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Abstract—In this paper we present a solution to the simulta-
neous localization and mapping (SLAM) problem for unmanned
aerial vehicles (UAV) using a camera and inertial sensors. A good
SLAM solution is an important enabler for autonomous robots.
Our approach is based on an optimization based formulation of
the problem, which results in a smoother, rather than a filter.
The proposed algorithm is evaluated on experimental data and
the results are compared with accurate ground truth data. The
results from this comparisons are encouraging.

I. INTRODUCTION

Simultaneous localization and mapping is the problem of es-
timating a map of the surrounding environment from a moving
platform while simultaneously localizing the platform. Usually
these estimation problems involve nonlinear dynamics and
nonlinear measurements of the environment. When computing
SLAM estimates there are many things to consider which will
affect quality. To mention a few; How should the dynamics be
modelled? Which sensors are best suited for the environment
at hand? Are there demands on the algorithm to run in real-
time or can the estimates be computed in a post-processing
step? What level of detail is needed in the map?

In applications of UAVs a detailed map is necessary if,
for example, a landing in an unknown environment is to
be performed. The idea is to obtain a good estimate of the
trajectory and the map using all the measurements collected
during the flight (or an appropriate part of it). In [1] this
optimisation approach to SLAM, called square root Smoothing
and Mapping (SAM), is described for a two-dimensional
problem, where measurements and dynamics run at the same
rate.

In this paper we present an iterative solution to the SLAM
problem based on square root smoothing of multirate mea-
surements. The method aims at providing high quality SLAM
estimates which could e.g. be used as a prior for comput-
ing detailed terrain maps. In practical applications different
sensors deliver measurements at different rates. We extend
the SAM solution by concerning the three-dimensional case,
multirate measurements using inertial sensors and camera
measurements. The algorithm is evaluated on experimental
data from a structured indoor environment and compared with
ground truth data.

II. RELATED WORK

SLAM has been a popular field of research for more
than twenty years and is considered an important enabler for
autonomous robotics. An excellent introduction to SLAM is
given in the two part tutorial [2, 3] and for a thorough cover of
visual based methods [4] is highly recommended. In the semi-
nal work [5] the idea of a stochastic map is presented. The first
implementation using this idea can be found in [6] where the
the estimates are computed with and extended Kalman Filter
(EKF). There are by now quite a few examples of sucessful
EKF SLAM implementations, see e.g., [7, 8]. Another popular
approach is the FastSLAM method [9, 10] which uses particle
filters. These are known to handle nonlinearities very well.
Both EKF SLAM and FastSLAM suffer from inconsistencies
due to poor data association, linearization errors [11] and
particle depletion [12]. It is likely that similar problems occur
with other methods as well.

Digital cameras are today ubiquitous, and since they deliver
information rich measurements at low cost they have become
the most commonly used sensors in SLAM. This has spawned
a field where the SLAM problem is solved with cameras only,
see e.g. [13–16]. The camera only SLAM methods have many
similarities with bundle adjustment techniques, [17], and the
stochastic map estimation problem can be seen as performing
structure from motion estimation [18, 19]. These methods are
common in the computer vision domain. Without any other
sensors measuring the platform dynamics, the image frame
rate and the visual information contents in the environment
are limiting factors for the ego motion estimation and hence
the map quality.

Aircraft applications are very challenging for various rea-
sons; The platform state dimension is usually large and quite
involved compared to ground based platforms, such as mobile
robots. Aerial vehicles cover large areas fast, resulting in
huge maps. Some examples of SLAM the applied to aerial
applications can be found in [20–24].

The recent years increase in computational power has made
smoothing an attractive option to filtering. One of the first
publications where the trajectory is not filtered out to a
single estimate is [25] where rather the whole time history
is estimated with a delayed state information filter. Other,
more optimisation like approaches are [1, 26–28] which all use



maximum likelihood estimates of the whole trajectory and a
feature based map.

III. PROBLEM FORMULATION

The dynamic model and the camera measurements are on
the following form,

xt = f(xt−1, ut) +Bwwt, (1a)
lt = lt−1, (1b)
ytk = htk(xtk , ltk) + etk , (1c)

where xt and lt are vehicle and landmark states, respectively.
The inertial measurements are modelled as inputs ut. The
meaning of ytk is a measurement relative to landmark ltk
at time tk (this is because the measurements and the dy-
namic model deliver data in different rates). In our case the
measurements are pixel coordinates in an image given by
the SIFT feature extractor [29]. The noise terms wt and et
are assumed to be Gaussian and white. This is essentially a
SLAM formulation that can be solved within a standard EKF
framework, see e.g. [2, 5]. The resulting trajectory x0

0:N and
landmark estimate l0N can be used to linearise the dynamics
around x0

t at time t as

x0
t + δxt = f(x0

t−1, ut) + Ftδxt−1 +Bwwt, (2)

where δxt is a small deviation from x0
t and Ft is the derivative

of f(xt−1, ut) with respect to xt−1 evaluated in x0
t−1. The

measurement equation around l0N and x0
tk

for the measurement
at time tk is

ytk = htk(x0
tk
, l0N ) +Htkδxtk + JtkδlN + etk , (3)

where δlN is a small deviation from l0N , Htk is the derivative
of htk(xtk , lN ) with respect to xtk evaluated at x0

tk
and l0N

and Jtk is the derivative of htk(xtk , lN ) with respect to lN
evaluated at x0

tk
and l0N .

By rearranging the terms in (2) and (3) we can formulate
the least-squares problem of finding the trajectory and map
deviations that minimises the noise variance as

arg min
δxt, δlN

N∑
t=1

||wt||2
Q̃−1

t

+
K∑
k=1

||etk ||2R−1
tk

, (4)

where Q̃t = BwQtB
T
w .

Before we introduce the details of the model some coordi-
nate frames definitions are necessary:

• Body coordinate frame (b), moving with the vehicle and
with origin fixed in the IMU’s inertial center

• Camera coordinate frame (c), moving with the vehicle
and with origin fixed in the camera’s optical center

• Earth coordinate frame (e), fixed in the world with origin
arbitrary positioned. When coordinate frame is omitted
from the states it is assumed that they are expressed in
the earth frame.

A. Dynamics

The dynamic model used in this application has 10 states
consisting of p = [px py pz]T which is the position of
the IMU, v = [vx vy vz]T which is the velocity of the
IMU and qeb = [qeb0 qeb1 qeb2 qeb3 ]T which is the quaternion
defining the rotation of the IMU from the body to the earth
frame. Accelerations are modelled as input ua = [ax ay az]T

and angular rates are modelled as time varying parameters
ω = [ωx ωy ωz]T rather then treat them as states. Landmark
states are according to inverse depth parametrisation, [30], of
dimension 6. First three states, x, y and z, represent the 3D
position of the vehicle when the landmark was first observed.
Last three states describe a vector to the landmark in spherical
coordinates parametrised with azimuthal angle ϕ, elevation
angle θ and inverse distance ρ, giving l = [x y z θ φ ρ]T .
Note that ϕ and θ are expressed in the earth coordinate frame,
e, with z-axis pointed upwards. This means that a landmark
with earth fixed coordinates [X Y Z]T is parametrised as

XY
Z

 =

xy
z

+
1
ρ
m(ϕ, θ), (5a)

m(ϕ, θ) =

cosϕ sin θ
sinϕ sin θ

cos θ

 (5b)

and landmark states are created from the normalised pixel
coordinates [u v]T in the following way

pc =

xy
z

 , (6a)

g =

gxgy
gz

 = R(qebt )R(qbc)

uv
1

 , (6b)

ϕ = atan2(gy, gx), (6c)

θ = atan2
(√

g2
x + g2

y, gz

)
, (6d)

ρ =
1
d0
. (6e)

Here,R(qbc) is the rotation matrix describing the rotation from
the camera frame to the body frame, R(qebt ) is the rotation
from the body frame to the earth frame, pc is the camera
position when the landmark is observed and d0 is the initial
depth for the landmark. Finally, atan2 is a function that gives
angles θ ∈ [−π, π] and is a variation of the arctan function.
The complete landmark vector is of the dimension 6×nlandmarks
and nlandmarks will vary depending on when new landmarks are
initiated. Because we have no knowledge of the motion of the
vehicle and the map is static, the dynamics (1a)-(1b) in our



case becomespt+1

vt+1

qebt+1


︸ ︷︷ ︸
xt+1

=

I3 TI3 0
0 I3 0
0 0 I4 + T

2 S(ωt)

 ptvt
qebt


︸ ︷︷ ︸
xt

+

T 2

2 I3
TI3

0

 [R(qebt )ua,t + ge
]︸ ︷︷ ︸

ut

+

T 2

2 I3 0
TI3 0

0 T
2 S̃(qebt )


︸ ︷︷ ︸

Bw(xt)

[
wa,t
wω,t

]
︸ ︷︷ ︸
wt

, (7a)

lt+1 = lt, (7b)

where

wa,t ∼ N (0, Qa), Qa = σaI3, (8a)
ww,t ∼ N (0, Qw), Qω = σωI3, (8b)

S(ωt) =


0 −ωx,t −ωy,t −ωz,t
ωx,t 0 ωz,t −ωy,t
ωy,t −ωz,t 0 ωx,t
ωz,t ωy,t −ωx,t 0

 , (8c)

S̃(qebt ) =


−q1,t −q2,t −q3,t
q0,t −q3,t q2,t
q3,t q0,t −q1,t
−q2,t q1,t q0,t

 (8d)

andR(qebt )ua,t+ge is the accelerometer measurements rotated
from the body coordinate frame, to the earth coordinate
frame, where ge = [0 0 − 9.81]T compensates for the earth
gravitational field.

B. Measurements

The measurements in our setup are the features in the
images which are of dimension 2. Feature extraction is
performed with SIFT, [29], (C-code is downloaded from
http://web.engr.oregonstate.edu/∼hess/ ). The extracted fea-
tures are then matched and associated with landmarks from the
state vector. The association during the EKF run is performed
in the following way; all landmarks are first projected in the
image and the most probable landmarks are chosen by means
of spatial constraints. Then the SIFT feature descriptors for the
most probable landmarks and features are matched. In this way
a data association sequence is created for each image relating
measurements and landmarks in the state vector. It is assumed
that these associations are good enough, hence they can used
in all square root SAM iterations. The whole measurement
vector ytk will have dimension 2 × nassociated features and is
expressed in normalised pixel coordinates. A measurement
equation relating states and measurements is also needed. It
has the general form

ytk = h(xtk , ltk)︸ ︷︷ ︸
yc

tk

+etk , (9)

where

etk ∼ N (0, Rtk), Rtk = σfeaturesInassociated features . (10)

For a single landmark j, the measurement (9) (omitting the
time index for readability) looks like

lcj =

lcx,jlcy,j
lcz,j

 =

= R(qcb)R(qbe)
(
ρj
(
p− pcj

)
+m(ϕj , θj)

)
, (11a)

ycj =

 lcx,j

lc
z,j
lcy,j

lc
z,j

 . (11b)

In order not to use non-stable features (i.e. those that are
initialised and only measured once or twice), the landmarks are
proclaimed usable first if they were measured and associated at
least three times. This is also a requirement for observability,
since the dimension of the landmark state is 6 while the
dimension of the measurement is 2.

C. Filtering

An initial EKF run is performed with this model in the
standard way with the state and covariance matrix time update,
see e.g. [31],

x̂t+1|t = Ftx̂t|t +Bua,t, (12a)

l̂t+1|t = l̂t|t, (12b)

P xxt+1|t = FtP
xx
t|t F

T
t +Bw(x̂t|t)QBTw(x̂t|t), (12c)

where

Q =
[
Qa 0
0 Qω

]
, (13a)

Pt =
[
P xxt P xlt
P lxt P llt

]
. (13b)

Note that in the time update only the vehicle state covariance
matrix is updated. Also note that the noise covariance matrix
BwQB

T
w is singular. This is due to two reasons; first, the

four parameter quaternion is an over parametrisation of the
three corresponding angles, and second, the velocity is neither
measured nor an input, hence the covariance BwQB

T
w will

at most be of rank 6. This does not influence the EKF
calculations, but needs to be addressed in the case of the
square root smoother. The measurement update is performed
each time an image is available (which here is 4 times slower
than accelerations and angular rates) in the usual way[

x̂t|t
l̂t|t

]
=
[
x̂t|t−1

l̂t|t−1

]
+Kt(yt − h(x̂t|t−1, l̂t|t−1)), (14a)

Kt = Pt|t−1C
T
t (CtPt|t−1C

T
t +Rt)−1, (14b)

Pt|t−1 = Pt|t−1 −KtCtPt|t−1 (14c)

where

Ct =
[
∂
∂xt

h(xt, lt) ∂
∂lt
h(xt, lt)

] ∣∣∣∣
(xt,lt)=(x̂t|t−1,l̂t|t−1)

. (15)



D. Square Root SAM

Rather than merging measurements and predictions in a
filter the basic concept of SAM is to minimize all the
measurement and trajectory errors in a least-squares sense. It
would be possible to pose the nonlinear least squares problem
given a dynamic model and measurement model which could
then be solved iteratively with for example Gauss-Newton.
In our setup we choose to consider the linearised dynamic
and measurement models resulting in a linear least-squares
problem.

In order to formulate the square root SAM problem we first
need some definitions:

Ft ,
∂f(xt−1, ut)

∂xt−1

∣∣∣∣
xt−1=x0

t−1

(16)

is the Jacobian of the motion model.

Hj
tk

,
∂htk(xtk , lj)

∂xtk

∣∣∣∣
(xtk

,lj)=(x0
tk
,l0

j
)

(17)

is the measurement Jacobian of measurement k at time tk.

Jjxtk
,
∂htk(xtk , lj)

∂xtk

∣∣∣∣
(xtk

,lj)=(x0
tk
,l0

j
)

(18)

is the Jacobian of measurement k at time tk with respect to
the position where landmark j was initialised.

Jjtk ,
∂htk(xtk , lj)

∂lj

∣∣∣∣
(xtk

,lj)=(x0
tk
,l0

j
)

(19)

is the Jacobian of measurement k at time tk of the states φj ,
θj and ρj of landmark j.

From the EKF run an initial trajectory x0 and landmark l0

estimate is given and is therefor treated as a constant. The
linearised process model at time t is then

x0
t + δxt = Ft · (x0

t−1 + δxt−1) +But +Bw(x0
t−1)wt. (20)

The linearised measurement equations are given by

yjtk = htk(x0
tk
, l0j )+Hj

tk
δxtk +Jjxtk

δxtk +Jjtkδlj+ejtk . (21)

The least-squares problem for the prediction and measurement
errors is then

[δx∗t , δl
∗
j ] = arg min

δxt,δlj

N∑
t=1

||Ftδxt−1 − Iδxt − at||2
Q̃−1

t

+
K∑
k=1

||Hj
tk
δxtk + Jjxtk

δxtk + Jjtkδlj − c
j
tk
||2
R−1

tk

(22)

where at = x0
t − Ftx0

t−1 − But and cjtk = yjtk − htk(x0
tk
, l0j )

and Q̃t = Bw(x0
t−1)QBTw(x0

t−1). at and cjtk are prediction
errors of the linearised dynamics around x0

t and innovations
respectively. Note that the second term in (22) could include
several Jacobians corresponding to different sensors at possi-
bly different sampling rates. Now the problem can be solved
according to

θi+1 = arg min
θ

||A(θi)θ − b(θi)||22, θ0 = 0. (23)

Following most of the notation from [1] an example of how
the structure of the A matrix looks like is illustrated in (24)
and it is computed in the following way:

1) At time t = 1 the two landmarks are seen the first time,
but landmarks are not initialised in the map until they
are measured a second time.

2) At time t = 5 the second camera measurement arrives
and landmark 1 and 2 are observed again and hence
initialised in the map.

3) At time t = 9 camera measurement three arrives and
landmark 2 is observed.

4) At time t = 13 camera measurement four arrives and
landmark 1 is observed.

A =
[
A11 0
A21 A22

]
=

−I
F2 −I

F3
. . .
. . . −I

F6
. . .
. . . −I

F10
. . .
. . . −I

J1
x1

H1
5 J1

5

J2
x1

H2
5 J2

5

J2
x9

H2
9 J2

9

J1
x13

H1
13 J1

13


(24)

The square root SAM algorithm can be summarised in
pseudo code as seen in Algorithm 1.

As in [1], the least squares problem is weighted, so it is
assumed that all of the terms in (22) are multiplied with
the corresponding matrix square root of the inverse of the
covariance matrices for the system and the measurement noise.
As already noted the covariance matrix of the system noise
is singular rendering the use of normal inversion impossible.
In order to overcome this, we simply regularise the problem
adding a matrix of the form ∆I to the covariance matrix,
with ∆ being a small number, rendering the covariance matrix
invertible.

Square root SAM is implemented in general according to [1]
but with some adjustments to cope with multirate signals like
IMU measurements that are sampled in 100 Hz and images of
size 240×320 pixels that are sampled in 25 Hz. This algorithm
requires an initial trajectory, map and association between map
landmarks and features in the images. An initial trajectory is
obtained with EKF SLAM, which also gives a map and data
association. It is assumed that these will be sufficient for the
initiation of the SAM iterations.

The 6 parameters of the inverse depth parametrisation also
needs to be handled, since the 2 dimensional measurements



will cause rank deficiency if not enough measurements of
the landmarks are available. The inverse depth parametrisation
will also make the structure of the matrix in the square root
problem different to [1] since measurements of the features
are related to the to the pose where the feature was initialised.

IV. EXPERIMENTS

A. Experimental Setup

For the purpose of obtaining realistic data with good
ground truth a synthetic environment was build up, see Fig.
1. An IMU/Camera system mounted on the arm of the
industrial robot is then ”flown” above it. Fig. 2 illustrates
the IMU/camera and an image from the camera during the
experiment.

In a industrial robot the rotation and translation of the end
tool is usually known with high accuracy. This allows for
excellent performance evaluation, which will be difficult if a
real flight data is used where GPS or DGPS must be used as
a ground truth and orientation is of less good quality as well.

B. Results

The results obtained with the above mentioned data set are
presented in Fig. 3 and Fig. 4 below. Ground truth trajectory is
a reference trajectory for the robot. The actual robot trajectory

Algorithm 1 Multirate square root SAM

Input: x0 (initial trajectory and map), u (inputs), data
association
Output: xs (smoothed estimate of the trajectory and map)
N = # IMU measurements
A = [ ]
a = [ ]
c = [ ]
for i = 1 to N do

if image available then
predict states, xi = f(x0

i−1, ui)
use data association and calculate h(x0

i , l
0
i )

calculate A11 = [A11 A
i
11]T ,

A21 = [A21 A
i
21] and

A22 = [A22 A
i
22] according to (16) - (24)

calculate ai = x0
i − xi

calculate ci = yi − h(x0
i , l

0
i )

set a = [aT aTi ]T

set c = [cT cTi ]T

else
predict states, xi = f(x0

i−1, ui)
calculate A11 = [A11 A

i
11]T

calculate ai = x0
i − xi

set a = [aT aTi ]T

end if
end for
build up A according to (24) and b = [aT cT ]T

solve the least squares problem (23)
calculate xs = x0 + θ∗

Fig. 1: Synthetic environment used in the experiments.

(a) An image from the camera during
the experiment.

(b) The combined strap down IMU
and camera system.

Fig. 2: An image of the experimental environment in (a)
acquired from the camera/IMU in (b).

was not possible to acquire during the experiment. However,
since the industrial robot is very accurate, this should not be
a problem.

We see that there are few landmarks in the elevated areas
i.e. the wooden blocks. This is because the image resolution
was only 240 × 320 pixels and the SIFT features are not
stable in those areas. Both the smoothed speed of the camera
(vt =

√
(vxt )2 + (vyt )2) and resulting estimate from the EKF

are plotted in Fig. 5. We see that the smoothed speed is much
closer to 0.1 m/s, which is the true speed.

V. CONCLUSIONS AND FUTURE WORK

The experimental results in Section IV-B indicates that the
square root SAM trajectory, Fig. 4, and the speed estimates,
Fig. 5 is an improvement of the initial EKF SLAM run.
The sparse point cloud in Fig. 4, representing the landmarks
estimate, of are good in areas at −0.5m height. This is due
to the previous mentioned problem of finding stable SIFT
features on the wooden blocks.

As mentioned in Section III-C, the covariance matrix of
the system noise is singular and thus not invertible, making
the problem impossible to solve unless some workaround
is implied. Our solution at the moment is to regularise the
covariance matrix and in that way make it invertible. This
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solution works, as seen in the Section IV-B, but it has some
shortcomings. First, the regularisation will allow the states
where dynamics is exact to deviate from the model, but since
the weights on those states are large, the deviation will not
be big. In this case, since the dynamics is exact, it should
be better to optimise over as an equality constraint. This
would result in a constrained least squares problem. Depending
on the problem at hand, minimization of the prediction and
measurement errors in (23) can be rewritten as standard
optimization problems with for example equality constraints in
both the measurements and the dynamics. By adding different
regularisation terms in the minimization various kinds of noise
descriptions could possibly be handled better than in a filter.

The Second thing that needs to be improved is the map.
As it is now the landmarks that are created based on the SIFT
features are too sparse. This is due to the low camera resolution
and that SIFT cannot find stable features in some areas. This
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Fig. 5: Smoothed speed of the camera in red and EKF in blue.

prevents us from creating a good terrain profile that could be
used for landing applications. For this purpose a more dense
map of the environment is needed. In [32, 33] dense terrain
maps and a refined trajectory are computed simultaneously.
The same method can be used here, except that there is no
need to estimate the trajectory during map estimation.
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