,t)

T ωT
t

)T
, (24a)

xp
t = (

pT
t qT

t

)T
, (24b)

which means xk
t ∈ R

15 and xp
t ∈ R

7. In inertial estimation, it is essential to clearly
state which coordinate frame an entity is expressed in. Here, the notation is simplified
by suppressing the coordinate frame, which means that

pt = pe
t , vt = ve

t , at = ae
t , (25a)

ωt = ωb
t , bω,t = b b

ω,t, b a,t = b b
a,t. (25b)

Likewise, the unit quaternions represent the rotation from the earth-fixed system to
the body (imu) system, since the imu is rigidly attached to the body (strap-down),

qt = qbe
t = (

q0,t q1,t q2,t q3,t
)T

. (26)

The quaternion estimates are normalized to make sure that they still parametrize an
orientation. Further details regarding orientation and coordinate systems are given
in Appendix.

J Intell Robot Syst

4.1.1 Dynamic Model

The dynamic model describes how the platform and the map evolve over time.
These equations are given below, in the form (8a–8d), suitable for direct use in
Algorithm 1.

⎛

⎜
⎜⎜⎜
⎝

vt+1

at+1

bω,t+1

b a,t+1

ωt+1

⎞

⎟
⎟⎟⎟
⎠

︸ ︷︷ ︸
xk

t+1

=

⎛

⎜
⎜⎜⎜
⎝

I T I 0 0 0
0 I 0 0 0
0 0 I 0 0
0 0 0 I 0
0 0 0 0 I

⎞

⎟
⎟⎟⎟
⎠

︸ ︷︷ ︸
Ak

t

⎛

⎜
⎜⎜⎜
⎝

vt

at

bω,t

b a,t

ωt

⎞

⎟
⎟⎟⎟
⎠

︸ ︷︷ ︸
xk

t

+

⎛

⎜
⎜⎜⎜
⎝

T2

2 0 0 0
T I 0 0 0
0 I 0 0
0 0 I 0
0 0 0 I

⎞

⎟
⎟⎟⎟
⎠

︸ ︷︷ ︸
Gk

t

⎛

⎜⎜
⎝

w1,t

w2,t

w3,t

w4,t

⎞

⎟⎟
⎠

︸ ︷︷ ︸
wk

t

, (27a)

(
pt+1

qt+1

)

︸ ︷︷ ︸
xp

t+1

=
(

pt

qt

)

︸ ︷︷ ︸
f p
t

(
xp

t

)

+
(

T I T2

2 I 03×9

04×3 04×9
T
2 S̃(qt)

)

︸ ︷︷ ︸
Ap

t

(
xp

t

)

⎛

⎜
⎜⎜⎜
⎝

vt

at

bω,t

b a,t

ωt

⎞

⎟
⎟⎟⎟
⎠

︸ ︷︷ ︸
xk

t

+
(

T3

6 I 0

04×3
T
2 S̃(qt)

) (
w1,t

w2,t

)
, (27b)

m j,t+1 = m j,t, j = 1, . . . , Mt, (27c)

where

S̃(q) =

⎛

⎜
⎜
⎝

−q1 −q2 −q3

q0 −q3 q2

q3 q0 −q1

−q2 q1 q0

⎞

⎟
⎟
⎠ , (28)

T denotes the sampling time, I denotes the 3 × 3 identity matrix, and 0 denotes the
3 × 3 zero matrix, unless otherwise stated. The process noise wk

t is assumed to be
independent and Gaussian, with covariance Qk

t = diag(Qa, Qbω
, Qb a , Qω).

4.1.2 Measurement Model—Inertial and Air Pressure Sensors

The imu consists of accelerometers measuring accelerations ya,t in all three di-
mensions, a gyroscope measuring angular velocities yω,t in three dimensions, and
a magnetometer measuring the direction to the magnetic north pole. Due to the
magnetic disturbances from the environment, it is just the accelerometers and
gyroscopes that are used for positioning. There is also a barometer available yp,t,
measuring the altitude via the air pressure. The measurements from these sensors
are antialias-filtered and down-sampled to 20 Hz. The frequency used is a tradeoff
between computational load and lost accuracy. This sampling rate has shown to
give good accuracy at reasonable computational load. For further details on inertial

J Intell Robot Syst

sensors, see, for instance, [6, 30, 31, 39]. The measurements are related to the states
according to

y1,t =
⎛

⎝
yp,t

yω,t

ya,t

⎞

⎠ =
⎛

⎝
p3,t

0
−R(qt)ge

⎞

⎠

︸ ︷︷ ︸
h
(

xp
t

)

+
⎛

⎜
⎝

01×15

0 0 I 0 I
0 R(qt) 0 I 0

⎞

⎟
⎠

︸ ︷︷ ︸
C
(

xp
t

)

⎛

⎜
⎜⎜⎜
⎝

vt

at

bω,t

b a,t

ωt

⎞

⎟
⎟⎟⎟
⎠

︸ ︷︷ ︸
xk

t

+
⎛

⎝
e1,t

e2,t

e3,t

⎞

⎠

︸ ︷︷ ︸
et

,

which obviously is in the form (8). The measurement noise et is assumed Gaussian
with covariance Rt = diag(Rω, Ra) and the gravity vector ge = (0 0 − 9.82)T .

4.1.3 Measurement Model—Camera

Before the camera images are used, they are adjusted according to the calibration.
This allows us to model the camera using the pinhole model with unit focal length,
according to [25] and [21],

y2,t = ym j,t = 1

zc
t

(
xc

t

yc
t

)

︸ ︷︷ ︸
hc(m j,t,pt,qt)

+ e3,t, (29)

where

mc
j,t =

⎛

⎜
⎝

xc
t

yc
t

zc
t

⎞

⎟
⎠ = R

(
qcb

t

)
R

(
qbe

t

)
(m j,t − pt) + rc (30)

is the position of map entry m j,t resolved in the camera frame. Here, rc is a fixed
vector representing the translation between the camera and the imu (body), qcb

t is
the unit quaternion describing the rotation from the imu to the camera, and R(·) is
the rotation matrix in (38). The measurement noise is distributed as

e3,t ∼ N (0, Rc). (31)

The uav is equipped with a camera, which is synchronized in time with the inertial
measurements. Images are available at 4 Hz in a resolution of 384 × 288 pixels.
In order to use vision for feature extraction and estimation, we have made use of
standard camera calibration techniques; see, e.g., [41].

The features are not exactly in the form suitable for the rbpf. Hence, we are
forced to use an approximation in order to obtain a practical algorithm. The standard
approximation is, in this case, simply to linearize the camera measurement equations
according to

ym j,t = hc(m j,t, pt, qt) + e3,t

≈ hc
j

(
m̂ j,t|t−1, pt, qt

) − Hj,tm̂ j,t|t−1
︸ ︷︷ ︸

h
(

xp
t

)
+Hj,tm j,t + e3,t, j = 1, . . . , Mt, (32)

J Intell Robot Syst

where the Jacobian matrix Hj,t is straightforwardly computed using the chain rule,
i.e.,

Hj,t = ∂hc

∂m j
= ∂hc

∂mc
j

∂mc
j

∂m j
. (33)

The two partial derivatives in (33) are given by

∂hc

∂mc
j
=

(
1
zc 0 − xc

(zc)2

0 1
zc − yc

(zc)2

)

, (34a)

∂mc
j

∂m j
= R

(
qcb

t

)
R

(
qbe

t

)
. (34b)

4.1.4 Obtaining Vision Measurements

In order to receive a camera measurement in the form (29), interest points or features
have to be identified in the image. This is step 2 in Algorithm 1. In this application
example, features are found using the Harris detector [20], which basically extracts
well-defined corners in an image. These feature points are then searched for in the
subsequent images using cross-correlations [25] according to Algorithm 2.

Algorithm 2 (Extracting and managing map entries)
1. Initialization. Search the entire image for features using the Harris detector. Save

an 11-by-11 pixel patch around each corner.
2. Predict positions of features detected in previous images. Match saved patches

in small search regions around the predicted feature positions using normalized
cross-correlations. Also, apply a weighted criterion to the matching procedure so
that a match close to the prediction is more likely.

3. Outlier rejection. If a matched feature is far from the predicted position com-
pared to other features, the measurement is discarded.

4. In areas of the image without features, search for new features using the Harris
detector. Around each detected corner, an 11-by-11 pixel patch is extracted and
stored.

5. Initialize the detected features in the map.

The feature detection in Algorithm 2 is performed in the 2-D image plane.
However, the features found have to be initialized into the filter 3-D map. In this
application, the features are known to be close to the ground, and we have a good
estimate of the altitude thanks to the air pressure sensor. The features are therefore
initialized on the estimated ground level, and adjustments are made by implicit
triangulation in the pf. In a more general case, where the depths of the features
are unknown, there are several methods available for intialization. For example, the
initialization can be delayed a few time steps until the feature has been seen from
several angles and its depth can be estimated by triangulation. Another alternative is
to use an inverse depth parametrization for some time as in [8].

This algorithm has been shown to work reliably on our flight data. However,
improvements can be achieved in both computational speed and detection reliability.

J Intell Robot Syst

There are more elaborate detectors available, for example, the scale-invariant feature
transform (sift) [24], the speeded up robust features (surf) [4], or the fast corner
detector [28, 29]. It is also possible to refine the feature detection process even further
by estimating the orientation of the patches [11]. From a computer vision perspective,
the current environment is rather simple; hence, fast and simple corner detectors can
be successfully applied.

4.2 UAV Platform

The algorithm proposed has been tested using flight-test data collected from an
autonomous helicopter (uav) developed during the witas Project [12]. The uav is
based on a commercial Yamaha rmax helicopter (Fig. 1). The total helicopter length
is 3.6 m (including main rotor); it is powered by a 21-hp, two-stroke engine; and it
has a maximum take-off weight of 95 kg.

The avionics developed during the witas Project is integrated with the rmax
platform, and it is based on three computers and a number of sensors. The platform
developed is capable of fully autonomous flight from take-off to landing.

The sensors used for the navigation algorithm described in this paper consist
of an imu (three accelerometers and three gyros), which provides the helicopter’s
acceleration and angular rate along the three body axes; a barometric altitude sensor;
and a monocular ccd video camera. gps position information is not used in the
navigation filter described here.

The primary flight computer is a PC104 Pentium III, 700 MHz. It implements
the low-level control system, which includes the control modes (take-off, hovering,
path following, landing, etc.), sensor data acquisition, and communication with the
helicopter platform. The second computer is also a PC104 Pentium III, 700 MHz,
handling the image processing functionalities and controlling the camera pan-tilt
unit. The third computer is a PC104 Pentium-M, 1.4 GHz, taking care of high-level
functionalities such as path-planning, task-planning, etc.

4.3 Experiment Setup

The flight data were collected during a flight-test campaign in a training area in
the south of Sweden and processed off-line. The helicopter autonomously flew a
preplanned path using a path following functionality implemented in the software
architecture [40]. The helicopter altitude was 60 m above the ground and the
flight speed was 3 m/s. The video camera was looking downwards and fixed to the
helicopter body. The video was recorded on-board and synchronized with the sensor
data. The synchronization is performed by automatically turning on a light diode
when the sensor data starts to be recorded. The light diode is visible in the camera
image. The video is recorded on tape using an on-board video recorder and the
synchronization with the sensor data is done manually off-line. This procedure allows
for synchronization accuracy of about 40 ms. The video sequence is recorded at a 25-
Hz frame rate. For the experiment described here, the video frames were sampled at
4 Hz. The on-board sensor data are recorded at different sample rates, although all
sensors but the video are resampled to 20 Hz. Table 1 provides the characteristics of
the sensors used in the experiment. The pf uses 200 particles.

J Intell Robot Syst

Table 1 Available
characteristics of the sensor
used in the navigation
algorithm

Sensor Output rate Resolution Bias

Accelerometers 66 Hz 1 mG 13 mG
Gyros 200 Hz 0.1◦/s < 0.1◦/s
Barometer 40 Hz 0.1 m –
Vision 4 Hz 384 × 288 pixels –

4.4 Experimental Results

In Fig. 2a, the landmarks/map are depicted using the particle clouds overlayed on
the current camera image. Furthermore, Fig. 3a shows the Cartesian 2D position
for the rbpfslam method and compares it against a gps-based solution. Since the
slam method, without closing the loop, is a dead-reckoning solution, it is expected
to have some drift. Here, the drift is greatly reduced, compared to dead-reckoning
using the inertial sensors alone. In Fig. 3b, the altitude (relative to the starting height)
is depicted for the slam method and compared against the gps-based reference and
measured air pressure.

Estimating the altitude using only vision and inertial data is problematic since the
vision measurement model will not get sufficient information in this direction. This
is a well-known drawback of a monocamera solution. Hence, in order to reduce or
remove a substantial drift in altitude, a pressure sensor is used.

Another important thing to note with the pfimplementation of slam is the
degeneration of the map over time. This problem has previously been discussed in
the literature, see, e.g., [3]. The resampling causes the map associated with the most
probable features to be copied and the others to be discarded. For mapped features
that have been out of sight for a while, the map will be the same for all particles after
some time. Figure 2b shows the particles representing the map roughly 10 s after that
area is left. The degeneration of the particles is almost complete and most particles

t=6 t=201

(a) The camera image overlayed with particle
clouds for the map at time t = 6.

(b) The particle clouds for the same part of the
map at time t = 201, overlayed on the image
from t = 6. (10 seconds layer than in (a))

Fig. 2 The scenario seen from the on-board vision sensor, together with particle clouds representing
the landmarks/map features and crosses showing the measured landmark positions

J Intell Robot Syst

Fig. 3 Position and altitude of
the RMAX helicopter

-300 -250 -200 -150 -100 -50 0 50
-20

0

20

40

60

80

100

East [m]

N
or

th
 [m

]

KF with GPS
Estimate

0 10 20 30 40 50 60 70 80 90 100
-5

-4

-3

-2

-1

0

1

2

3

4

5

Time [s]

A
lti

tu
de

 [m
]

KF with GPS
SLAM Estimate
Barometer

(a) 2D position from the SLAM method and the GPS based reference.

(b) Altitude (relative to the starting height) for SLAM, GPS refer–
rence and measured with barometer.

are in the same point. This is not a problem in our example, but would be in the
case of a loop-closure. The cross-correlation between the mapped features would,
in such an event, correct even out-of-sight features. This capability would be limited
here since the information about the cross-correlation among the features lies in the
diversity of maps in the particles.

5 Conclusion

In this paper, a pf solution to the slam problem, capable of handling high-
dimensional vehicle models, is presented. The solution includes an extra factorization

J Intell Robot Syst

of the filtering density compared to the standard Fastslam algorithm. The Fastslam
algorithm factorizes the filtering distribution into two parts. Then, a pf is used for
filtering the states of the vehicle platform, and a Kalman filter bank handles the
landmarks (map). In the approach presented here, a linear Gaussian substructure
in the vehicle dynamics is handled in the Kalman filter bank as well. Thus, lowering
the dimension of the pf, which decreases the computational load.

The uav application consists of an rmax helicopter, equipped with an imu sensor
(accelerometer and gyro), a pressure sensor, and a vision sensor. An on-board gps
sensor is used for evaluation, i.e., the solution presented in this paper does not
rely on gps. In an experiment, the proposed sensor fusion pf-based slam algorithm
was successfully evaluated. Without the slam method, the poor imu performance
would not be sufficient for navigation, whereas the slam technique reduces the drift
introduced by the dead-reckoning sensor.

Acknowledgements The authors would like to thank Gianpaolo Conte for providing experimental
data and the reviewers for very insightful comments. This work was supported by the strategic
research center MOVIII and funded by the Swedish Foundation for Strategic Research, SSF.

Appendix

Coordinate Systems

Three coordinate frames are used in this paper. An earth-fixed (denoted with e) body
or inertial sensor system (denoted with b) and a camera system (denoted c).

The following convention is used to rotate a vector from a coordinate frame A to
a coordinate frame B,

xB = RBAxA. (35)

where RBA is used to denote the rotation matrix describing the rotation from A to B.
Hence, the rotation from A to C via B can be described as

RCA = RCB RBA. (36)

Another way to represent rotations is using a unit quaternion qA. In this framework,
a vector can be rotated from A to B via

uB = q̄A � uA � qA, (37)

where uA is the quaternion extension of the vector xA, i.e., uA = (0 xT
A)T , and � de-

notes quaternion multiplication. Furthermore, ū denotes the quaternion conjugate.
See, e.g., [36] and [23] for an introduction to unit quaternions and other rotation
parameterizations.

J Intell Robot Syst

It is straightforward to convert a given quaternion into the corresponding rotation
matrix,

R(q) =
⎛

⎜
⎝

(
q2

0 + q2
1 − q2

2 − q2
3

)
2(q1q2 − q0q3) 2(q1q3 + q0q2)

2(q1q2 + q0q3)
(
q2

0 − q2
1 + q2

2 − q2
3

)
2(q2q3 − q0q1)

2(q1q3 − q0q2) 2(q2q3 + q0q1)
(
q2

0 − q2
1 − q2

2 + q2
3

)

⎞

⎟
⎠ , (38)

where q = (q0 q1 q2 q3)
T .

References

1. Andrieu, C., Doucet, A.: Particle filtering for partially observed Gaussian state space models.
J. R. Stat. Soc. 64(4), 827–836 (2002)

2. Bailey, T., Durrant-Whyte, H.: Simultaneous localization and mapping (SLAM): Part II. IEEE
Robot. Autom. Mag. 13(3), 108–117 (2006)

3. Bailey, T., Nieto, J., Nebot, E.: Consistency of the FastSLAM algorithm. In: Proceedings of the
2006 IEEE International Conference on Robotics and Automation, Orlando, 15–19 May 2006

4. Bay, H., Tuytelaars, T., Van Gool, L.: Surf: speeded up robust features. In: Proceedings of the
ninth European Conference on Computer Vision, Graz, 7–13 May 2006

5. Casella, G., Robert, C.P.: Rao-Blackwellisation of sampling schemes. Biometrika 83(1), 81–94
(1996)

6. Chatfield, A.: Fundamentals of High Accuracy Inertial Navigation, vol. 174, 3rd edn. American
Institute of Aeronautics and Astronautics, New York (1997)

7. Chen, R., Liu, J.S.: Mixture Kalman filters. J. R. Stat. Soc. 62(3), 493–508 (2000)
8. Civera, J., Davison, A.J., Montiel, J.M.M.: Inverse depth parameterization for monocular SLAM.

IEEE Trans. Robot. 24, 932–945 (2008)
9. Davison, A.J.: Real-time simultaneous localisation and mapping with a single camera. In: Pro-

ceedings Ninth IEEE International Conference on Computer Vision, vol. 2, pp. 1403–1410.
IEEE, Nice (2003)

10. Davison, A.J., Cid, Y.G., Kita, N.: Real-time 3D SLAM with wide-angle vision. In: Proceedings
of the 5th IFAC/EUCON Symposium on Intelligent Autonomus Vehicles, Lisaboa, July 2004

11. Davison, A.J., Reid, I., Molton, N., Strasse, O.: MonoSLAM: real-time single camera SLAM.
IEEE Trans. Pattern Anal. Mach. Intell. 29(6), 1052–1067 (2007)

12. Doherty, P., Haslum, P., Heintz, F., Merz, T., Persson, T., Wingman, B.: A distributed ar-
chitecture for intelligent unmanned aerial vehicle experimentation. In: Proceedings of the 7th
International Symposium on Distributed Autonomous Robotic Systems, Toulouse, 23–25 June
2004

13. Doucet, A., de Freitas, N., Gordon, N. (eds.): Sequential Monte Carlo Methods in Practice.
Springer, New York (2001)

14. Doucet, A., Gordon, N., Krishnamurthy, V.: Particle filters for state estimation of jump Markov
linear systems. IEEE Trans. Signal Process. 49(3), 613–624 (2001)

15. Doucet, A., Godsill, S.J., Andrieu, C.: On sequential Monte Carlo sampling methods for
Bayesian filtering. Stat. Comput. 10(3), 197–208 (2000)

16. Durrant-Whyte, H., Bailey, T.: Simultaneous localization and mapping (SLAM): Part I. IEEE
Robot. Autom. Mag. 13(2), 99–110 (2006)

17. Eade, E., Drummond, T.: Scalable monocular SLAM. In: Proceedings of IEEE Computer So-
ciety Conference on Computer Vision and Pattern Recognition (CVPR), pp. 469–476. IEEE,
New York (2006)

18. Gordon, N.J., Salmond, D.J., Smith, A.F.M.: Novel approach to nonlinear/non-Gaussian
Bayesian state estimation. In: IEEE Proceedings on Radar and Signal Processing, vol. 140,
pp. 107–113. IEEE, Piscataway (1993)

19. Gustafsson, F., Gunnarsson, F., Bergman, N., Forssell, U., Jansson, J., Karlsson, R., Nordlund,
P.-J.: Particle filters for positioning, navigation and tracking. IEEE Trans. Signal Process.
50(2):425–437 (2002)

20. Harris, C., Stephens, M.: A combined corner and edge detector. In: Proceedings of the 4th Alvey
Vision Conference, pp. 147–151, Manchester, August 1988

J Intell Robot Syst

21. Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd edn. Cambridge
University Press, Cambridge (2003)

22. Karlsson, R., Schön, T.B., Törnqvist, D., Conte, G., Gustafsson, F.: Utilizing model structure for
efficient simultaneous localization and mapping for a UAV application. In: Proceedings of IEEE
Aerospace Conference, Big Sky, 1–8 March 2008

23. Kuipers, J.B.: Quaternions and Rotation Sequences. Princeton Univerity Press, Princeton (1999)
24. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2),

91–110 (2004)
25. Ma, Y., Soatto, S., Kosecka, J., Sastry, S.S.: An invitation to 3-D vision—from images to geomet-

ric models. Interdisciplinary Applied Mathematics. Springer, New York (2006)
26. Montemerlo, M., Thrun, S., Koller, D., Wegbreit, B.: FastSLAM a factored solution to the simul-

taneous localization and mapping problem. In: Proceedings of the AAAI National Conference
on Artificial Intelligence, Edmonton, 28 July–1 August 2002

27. Montemerlo, M., Thrun, S., Koller, D., Wegbreit, B.: FastSLAM 2.0: an improved particle filter-
ing algorithm for simultaneous localization and mapping that provably converges. In: Proceed-
ings of the International Joint Conference on Artificial Intelligence, pp. 1151–1156, Acapulco,
9–15 August 2003

28. Rosten, E., Drummond, T.: Fusing points and lines for high performance tracking. In: Proceed-
ings of IEEE International Conference on Computer Vision, Beijing, 17–20 October 2005

29. Rosten, E., Drummond, T.: Machine learning for high-speed corner detection. In: Proceedings
of European Conference on Computer Vision, Graz, May 2006

30. Savage, P.G.: Strapdown inertial navigation integration algorithm design part 1: attitude algo-
rithms. J. Guid. Control Dyn. 21(1), 19–28 (1998)

31. Savage, P.G.: Strapdown inertial navigation integration algorithm design part 2: velocity and
position algorithms. J. Guid. Control Dyn. 21(2), 208–221 (1998)

32. Schön, T., Gustafsson, F., Nordlund, P.-J.: Marginalized particle filters for mixed linear/nonlinear
state-space models. IEEE Trans. Signal Process. 53(7), 2279–2289 (2005)

33. Schön, T.B., Karlsson, R., Gustafsson, F.: The marginalized particle filter in practice. In: Pro-
ceedings of IEEE Aerospace Conference, Big Sky, March 2006

34. Schön, T., Karlsson, R., Törnqvist, D., Gustafsson, F.: A framework for simultaneous localization
and mapping utilizing model structure. In: The 10th International Conference on Information
Fusion, Quebec, August 2007

35. Schön, T., Törnqvist, D., Gustafsson, F.: Fast particle filters for multi-rate sensors. In: The 15th
European Signal Processing Conference (EUSIPCO 2007), Poznan, September 2007

36. Shuster, M.D.: A survey of attitude representations. J. Astronaut. Sci. 41(4), 439–517 (1993)
37. Sim, R., Elinas, P., Griffin, A., Shyr, M., Little, J.J.: Design and analysis of a framework for

real-time vision-based SLAM using rao-blackwellised particle filters. In: Proceedings of the 3rd
Canadian Conference on Computer and Robotic Vision, Quebec City, 7–9 June 2006

38. Thrun, S., Burgard, W., Fox, D.: Probabilistic Robotics. MIT, Cambridge (2005)
39. Titterton, D.H., Weston, J.L.: Strapdown inertial navigation technology. IEE radar, sonar, navi-

gation and avionics series. Peter Peregrinus, Stevenage (1997)
40. Wzorek, M., Conte, G., Rudol, P., Merz, T., Duranti, S., Doherty, P.: From motion planning to

control—a navigation framework for an autonomous unmanned aerial vehicle. In: 21th Bristol
UAV Systems Conference, Bristol, April 2006

41. Zhang, Z.: A flexible new technique for camera calibration. IEEE Trans. Pattern Anal. Mach.
Intell. 22(11), 1330–1334 (2000)

	Particle Filter SLAM with High Dimensional Vehicle Model
	Abstract
	Introduction
	Problem Formulation
	Particle Filter for slam Utilizing Structure
	Algorithm
	Likelihood Computation
	Map Estimation and Map Management

	Application Example
	Model
	Dynamic Model
	Measurement Model---Inertial and Air Pressure Sensors
	Measurement Model---Camera
	Obtaining Vision Measurements

	UAV Platform
	Experiment Setup
	Experimental Results

	Conclusion
	Appendix
	Coordinate Systems

	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

