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Abstract: Robust state estimation for states evolving on compact manifolds is achieved by employing
a point-mass filter. The proposed implementation emphasizes a sane treatment of the geometry of the
problem, and advocates separation of the filtering algorithms from the implementation of particular
manifolds.
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1. INTRODUCTION

State estimation on manifolds is commonly performed by em-
bedding the manifold in a linear space of higher dimension,
combining estimation techniques for linear spaces with some
projection scheme [Brun et al., 2007, Törnqvist et al., 2008,
Crassidis et al., 2007, Lo and Eshleman, 1979]. Obvious draw-
backs of such schemes are that computations are carried out in
the wrong space, and that the arbitrary choice of embedding
has an undesirable effect on the projection operation. Another
common approach is to let the filter run in a linear space
of local coordinates on the manifold. Drawbacks include the
local nature of coordinates, the non-linearities introduced by
the curved nature of the manifold, and the dependency on the
choice of coordinates. Despite the drawbacks of these two ap-
proaches, it should be admitted that they work well for many
“natural” choices of embeddings and local coordinates, as long
as the uncertainty about the state is concentrated to a small
— and hence approximately flat — part of the manifold. Still,
the strong dependency on embeddings and local coordinates
suggests that the estimation algorithms are not defined within
the appropriate framework. The Monte-Carlo technique called
the particle filter lends itself naturally to a coordinate-free for-
mulation (as in Kwon et al. [2007]). However, the stochastic
nature of the technique makes it unreliable, and addressing this
problem motivates the word robust in the title of this work. With
a growing geometric awareness among state estimation practi-
tioners, geometrically sound algorithms tailored for particular
applications are emerging. A very common application is that
of orientations of physical objects (for instance, Lee and Shin
[2002]), and this is also a guiding application in our work.

Our interest in this work is to examine how robust state esti-
mation on compact manifolds of low dimension can be per-
formed while honoring the geometric nature of the problem.
The robustness should be with respect to uncertainties which
are not concentrated to a small part of the manifold, and is
obtained by using a non-parametric representation of stochastic
variables on the manifold. By honoring the geometric nature
we mean that we intend to minimize references to embeddings
and local coordinates in our algorithms. We say minimize since,
under a layer of abstraction, we too will employ embeddings
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to implement the manifold structure, and local coordinates are
the natural way for users to interact with the filter. Still, the
proposed framework for state estimation can be characterized
by the abstraction barrier that separates the details of the em-
bedding from the filter algorithm. For example, in the context
of estimation of orientations, rather than speaking of filters for
unit quaternions or rotation matrices, this layer of abstraction
enables us to simply speak of filters for SO(3) — both unit
quaternions and rotation matrices may be used to implement the
low-level details of the manifold structure, but this is invisible
to the higher-level estimation algorithm.

Pursuing non-parametric filtering in curved space comes at
some computational costs compared to the linear space setting.
Most notably, equidistant meshes do not exist, but on the other
hand our restriction to compact manifolds means that the whole
manifold can be “covered” by a mesh with finitely many nodes.
One of the practical benefits of the proposed non-parametric
filter is the ability to dynamically adapt the mesh to enhance
the degree of detail in regions of interest, for instance, where
the probability density is high.

The proposed point-mass-based solution for filtering in curved
space has three main components:

• Compute — and possibly update — a tessellation of the
manifold.

• Implement measurement and time updates. This requires
a system model which, unlike when filtering in Euclidean
space, cannot have additive noise on the state.

• Provide the user with a point estimate. There is always the
option to compute a cheap extrinsic estimate (typically the
extrinsic mean), but honoring geometric reasoning in this
work, we also look into intrinsic estimates.

Where our general treatment lacks detail, we will include
specialization to the case of spheres.

Terminology. By manifold, we refer to a differentiable, Rie-
mannian manifold. Loosely speaking, a (contravariant) vector
is a velocity on the manifold, belonging to the tangent space
(which is a vector space) at some point on the manifold, and
is basically valid only at that point. A curve on the manifold
which locally connects points along the shortest path between
the points, is called a geodesic, and the exponential map maps
vectors to points on the manifold in such a way that, for a vector
v at p, the curve t 7→ et v

p has velocity v at t = 0, and is a



geodesic. When needed, we shall assume that the manifold is
geodesically complete, meaning that the exponential map shall
be defined for all vectors. We recommend Frankel [2004] for
an introduction to these concepts from differential geometry. A
tessellation of the manifold is a set

{
Ri

}
i

of subsets of the
manifold, such that “there is no overlay and no gap” between
regions; the union of all regions shall be the whole manifold,
and the intersection of any two regions shall have measure zero.
We shall additionally require that each region Ri be simply
connected.

Notation. The manifold on which the estimated state evolves
is denoted M. We make no distinction in notation between or-
dinary and stochastic variables; x my refer both to a stochastic
variable over the manifold and a particular point on the mani-
fold. The probability of a statement, such as x ∈ R, is written
P(x ∈ R ). The probability density function for a stochastic
variable x is written fx. When conditioning on a variable taking
on a particular value, we usually drop the stochastic variable
from the notation; for instance, fx|y is a shorthand for fx|Y =y ,
where the distinction between the stochastic variable, Y , and
the value it takes, y, had to be made clear. The distance in
the induced Riemannian metric, between the points x and y,
is written d(x, y ). The symbol δ is used to denote the Dirac
delta “function”. A Gaussian distribution over a vector space,
with mean m and covariance C, is denoted N(m, C ), and if
the variable x is distributed according to this distribution, we
write x ∼ N( m, C ). (The covariance is a symmetric, positive
semidefinite, linear mapping of pairs of vectors to scalars, and
it should be emphasized that a covariance is basically only
compatible with vectors at a certain point on the manifold.)
In relation to plans for future work, we should also mention
that group structure on the manifold is not used in this work,
although such manifolds, Lie groups, are often a suitable setting
for estimation of dynamic systems.

2. BACKGROUND AND RELATED WORK

For models with continuous-time dynamics, the evolution of
the probability distribution of the state is given by the Fokker-
Planck equation, and a great amount of research has been aimed
at solving this partial differential equation under varying as-
sumptions and approximation schemes. Daum [2005] gives a
good overview that should be accessible to a broad audience.
In the present discrete-time setting, the corresponding relation
is the Chapman-Kolmogorov equation. It tells how the distri-
bution of the state at the next time step (given all available
measurements up till the present) depends on the distribution of
the state at the current time step (given all available measure-
ments up till the present) and the process noise in the model.
Let y0..t be the measurements up to time t, and xs|t be the state
at time s given y0..t. Conditioned on the measurements y0..t,
and using that xt+1 is conditionally independent of y0..t given
xt, the Chapman-Kolmogorov equation states the familiar

fxt+1|t( xt+1 ) =
∫

fxt+1|xt
( xt+1 ) fxt|t( xt ) dxt (1)

In combination with Bayes’ rule for taking the information in
new measurements into account,

fxt|t( xt ) =
fxt|t−1(xt ) fyt|xt

( yt )
fyt|t−1( yt )

(2)

this describes exactly the equations that the discrete-time filter-
ing problem is all about.

To mention just a few references for the particular application
of filtering on SO(3), a filter for random walks on the tangent
bundle (with the only system noise being additive noise in
the Lie algebra corresponding to velocities) was developed in
Chiuso and Soatto [2000], a quaternion representation was used
with projection and a Kalman filter adapted to the curved space
in Choukroun et al. [2006], and Lee et al. [2008] proposes a
method to propagate uncertainty under continuous time dynam-
ics in a noise-free setting. The particle filter approach in Kwon
et al. [2007] has already been mentioned.

A solid account of the most commonly used methods for filter-
ing on SO(3) is provided by Crassidis et al. [2007]. In Lo and
Eshleman [1979] the authors presents an interesting represen-
tation of probability density functions on SO(3), making use of
exponential Fourier densities.

3. DYNAMIC SYSTEMS ON MANIFOLDS

The filter is designed to track the discrete time stochastic
process x, evolving on some manifold of low dimension.
That the dimension is low is instrumental to enabling the use
of filter techniques that, in higher dimensions, break down
performance-wise due to the curse of dimensionality [Bergman,
1999, section 5.1]. We use discrete time models in the form

xt+1 ∼ Wg( xt, ut )

yt ∼ Vxt

where Wg( xt, ut ) is the random distribution of process noise
taking values on the manifold, ut is a known external input,
and the measurement yt is distributed according to the random
distribution Vxt

. Not being aware of a standard name for a
distribution over the manifold, parameterized by a point on the
same manifold, we shall use distribution field for W• (here, the
bullet indicates that there is a free parameter — for a fixed value
of this parameter, we have an ordinary random distribution).

For example, the measurement equation could be given by
Vxt

= N( h(xt ), Cy(xt ) )
That is, we have additive Gaussian white noise added to the
nominal measurements h( xt ), and we allow the noise covari-
ance to depend on the state.

A less general example of the dynamic equation could be to
combine Gaussian distributions with the exponential map

xt+1 ∼ expN
(
0, Cg( xt, ut )

)
Here, N

(
0, Cg( xt, ut )

)
is our way of denoting a zero mean

Gaussian distribution of vectors at g( xt, ut ). However, (with-
out the structure of a Lie group) the simplicity of this expres-
sion is misleading, since the Gaussian distributions at different
points on the manifold are defined in different tangent spaces.
Hence, a common matrix will not be sufficient to describe the
covariance in all points.

To really obtain simple equations for the dynamic equation, we
may employ distributions that only depend on the distance

fxt+1( xt+1 ) = fd( d( xt+1, g( xt, ut ) ) )

4. POINT-MASS FILTER

The main idea of the point-mass filter is to model the proba-
bility distribution of the state x being estimated as a sum of
weighted Dirac delta functions. The Dirac deltas are located at
fixed positions in a uniform grid, and the idea dates back to the



seminal work by Bucy and Senne [1971]. When the filter is run,
a sequence of such random variables will be produced and there
is a need to distinguish between the variables before and after
measurement and time updates, recall the notation introduced
in section 2.

Readers familiar with the particle filter will notice many sim-
ilarities to the proposed filter, but should also pay attention to
the differences. To mention a few, the proposed filter is deter-
ministic (and in this sense robust), does not require resampling,
associates each probability term (compare particle) with a re-
gion in the domain of the estimated variable, and calculates with
the volumes of these regions. One notable drawback compared
to the particle filter is that when the estimated probability is
concentrated to a small part of the domain, the particle filter
will automatically adapt to provide estimates with smaller un-
certainty, while the proposed filter would require a non-trivial
extension to do so.

In this section, we first discuss the representation of stochastic
variables, and then turn to deriving equations for the time and
measurement updates, expressed using the proposed represen-
tation.

4.1 Point-mass distributions on a manifold

In this section, we consider how any random variable on the
manifold may be represented, and omit time subscripts to keep
notation clear. That the idea is termed point-mass is due to the
sometimes used assumption that the probability is distributed
discretely at certain points. Written using the Dirac delta, the
probability density function for x is then given by

fx( x ) =
∑

i

pi δ( x− xi )

where the sum is over some finite number of points with prob-
ability pi located at xi. While this makes several operations
on the distribution feasible, which would be extremely com-
putationally demanding using other models, this is clearly very
different from what we would expect the density function to
look like.

To be able to make other interpretations of the pairs ( pi, xi ),
each such pair needs to be associated with a region Ri of
the probability space, and we require that the set of regions,{

Ri
}

i
, be a tessellation. Let µi = µ

(
Ri

)
, where µ ( • )

measures volume.

Given a tessellation
{

Ri
}

i
(of cardinality N ), a more relaxed

interpretation of the probabilities pi is obviously

P
(
x ∈ Ri

)
= pi (3)

and a more realistic model of the distribution is that it is
piecewise constant;

fx( x ) =
∑

i : x∈Ri

pi

µi

Given the tessellation, including the µi, it is clear that the

numbers pi my be replaced by f i 4
= pi

µi . Since this is a
more natural representation of piecewise constant functions
in general, we choose to use this also for the probability
density function estimate. For completeness, we state the above
equations again, now using f i instead of pi:

P
(
x ∈ Ri

)
= f i µi (4)

fx( x ) =


∑

i

f i µi δ( x− xi ) , (Point-mass)∑
i : x∈Ri

f i , (Piecewise constant)
(5)

The point-mass filter is a meshless method in that it does not
make use of a connection graph describing neighbor relations
between the nodes xi. (A connection graph is implicit in the tes-
sellation, but it is not used.) While meshless methods in many
finite element method applications would use interpolation (of,
for instance, Sibson or Laplace type, see Sukumar [2003] for
an overview of these) instead of the piecewise constant (5), our
choice makes it easy to ensure that the density is non-negative
and integrates to 1. Furthermore, both computation of the in-
terpolation itself, and use of the interpolated density, would
drastically increase the computational cost of the algorithm.

It turns out that computing good tessellations is a major task
of the implementation of point-mass filters on manifolds, just
like mesh generation is a major task when using finite element
methods. It may also be a time-consuming task, but a basic
implementation may do this once for all, offline. Since the
number of regions greatly influences the runtime cost of the
filter, a tessellation computed offline will have to be rather
coarse. For models where large uncertainty is inherent in the
filtering problem, this may be sufficient, but if noise levels
are low and accurate estimation is theoretically achievable, the
tessellation should be adapted to have smaller regions in areas
where the probability density is high. 1

If each region Ri is given as the set of points being closer to
xi than to all other xj 6=i, the tessellation is called a Voronoi
diagram of the manifold (in case of the 2-sphere, see for in-
stance Augenbaum and Peskin [1985], Na et al. [2002]). Since
this will make the point-mass interpretation more reasonable, it
seems to be a desirable property of the tessellation, although a
formal investigation of this strategy remains a relevant topic for
future research.

4.2 Measurement update

Just as for particle filters, the measurement update is a straight-
forward application of Bayes’ rule. To incorporate a new mea-
surement of the random variable y ∼ Vx modeling the output,
we have

P
(
x ∈ Ri | y

)
=

fy|x∈Ri( y ) P
(
x ∈ Ri

)
fy( y )

≈
fy|x=xi( y ) P

(
x ∈ Ri

)
fy( y )

where the measurement prior fy( y ) need not be known since
it is a common factor to all probabilities on the mesh, and will
just act as a normalizing constant. Converting to our favorite
representation f i, adding time indices, conditioning on y0..t−1,
and using conditional independence of yt and y0..t−1 given xt,
this reads

f i
t|t =

P
(
xt ∈ Ri | y0..t

)
µi

≈
fyt|xt=xi( yt ) f i

t|t−1

fyt|t−1( yt )

1 This statement is based on intuition; it is a topic for future research to provide
a theoretical foundation for how to best adapt the tessellation.



By defining

BayesRule( f, g )
4
=

f g∫
f g

and noting that the result will always be a proper probability
distribution (and hence integrate to 1, just as the result of the
BayesRule operator) we can write:

fxt|t = BayesRule
(
fxt|t−1 , fyt | x=•( yt )

)
Note how the volumes of regions enter the computation of the
BayesRule operator:

BayesRule( f, g ) (xi ) ≈ f(xi ) g(xi )∑
j f( xj ) g( xj ) µj

(6)

4.3 Time update

The time update can be described by the relation

P
(
xt+1 ∈ Ri

)
=

∫
M

∫
Ri

fWg( xt, ut )( x′ ) fxt
( xt ) dx′ dxt

In the filtering application, the stochastic entities in this relation
will be conditioned on y0..t, but since the conditioning is the
same on both sides, it may be dropped for the sake of a more
compact notation in this section. By the mean value theorem,
we find

P
(
xt+1 ∈ Ri

)
=

∫
M

µi fWg( xt, ut )( x′ ) fxt
( xt ) dxt

for some x′ ∈ Ri, and dividing both sides by µi and fitting the
region in a shrinking ball centered at xi, we obtain

P
(
xt+1 ∈ Ri

)
µi

→ fxt+1

(
xi

)
and∫

M

fWg( xt, ut )(x′ ) fxt
( xt ) dxt

→
∫

M

fWg( xt, ut )

(
xi

)
fxt(xt ) dxt

Hence we obtain the Chapman-Kolmogorov equation (1) in the
limit,

fxt+1

(
xi

)
=

∫
M

fxt
(xt ) fWg( xt, ut )

(
xi

)
dxt

and this we make the definition of the convolution:

fxt+1 = fxt ∗ fWg( •, ut )

The convolution of a distribution field and a probability density
function is a new probability density function. We shall think of
the time update as implementing this relation.

By approximating the probability density functions as constant
over small regions (assuming all the regions Ri are small), we
get the time update approximation

P
(
xt+1 ∈ Ri

)
=

∫
M

∫
Ri

fWg( xt, ut )( x′ ) fxt
( xt ) dx′ dxt

≈ µi
∑

j

∫
Rj

fWg( xt, ut )

(
xi

)
fxt

(xt ) dxt

≈ µi
∑

j

fWg( xj, ut )

(
xi

)
P

(
xt ∈ Rj

)
This is readily converted to an implementation of the convolu-
tion (here, the conditioning is written out for future reference):

f i
t+1|t =

P
(
xt+1 ∈ Ri | y0..t

)
µi

≈
∑

j

fWg( xj, ut )

(
xi

) P
(
xt ∈ Rj | y0..t

)
µj

µj

=
∑

j

fWg( xj, ut )

(
xi

)
f j

t|t µj

(7)

5. POINT ESTIMATES

The distinction between intrinsic and extrinsic was introduced
in Srivastava and Klassen [2002], where a mean value of a
distribution on a manifold was estimated by first estimating the
mean of the distribution of the manifold embedded in Euclidean
space, and then projecting the mean back to the manifold. This,
they termed the extrinsic estimator. In contrast, an intrinsic
estimator was defined without reference to an embedding in
Euclidean space. While this may seem a hard contrast at first,
Brun et al. [2007] shows that both kinds of estimates may be
meaningful from a maximum likelihood point of view, for some
manifolds with “natural embedding”.

5.1 Intrinsic point estimates

A common intrinsic generalization of the usual mean in Eu-
clidean space is defined as a point where the variance obtains a
global minimum, where the variance “only” requires a distance
to be defined:

Varx ( x )
4
=

∫
d(x′, x )2 fx(x′ ) dx′ (8)

Unfortunately, such a mean may not be unique, but if the
support of the distribution is compact, there will be at least one.

Other intrinsic point estimates may also be defined, but since
the motivation for discussing point estimates here is to illustrate
that algorithms aimed at computing intrinsic point estimates
based on the proposed probability density representation can
be defined, other estimates are not discussed further here.

Since distributions with a globally unique minimum may be
arbitrarily close to distributions with several distinct global
minimums, it is our understanding that schemes based on local
search, devised to find one good local minimizer, are reasonable
approximations of the definition. Hence, there are two tasks to
consider; implementation of the local search, and a scheme that
uses the local search in order to find a good local minimizer.

To implement a local search, one must be able to compute
search directions and to perform line searches. For this, we
rely on the exponential map, which allows these tasks to be
carried out in the tangent space of the current search iterate.
The search direction used is steepest descent computed using
finite difference approximation, although more sophisticated
methods exist in the literature [Pennec, 2006]. The details of
the scheme that makes use of the local search are omitted due
to space constraints.

5.2 Extrinsic point estimates

The extrinsic mean estimator proposed in Srivastava and
Klassen [2002] is defined by replacing the distance d(x′, x ) in
(8) by the distance obtained by embedding the manifold in Eu-
clidean space and measuring in this space instead. It is argued



that if the support of the distribution is small, this should give
results similar to the intrinsic estimate. However, considering
how arbitrary the choice of embedding is, it is clear that the
procedure as a whole is rather arbitrary as well. (Nevertheless,
a good embedding seems likely to produce useful results, see
for instance the examples in Srivastava and Klassen [2002].)

6. ALGORITHM AND IMPLEMENTATION

The final component to discuss before putting the theory of the
previous sections together in an algorithm, is how tessellations
are computed. In this section, we do this, present the algorithm
in a compact form, and include some notes on the software
design and implementation.

6.1 Base tessellations (of spheres)

To be more specific about how a base tessellation may be com-
puted, we have considered how this can be done for spheres,
but the technique we employ does not only work for spheres.

The first step is to generate the set of points xi. We omit details
due to space constraints.

The remaining steps are general and do not only apply to
spheres. First, equations for the half-space containing the mani-
fold and being bordered by the tangent space at each point xi is
computed. This comes down to finding a base for the space or-
thogonal to the tangent space at xi — for spheres, this is trivial.
The intersection of these half-spaces is a polytope with a one-
to-one correspondence between facets and generating points.
(We rely on existing software here, please refer to section 6.4 at
this point.) Projecting the facets towards the origin will generate
a tessellation, and for spheres this will be a Voronoi tessellation
if the “natural” embedding is used. Each region is given by the
set of projected vertices of the corresponding polytope facet.

As part of the tessellation task, the volume of each region
must also be computed. For the 2-sphere this can be done
exactly thanks to the simple formula giving the area of the
region bounded inside the geodesics between three points on
the sphere [Beger, 1978, p 198]. In the general case we ap-
proximate the volumes on the manifold by the volume of the
polytope facets. (Note that a facet can be reconstructed from
the projected vertices by projecting back to the (embedded)
tangent space at the generating point.) For spheres the ideal
total volume is known, and any mismatch between the sum
of the volumes of the regions and the ideal total volume is
compensated by scaling all volumes by a normalizing constant.

6.2 Summary of the algorithm

In the following algorithm, the numbers f i
t|t−1 are the (approx-

imate) values of the probability density function at the point xi,
at time t given the measurements from time 0 to time t − 1.
The numbers f i

t|t are the (approximate) values of the proba-
bility density function at time t, given also the measurements
available at time t.

Initialization

Compute a tessellation with regions Ri of the manifold. As-
sign a representative point xi to each region, and measure
the volumes µi. In case of spheres, see section 6.1.

Let f i
0|−1 be the a priori distribution, that is, assign a non-

negative value to each f i
0|−1 so that

∑
i f i

0|−1 µi = 1.

Process measurements

for t = 0, 1, 2, . . .
Compute a point prediction from ft|t−1, for instance, by

minimizing (8).
Use the measurements yt to compute ft|t using BayesRule,

see (6) for details.
Compute a point estimate from ft|t, for instance, by

minimizing (8).
Make a time update to compute ft+1|t using (7).
Possibly update the tessellation. (Details are subject for

future work.)
end

6.3 Software design

Our implementation is written in C++ for fast execution. Still,
there is a strong emphasis on careful representation of the
concepts of geometry in the source code. Perhaps most notably,
a manifold is implemented as a C++ type, and allows elements
to be handled in a coordinate-free manner. By providing a
framework for writing coordinate-free algorithms, we try to
guide algorithm development in a direction that makes sense
from a geometric point of view.

Other concepts of geometric relevance that are represented in
the software design are:

• Scalar functions, that is, mappings from a manifold to the
set of real numbers.

• Coordinate maps, that is, invertible mappings from a part
of the manifold to tuples of real numbers.

• Tangent spaces, that is, the linear spaces of directional
derivatives at a certain point of the manifold. As with
the manifold elements, elements of the tangent spaces are
handled in a coordinate-free manner. The basic means for
construction of tangents is to form the partial derivative
with respect to a coordinate function.

• Euclidean spaces are implemented as special cases of
manifolds.

6.4 Supporting software

A very important part of the tessellation procedure for spheres
and other manifolds with a convex interior seen in the embed-
ding space, are the conversions between polytope representa-
tions. That is, given a set of bounding hyperplanes, we want a
vertex representation of all the faces, and given a set of vertices,
we want the corresponding set of hyperplanes. I our work, these
tasks were carried out using cddlib [Fukuda, 2008], distributed
under the GNU general public licence.

Although several algorithms for computing the volume of
polytopes of arbitrary dimension exist [Büeler et al., 2000],
no freely available implementation compatible with C++ was
found. We would like to encourage the development, the shar-
ing, and the advertisement of such software. The authors’ im-
plementation for this task is a very simple triangulation-based
recursion scheme.



Fig. 1. Estimated probability density function. Left: predictions
before a measurement becomes available. Right: estimates
after measurement update. Rows correspond to successive
time steps. Patches are colored proportional to the density
in each region, and random samples are marked with dots.
It is seen how the uncertainty increases when time is
incremented, and decreases when a measurement becomes
available, and that the uncertainty decreases over time as
the information from several measurements is fused.

7. EXAMPLE

To illustrate the proposed filtering technique, a manifold of
dimension 2 was chosen so that the probability distributions
are amenable to illustration. We consider the bearing-tracking
problem in 3 dimensions, that is, the state evolves on the 2-
sphere. This may be a robust alternative to tracking the position
of an object when range-information cannot be determined
reliably. It is also a good example to mention when discussing
models without dynamics (velocities are not part of the state),
since the lack of (Lie) group structure makes the extension
to dynamic models non-trivial. As an example of a bearing-
sensor in 3 dimensions, we may consider a camera and an object
recognition algorithm, which returns image coordinates in each
image frame, which are then converted to the three components
of a unit vector in the corresponding direction. The example is
about the higher-level considerations of the filtering problem,
and not the low-level details of implementing the manifold at
hand.

The deterministic part of the dynamic equation, g, does not
depend on any external input, and just maps any state to itself.
The noise in the equation is given by a von Mises-Fischer
distribution field (see the overview Schaeben [1992]) with
concentration parameter κ = 12 everywhere. The three scalar
measurements are (inaccurately) assumed to have independent
Gaussian additive measurement noise, with σ = 0.4.

Given an initial state, a simulation of the model equations is
run, resulting in a sequence of measurements. The manifold
is tessellated into N = 200 approximately equally sized
regions, and the filter is initialized with a uniform probability
density. The probability density estimate is then updated as

measurements are made available to the filter. The result is
illustrated in figure 1.

8. CONCLUSION AND FUTURE WORK

We have shown that point-mass filters can be used to construct
robust filters on compact manifolds. By separating the imple-
mentation of the low-level manifold structure from the higher-
level filter algorithm, we are able to formulate and implement
much of the algorithm without reference to a particular embed-
ding. The technique has been demonstrated by considering a
simple application on the 2-sphere.

Future work includes application to SO(3), that is, the manifold
of orientations, adaptation of the tessellation, and utilizing
Lie group structure when available. In order to cope with
the substantial increase of dimension that would result from
augmenting the state of our models to also include physical
quantities such as angular momentum, the filter should be
tailored to tangent or cotangent bundles.
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