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Abstract: This paper is concerned with the parameter estimation of a relatively general
class of nonlinear dynamic systems. A Maximum Likelihood (ML) framework is em-
ployed in the interests of statistical efficiency, and it is illustrated how an Expectation
Maximisation (EM) algorithm may be used to compute these ML estimates. An essential
ingredient is the employment of so-called “particle smoothing” methods to compute
required conditional expectations via a Monte Carlo approach. A simulation example
demonstrates the efficacy of these techniques.

Keywords: Nonlinear Systems, System Identification, Maximum Likelihood,
Expectation Maximisation Algorithm, Particle Smoother.

1. INTRODUCTION

The significance but difficulty of estimating param-
eterizations of nonlinear system classes is widely
recognised (Ljung, 2003; Ljung and Vicino, 2005).
This has led to approaches that focus on specific
system classes such as those described by Volterra
kernel (Bendat, 1990), neural network (Narendra
and Parthasarathy, 1990), nonlinear ARMAX (NAR-
MAX) (Leontaritis and Billings, 1985), and Hammer-
stein – Wiener (Ranganet al., 1995) structures.

The paper here considers the estimation of a certain
class of nonlinear systems that can be represented
in state-space form whereby state and measurement
noise enter additively and the parameter dependence
is affine.

To estimate this nonlinear model structure parameter-
isation, a Maximum Likelihood (ML) criterion will
be employed, principally in recognition of the general
statistical efficiency of such an approach.

Of course, the use of an ML approach (for exam-
ple, with regard to linear dynamic systems) is com-

mon, and it is customary to employ a gradient-based
search technique such as a damped Gauss–Newton
method to actually compute the estimates (Ljung,
1999; Söderström and Stoica, 1989). This requires the
computation of a cost Jacobian which typically neces-
sitates implementing one filter, derived (in the linear
case) from a Kalman filter, for each parameter that is
to be estimated.

An alternative, recently explored in (Gibsonet al.,
2005) in the context of bilinear systems is to employ
the Expectation Maximisation algorithm (Dempsteret
al., 1977) for the computation of ML estimates.

Unlike gradient-based search, which is applicable to
maximisation of any differentiable cost function, EM
methods are only applicable to maximisation of like-
lihood functions. However, the dividend of this spe-
cialisation is that they do not require computation of
gradients, and are well recognised as being particu-
larly robust against attraction to local minima (Gibson
and Ninness, 2005).



Given these recommendations, this paper develops
and demonstrates an EM-based approach to nonlinear
system identification. This will require the computa-
tion of smoothed state estimates that, in the linear
case, could be found by standard linear smoothing
methods (Gibsonet al., 2005). In the fairly general
nonlinear (and possibly non-Gaussian) context con-
sidered in this work we propose a “particle-based”
approach whereby approximations of the required
smoothed state estimates are approximated by Monte
Carlo based empirical averages (Doucetet al., 2001).

It is important to acknowledge that there has been
previous work related to this approach. In (Andrieu
et al., 2004), the possibility of incorporating the pa-
rameters into the state vector and employing particle
filtering methods was discussed, but dismissed as un-
tenable. Balancing this, the contributions (Kitagawa,
1998; Schön and Gustafsson, 2003) provide evidence
to question this conclusion.

Additionally, the work (Doucet and Tadić, 2003; An-
drieu et al., 2004) has considered employing par-
ticle filters to compute the Jacobians necessary for
a gradient-based approach. Finally, the contribution
(Andrieu et al., 2004) has also considered using
the EM algorithm in conjunction with particle-based
methods. However, by employing improved particle
smoothing methods and by more careful numerical
implementation of a key “maximisation” step, the
present work is able to report significantly improved
performance.

2. PROBLEM FORMULATION
This paper is concerned with the following model
class, which is affinely parametrised in the (unknown)
parameterϑ ∈ R

nϑ :
[
xt+1

yt

]

︸ ︷︷ ︸
zt

=

[
f1(xt, ut, t)
h1(xt, ut, t)

]

︸ ︷︷ ︸
αt

ϑ +

[
f2(xt, ut, t)
h2(xt, ut, t)

]

︸ ︷︷ ︸
βt

+

[
wt

et

]

︸ ︷︷ ︸
ηt

(1)
Heref1, f2, h1 andh2 are arbitrary (possible time-
varying) nonlinear functions,xt ∈ R

n is the underly-
ing system state,ut ∈ R

m, yt ∈ R
p are respectively

(observed) multi-dimensional inputs and outputs. The
initial statex1 and noise termswt andet are assumed
to be realisations from Gaussian stochastic processes
given by,

x1 ∼ N (µ, P1), ηt ∼ N (0, Π).

In light of this, the model structure (1) is completely
described by the parameter vectorθ defined as

θT ,

[
ϑT , vec{Π}T , vec{P1}

T , µT
]
.

With regard to this model structure, this paper will
be solely concerned with a parameter estimateθ̂ of θ
derived via the ML criterion

θ̂(YN ) = argmax
θ

pθ(YN ) (2)

whereYN , [y1, · · · , yN ] is an N point record of
observed system performance andpθ(YN ) is then the
joint probability density function ofYN implied by the
model structure (1) and a parameter valueθ.

In the linear, time invariant and Gaussian case, a (pos-
sibly steady state) Kalman Filter can be used to com-
pute this cost (and required Jacobians for gradient-
based search). Here, algorithms are developed to ex-
tend this principle to the more general nonlinear model
class (1). In doing so, it is recognised that, especially
in the nonlinear case, it is generally hard to compute
(2) since it may well represent a non-convex optimi-
sation problem. To address this issue, a central con-
tribution of this work is the employment of the EM
algorithm.

3. EXPECTATION MAXIMISATION
ALGORITHM

The Expectation Maximisation (EM) algorithm in-
troduced in (Dempsteret al., 1977) presents a non
gradient-based approach for iteratively obtaining max-
imum likelihood estimates (2). Within areas of applied
statistics, it is widely recognised for its robustness.
The key idea underlying it is the consideration of an
extension to (2); viz.

θ̂(XN , YN ) = arg max
θ

pθ(XN , YN ). (3)

Here, an extra data setXN , commonly referred to as
the incomplete dataor missing datahas been intro-
duced. Its choice is an essential design variable, which
if possible should be made so that the solution of (3)
is straightforward.

The link between the two problems (2) and (3) is
provided by the definition of conditional probability
which implies

log pθ(YN ) = log pθ(XN , YN ) − log pθ(XN |YN ).

Taking expectations of both sides of this equation
which are conditional on the observationsYN and with
respect to underlying density specified byθ being set
at a valueθ = θ′ will leave the left hand side unaltered,
and hence deliver

L(θ) = Eθ′{log pθ(XN , YN )|YN}︸ ︷︷ ︸
Q(θ,θ′)

− Eθ′{log pθ(XN |YN )|YN}︸ ︷︷ ︸
V(θ,θ′)

.

Since the logarithm is concave, Jensen’s inequality
establishes thatV(θ, θ′) ≤ V(θ′, θ′) and therefore
choosingθ that satisfiesQ(θ, θ′) ≥ Q(θ′, θ′) implies
thatL(θ) ≥ L(θ′). That is, values ofθ that increase
Q(θ, θ′) beyond its value atθ′ also increase the under-
lying log likelihood function of interest. This implies
the Expectation Maximisation (EM) algorithm.

Algorithm 1. (EM Algorithm)Given an initial esti-
mateθ0, iterate the following until convergence.

E: Q(θ, θk) = Eθk
{log pθ(XN , YN )|YN}

M: θk+1 = argmax
θ

Q(θ, θk)

4. EM FOR PARAMETER ESTIMATION

In agreement with previous applications of EM for
parameter estimation (see discussion in (Gibsonet
al., 2005)) we define the missing dataXN to equal



the state sequenceXN , {x1, . . . , xN+1}. With this
choice in place, the next step in applying the EM
algorithm involves computation ofQ(θ, θk) which
may be achieved via the following Lemma.

Lemma 4.1.With regard to system (1) and the above
choice for missing dataXN , the functionQ can be
expressed as

−2Q(θ, θk) =N log detΠ + Tr
(
Π−1Φ(ϑ)

)

+ log detP1 + Tr
(
P−1

1 Ψ(µ)
)

+ c,

wherec is a constant and withet , zt − βt

Ψ(µ) , Eθk

{
(x1 − µ)(x1 − µ)T |YN

}

Φ(ϑ) ,

N∑

t=1

Eθk

{
(et − αtϑ)(et − αtϑ)T |YN

}
. 2

An essential point is that bothΦ and Ψ require the
computation of expectations conditional onYN . In
the case of linear systems this can be achieved by
employing a linear smoother (often called a Kalman
Smoother). In the nonlinear case considered in this pa-
per, this approach is not suitable, and alternate means
for computing smoothed state estimates are required.
This topic is addressed in Section 5 following.

In the meantime, supposing that it is possible to
compute these expectations, then the second step of
the EM algorithm involves maximisation ofQ with
respect toθ, which is the subject of the following
Lemma.

Lemma 4.2.The functionQ(θ, θk) is maximised over
θ by making the following choices

ϑ = Σ−1Γ, µ = Eθk
{x1|YN}

Π = Φ(Σ−1Γ), P1 = Ψ(Eθk
{x1|YN})

where as beforeet , zt − βt and

Σ ,

N∑

t=1

Eθk

{
αT

t αt|YN

}
, Γ ,

N∑

t=1

Eθk

{
αT

t et|YN

}
. 2

With these definitions in place, the EM algorithm for
parameter estimation can be expressed in more detail
as follows.

Algorithm 2. (EM algorithm for parameter estima-
tion) Given an initial parameter vectorθ0, iterate the
following steps until convergence is achieved.

(1) CalculateΣ, Γ andEθk
{x1|YN} thenϑk andµk.

(2) CalculateΦ(ϑk) andΨ(µk) thenΠk andP1k
.

5. MONTE CARLO BASED SMOOTHING

In this section we examine numerical solutions of
nonlinear smoothing problems that employ recursive
Monte Carlo techniques. In relation to this, it is worth
noting that while very significant effort has been di-
rected towards nonlinear filtering via this sort of ap-
proach (particle filters), very little has been done when

it comes to solving the nonlinear smoothing problem.
See (Godsillet al., 2004; Kitagawa, 1996; Tanizaki,
2001) for some work in this direction.

After careful evaluation, this paper will employ the
methods developed in (Tanizaki, 2001), where thekey
distinguishing idearelative to the other work men-
tioned above is the consideration of propagating ap-
proximations ofp(xt+1, xt|YN ) rather thanp(xt|YN ).

In order to explain the ideas, the paper begins by ad-
dressing the general problem of random number gen-
eration with respect to a given, possibly complicated
distribution.

5.1 Random Sampling

Consider the problem of generating random num-
bers distributed according to sometarget densityt(x)
which potentially is rather complex. One way of do-
ing this would be to employ an alternate density that
is simple to draw from, says(x), referred to as the
sampling density, and then calculate the probability
that the sample was in fact generated from the target
density. That is, a samplex(i) ∼ s(x) is drawn, and
then the following ratio is calculated

a(x(i)) ∝ t(x(i))/s(x(i)),

which indicates how probable it is thatx(i) is in fact
generated from the target densityt(x).

The probability of acceptingx(i) as a sample from
t(x) is referred to as theacceptance probability,
and typically it is computed via consideration of
a(x(i)). This is the case, for example, for all of
the so-called “rejection sampling”, “importance sam-
pling/resampling” and “Metropolis–Hastings indepen-
dence sampling” methods (Tanizaki, 2001; Liu, 1996).
Here, as will be detailed presently, importance resam-
pling will be employed.

5.2 Monte Carlo based Filtering

In the case of filtering, the target density referred to
above becomest(xt) = p(xt|Yt), and it is then nec-
essary to also choose an appropriate sampling density
s(·) and acceptance probability. This is in fact quite
simple, since from Bayes’ theorem and the Markov
property

p(xt|Yt) = p(xt|yt, Yt−1) =
p(yt|xt)p(xt|Yt−1)

p(yt|Yt−1)

∝ p(yt|xt)p(xt|Yt−1)

which suggests, sincet(x) ∝ a(x)s(x), the following
choices

p(xt|Yt)︸ ︷︷ ︸
t(xt)

∝ p(yt|xt)︸ ︷︷ ︸
a(xt)

p(xt|Yt−1)︸ ︷︷ ︸
s(xt)

.

Via the principle of importance resampling the accep-
tance probabilities,{ã(i)}M

i=1, are calculated accord-
ing to

ã(i) =
a(x

(i)
t|t−1)

∑M
j=1 a(x

(j)
t|t−1)

=
p(yt|x

(i)
t|t−1)

∑M
j=1 p(yt|x

(j)
t|t−1)

,



wherex
(i)
t|t−1 ∼ p(xt|Yt−1). That is, acceptance prob-

abilitiesã(i) depend upon computation ofp(yt|xt‖t−1).
Via the assumption of additive noiseet, the model (1)
makes this straightforward to obtain.

The algorithm then proceeds by obtaining samples
fromp(xt|Yt) by resampling the particles{x(i)

t|t−1}
M
i=1

from the sampling density,p(xt|Yt−1), according to
the corresponding acceptance probabilities,{ã(i)}M

i=1.
If this procedure is recursively repeated over time the
following approximation

p(xt|Yt) ≈
M∑

i=1

1

M
δ(xt − x

(i)
t|t ) (4)

is obtained, and we have in fact derived theparticle
filter algorithm, which is given in Algorithm 3. It was
first introduced in (Gordonet al., 1993).

Algorithm 3. Particle filter

(1) Initialise the particles,{x(i)
0|−1}

M
i=1 ∼ px0

(x0).

(2) Calculate weights{q(i)
t }M

i=1 according to

q
(i)
t = p(yt|x

(i)
t|t−1)

and normalizẽq(i)
t = q

(i)
t /

∑M
j=1 q

(j)
t .

(3) ResampleN particles according to

Pr(x
(i)
t|t = x

(j)
t|t−1) = q̃

(j)
t

(4) For i = 1, . . . , M , predict new particles accord-
ing tox

(i)
t+1|t ∼ p(xt+1|t|x

(i)
t|t ).

(5) Sett := t + 1 and iterate from step 2.

5.3 Particle Smoother

In solving the smoothing problem the target density
becomest(xt+1, xt) = p(xt+1, xt|YN ). Similarly to
what was discussed in the previous section we have to
find a suitable sampling density and the corresponding
acceptance probabilities to solve the smoothing prob-
lem. Again, using Bayes’ theorem we have

p(xt+1, xt|YN ) = p(xt|xt+1, YN )p(xt+1|YN ) (5)

where

p(xt|xt+1, YN ) = p(xt|xt+1, Yt, Yt+1:N )

=
p(Yt+1:N |xt, xt+1, Yt)p(xt|xt+1, Yt)

p(Yt+1:N |xt+1, Yt)

= p(xt|xt+1, Yt) =
p(xt+1|xt)p(xt|Yt)

p(xt+1|Yt)
. (6)

Inserting (6) into (5) gives

p(xt+1, xt|YN )︸ ︷︷ ︸
t(xt+1,xt)

=
p(xt+1|xt)

p(xt+1|Yt)︸ ︷︷ ︸
a(xt+1,xt)

p(xt|Yt)p(xt+1|YN )︸ ︷︷ ︸
s(xt+1,xt)

At time t the sampling density can be used to generate
samples. In order to find the acceptance probabilities
{a(i)}M

i=1 we have to calculate

a(xt+1, xt) =
p(xt+1|xt)

p(xt+1|Yt)
,

wherep(xt+1|xt) is calculated using the model (1),
andp(xt+1|Yt) can be approximated according to

p(xt+1|Yt) =

∫
p(xt+1|xt)p(xt|Yt)dxt

≈
M∑

j=1

1

M
p(xt+1|x

(j)
t|t ),

where (4) has been used. The particles can now be re-
sampled according to the normalised acceptance prob-
abilities {ã(i)}M

i=1 in order to generate samples from
p(xt+1, xt|YN ). The above discussion can be sum-
marised in the following algorithm (first introduced
in (Tanizaki, 2001)),

Algorithm 4. Particle smoother

(1) Run the particle filter (Algorithm 3) and store the
filtered particles,{x(i)

t|t}
M
i=1, t = 1, . . . , N .

(2) Initialise the smoothed particles and importance
weights at timeN according to {x

(i)
N |N =

x
(i)
N |N , q̃

(i)
N |N = 1/M}M

i=1 and sett := t − 1.

(3) Calculate weights{q(i)
t|N}M

i=1 according to

q
(i)
t|N =

p(x
(i)
t+1|N |x

(i)
t|t )

1
M

∑M
j=1 p(x

(i)
t+1|N |x

(j)
t|t )

and normalisẽq(i)
t|N = q

(i)
t|N/

∑M
j=1 q

(j)
t|N .

(4) Resample the smoothed particles according to

Pr(x(i)
t+1|N , x

(i)
t|N ) = (x

(j)
t+1|N , x

(j)
t|t ) = q̃

(j)
t|N

(5) Sett := t − 1 and iterate from step 3.

5.4 Using a particle smoother with EM

In Lemmas 4.1 and 4.2 we require the computation of
various expectations that are conditional on the data
YN . In the following Lemma we provide explicit for-
mulations of these expectations in terms of smoothed
particles as calculated in Algorithm 4.

Lemma 5.1.Using the smoothed state particles as cal-
culated in Algorithm 4 we have the following approx-
imations

Eθk

{
αT

t αt|YN

}
≈

1

M

M∑

i=1

(
α

(i)
t

)T (
α

(i)
t

)

Eθk

{
αT

t et|YN

}
≈

1

M

M∑

i=1

(
α

(i)
t

)T (
e(i)
t

)

Eθk
{x1|YN} ≈

1

M

M∑

i=1

x
(i)

1|N
.

Similarly,

Eθk

{
(x1 − µ)(x1 − µ)T |YN

}
≈

1

M

M∑

i=1

(x
(i)

1|N
− µ)(x

(i)

1|N
− µ)T



Eθk

{
(et − αtϑ)(et − αtϑ)T |YN

}
≈

1

M

M∑

i=1

(e
(i)
t − α

(i)
t ϑ)(e

(i)
t − α

(i)
t ϑ)T

wheree(i)
t andα

(i)
t are simply the respective functions

evaluated at thei’th particlex
(i)
t|N .

6. SIMULATION EXAMPLE
This section profiles the performance of the EM-based
estimation methods just presented by way of consid-
ering the following nonlinear system.

xt+1 = axt + b
xt

1 + x2
t

+ c cos(1.2t) + wt, (7a)

yt = dx2
t + et, (7b)

wherea = 0.5, b = 25, c = 8, d = 0.05, wt ∼
N (0, 10−2) and et ∼ N (0, 10−2). In terms of the
structure in (1) we make the following associations

αt =

[
xt

xt

1 + x2
t

cos(1.2t) 0

0 0 0 x2
t

]
, βt = 0,

ϑT = [a b c d] .

This system has been extensively studied in the con-
text of stateestimation (Gordonet al., 1993; Kita-
gawa, 1996; Kitagawa, 1998; Doucetet al., 2000;
Godsillet al., 2004). However, it has not been the sub-
ject of great attention from theparameterestimation
viewpoint of this paper.

As is well recognised (Ljung, 2003), a particularly
important aspect of nonlinear system estimation is
the difficulty of finding appropriate initial parameter
values with which to initialise an iterative search.

To address this issue, and in so doing illustrate the in-
herent robustness of the EM-based approach presented
here, each of the 200 simulation runs was initialised at
a randomly chosen initial estimatêθ0 which itself was
formed using perturbations from the true values.

Using N = 1000 data samples, and despite only
using a very modest number ofM = 50 particles in
the smoothing calculations, the empirical estimation
results shown in Fig. 1 are encouraging. In particu-
lar, note that despite quite widely varying initialisa-
tions, convergence to the true parameters occurred in
most cases. Further simulations were conducted with
M = 100 and higher number of particles, but without
any significant performance benefit. This suggests a
robustness of the EM-based approach to inaccuracies
in computation in the E-step.

In relation to this, note that the method requires
O(NM2) floating point operations per iteration. The
computational load is sensitive to the number of parti-
cles chosen, but scales well with increasing observed
data length. To provide a reference point for these scal-
ing comments, each simulation required to present the
Monte–Carlo presentation in Fig. 1 completed within
3 minutes on a Pentium IV running at 3GHz.

By way of comparison, alternative methods, including
Newton-based gradient search were also tried, but
proved very unsuccessful.

Fig. 1. Parameter estimates for each of the 200 sim-
ulation runs as they evolve over 1000 iterations
of the EM method. The true parameter values are
a = 0.5, b = 25, c = 8 andd = 0.05.

To explore the reason behind this, and also to empha-
sise the surprising robustness to initial starting point
just presented, consider the simpler estimation prob-
lem which involves estimating onlyϑ = [a, b]T with
c andd fixed to their true values, and with the additive
noisewt andet set to zero. The former is done so that
the cost surface implied by the likelihood can be visu-
alised, and the latter is considered so that attention is
focused solely on how the nonlinear dynamics affects
the difficulty of the estimation problem.

The resulting mean square error (the dominating com-
ponent of the likelihood computation) cost surface is
shown in Fig. 2. Clearly, it is very far from convex.
Note that the very irregular cost function, even if due
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Fig. 2. Surface plot of the MSE versus parametersa
andb only.

to finite precision effects and not intrinsic, is still an
obstacle to gradient based methods but not, as will
be illustrated, to an EM-based approach. The perhaps
surprising complexity from such a simple example un-
derlines the particular difficulties of nonlinear system
estimation.

The MSE cost function associated with the present
problem contains quite a few local minima. It is there-
fore not surprising that gradient-based search was
found to perform so poorly on the preceding example.
To emphasise this, Fig. 3 shows a contour plot of the
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Gauss–Newton gradient-based search estimate
trajectories overlaid. Note that, presumably due
to the very large number of local minima, no
trajectories converge to the global minimum.
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Fig. 4.Same as previous plot, but with EM-based esti-
mate trajectories for 25 different starting points.
Note that all converge to the global minimum.

the MSE cost function. Clearly, and as suggested in
the previous figure, there seem to be a large number
local minima, any of which may attract gradient-based
approaches. Indeed, the black lines shown in that dia-
gram are Gauss–Newton gradient-based search trajec-
tories for 25 different starting points, and all become
locked in local minima.

By way of contrast, Fig. 4 shows the estimate trajec-
tories of the EM-based algorithm of this paper. Note
that from the same starting points, all cases converge
to the global maximum.

7. CONCLUSION

This paper has explored an approach to nonlinear
dynamic system estimation whose key distinguishing
features include the use of EM-based methods as
opposed to more traditional gradient-based search,
a fairly general model structure, the use of Monte
Carlo based “particle” methods for the computation of
required smoothed state estimates, and a capacity for
simply encompassing multivariable problems.

By way of example, the resulting approach has been
demonstrated to be (perhaps) surprisingly robust to
attraction to local minima, even in cases where the un-
derlying cost is extremely “irregular” and non-convex.
Further work is required to understand the mecha-
nisms underlying this robustness, and to test the ideas
on more substantial problem sizes.
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