
FAST PARTICLE FILTERS FOR MULTI-RATE SENSORS

Thomas B. Schön, David Törnqvist and Fredrik Gustafsson

Division of Automatic Control/Department of Electrical Engineering, Linköpings universitet
SE–581 83 Linköping, Sweden

phone: + (46) 13 28 13 73, fax: + (46) 13 28 26 22, email: {schon,tornqvist,fredrik}@isy.liu.se
web: www.control.isy.liu.se

ABSTRACT
Computational complexity is a major concern for practical
use of the versatile particle filter (PF) for nonlinear filtering
applications. Previous work to mitigate the inherent com-
plexity includes the marginalized particle filter (MPF), with
the fastSLAM algorithm as one important case. MPF utilizes
a linear Gaussian sub-structure in the problem, where the
Kalman filter (KF) can be applied. While this reduces the
state dimension in the PF, the present work aims at reducing
the sampling rate of the PF. The algorithm is derived for a
class of models with linear Gaussian dynamic model and two
multi-rate sensors, with different sampling rates, one slow
with a nonlinear and/or non-Gaussian measurement relation
and one fast with a linear Gaussian measurement relation.
For this case, the KF is used to process the information from
the fast sensor and the information from the slow sensor is
processed using the PF. The problem formulation covers the
important special case of fast dynamics and one slow sensor,
which appears in many navigation and tracking problems.

1. INTRODUCTION

The nonlinear filtering problem deals with estimation of the
states xt , using the information in the measurements up to
time t, y1:t , {y1, · · · ,yt}, for a nonlinear dynamic system,

xt+1 = ft(xt ,ut ,wt), (1a)
yt = ht(xt ,ut ,et). (1b)

Here, ut denotes a known input signal, et and wt denote the
stochastic measurement and process noise, respectively. Fur-
thermore, the functions f and h contain the dynamic equa-
tions for the system and the measurement equations, respec-
tively.

All information about the state that is present in the mea-
surements is contained in the filtering probability density
function (PDF) p(xt |y1:t). The particle filter [5, 3] provides
an arbitrary good approximation to this PDF. However, it
is a well-known fact from applications that the number of
particles that are needed to get a good approximation of the
true filtering PDF increases rapidly with the state dimension.
Therefore, efficient implementations of the PF have to utilize
some kind of structure inherent in the problem. An example
of such a structure is when there is a linear Gaussian sub-
structure available in (1). This is exploited in the marginal-
ized particle filter (also referred to as the Rao-Blackwellized
particle filter [3]) by the observation that conditioned on the
nonlinear states it is a linear Gaussian system, which can be
optimally estimated using the Kalman filter [9]. The result-
ing algorithm applies a PF to a low-dimensional part of the
state vector, where each particle has an associated Kalman
filter estimate of the remaining part of the state vector. For

more information on the marginalized particle filter we refer
to [13, 2].

In the present contribution we consider a different struc-
ture, which arises when there are multi-rate sensors (sen-
sors providing measurements with different sampling times)
available. It will be shown that if the inherent structure is ex-
ploited by the algorithm the quality of the estimates will be
better at a lower computational cost, compared to the direct
use of the PF. Algorithmically, there are several similarities
between the present contribution and the MPF. We will study
a class of filtering problems, where the model (1) has the fol-
lowing structure

xt+1 = Atxt +Btut +Gtwt , t = 0,1, . . . (2a)
y1,t = Ctxt +Dtut + e1,t , t = 1,2, . . . (2b)
y2,t = h(xt ,ut , t)+ e2,t , t = r,2r, (2c)

More specifically,
• The dynamic model is linear with Gaussian process noise

wt ∈N (0,Qt).
• The fast sensor y1,t is linear with Gaussian measurement

noise e1,t ∈N (0,R1,t).
• The slow sensor provides measurements y2,t a factor r

times slower than the fast sensor, and is a nonlinear func-
tion of the state and the input signal, with possibly non-
Gaussian measurement noise e2,t ∼ pe2,t (·).

The typical application area we have in mind is navigation,
where the fast sensor delivers measurements of the relative
movements (inertial measurement unit or odometer) and the
slow sensor provides measurements of absolute reference to
given landmarks (camera, bearings-only or range sensors).
This includes important specific applications, such as Simul-
taneous Localization and Mapping (SLAM) [15, 4] and nav-
igation in sensor networks.

We also want to mention that the special case when the
fast sensor is missing, given by (2a, 2c) alone, covers all the
navigation and tracking applications surveyed in [6]. The
presented algorithm then basically propagates the particles
available after the measurement equation to a Gaussian mix-
ture, which is resampled at the time of the next measurement.

2. NONLINEAR STATE FILTERING

The solution to the nonlinear state filtering problem is given
by the filtering PDF and its conceptual form is given in the
subsequent section. Furthermore, a popular approximation to
this solution, the particle filter, is briefly introduced in Sec-
tion 2.2.

2.1 Conceptual Solution
In discussing the conceptual solution to the nonlinear state
estimation problem it is convenient to work either with the

PDF’s or the distribution functions of the involved stochas-
tic variables. In the present work we will work with PDF’s.
Hence, the first step is to describe model (1) using PDF’s.
This can be done according to,

xt+1 ∼ pt(xt+1|xt), (3a)
yt ∼ pt(yt |xt), (3b)

where ∼ denotes distribution according to. Here, pt(xt+1|xt)
and pt(yt |xt) are commonly referred to as the transition PDF
and likelihood, respectively. Note that the deterministic input
signal ut is seen as a part of the model and the conditioning
on the model is implicit in the PDF’s. More specifically for
the model under consideration in this work (2) we have the
following transition PDF pt(xt+1|xt) and likelihood pt(yt |xt),

pt(xt+1|xt) = pGt wt (xt+1 −Atxt −Btut), (4a)
pt(y1,t |xt) = pe1,t (yt −Ctxt −Dtut), (4b)

pt(y2,t |xt) = pe2,t (yt −h(xt ,ut , t)), (4c)

The solution to the nonlinear state estimation problem us-
ing the model representation in (3) follows rather straightfor-
wardly using Bayes’ theorem and the Markov property, (see
e.g., [8] for details). The resulting recursions for the filtering
and prediction densities are given by

p(xt |y1:t) =
p(yt |xt)p(xt |y1:t−1)∫

p(yt |xt)p(xt |y1:t−1)dxt
, (5a)

p(xt+1|y1:t) =
∫

p(xt+1|xt)p(xt |y1:t)dxt . (5b)

The reason for referring to this as a conceptual solution is
that the multidimensional integrals in (5) typically do not al-
low for an analytical solution. However, there are a few spe-
cial cases allowing for analytical solutions, such as the lin-
ear Gaussian case, when the solution is given by the Kalman
filter [9]. For the more interesting nonlinear and/or non-
Gaussian case we are forced to approximations of some kind
and the particle filter provides a very interesting and powerful
approximation, especially when the problem has an inherent
structure which can be exploited.

2.2 Particle Filter
The main idea underlying the particle filter is to approximate
the filtering PDF using a finite number of so called particles
{x(i)

t|t }
N
i=1 according to

p̂N(xt |y1:t) =
N

∑
i=1

γtδ (xt − x(i)
t|t), (6)

where each particle x(i)
t|t has an importance weight γt associ-

ated to it. Note that δ (xt −x(i)
t|t), denotes the delta-Dirac func-

tion located at x(i)
t|t . The importance weight contains informa-

tion about how probable the corresponding particle is. Due
to the delta-Dirac form used in (6), a finite sum is obtained
when this approximation is passed through an integral, i.e.,
the multidimensional integrals are simplified to finite sums,
enabling an approximation to (5). All the details of the parti-
cle filter were independently discovered by [5, 10, 7]. How-
ever, the main ideas, save for the crucial resampling step have
been around since the 1940’s [11].

For an introduction to and derivation of the the particle
filter we refer to e.g., [1, 3]. A rather basic form, used in this
contribution, is given in Algorithm 1.

Algorithm 1 Particle filter
1. Initialize the particles, {x(i)

1|0}
N
i=1 ∼ p(x0).

2. Compute the importance weights {γ
(i)
t }N

i=1,

γ
(i)
t = pt(yt |x(i)

t|t−1), i = 1, . . . ,N,

and normalize γ̃
(i)
t = γ

(i)
t /∑

N
j=1 γ

(j)
t

3. Draw N new particles with replacement, for each
i = 1, . . . ,N,

Pr(x(i)
t|t = x(j)

t|t−1) = γ̃
(j)
t , j = 1, . . . ,N.

4. Predict the particles by drawing independent sam-
ples according to

x(i)
t+1|t ∼ pt(xt+1|x(i)

t|t), i = 1, . . . ,N.

5. Set t := t +1 and iterate from step 2.

It is worth stressing that this is the basic form of the par-
ticle filter and that there are several embellishments available
in the literature. However, for the contribution in this paper
there is no reason to depart from the basic form and our ideas
can of course be used together with most of the existing par-
ticle filters.

3. MULTI-RATE PARTICLE FILTER

Obviously one solution to the problem considered in this pa-
per is simply to neglect the inherent structure and apply the
particle filter directly. However, if we choose to make use
of the inherent structure we can obtain better estimates at a
lower computational cost. In the subsequent section we de-
scribe how this can be done and in Section 3.2 an efficient
way of computing the estimates is given.

3.1 Algorithm
The algorithm will be explained using an induction type of
reasoning. Let us start by assuming that the information in
the slow, nonlinear measurement (2c) has just been used. The
approximation of the filtering PDF is then given by (6). Now,
during the time until the next slow measurement arrives, i.e.,
for the times k = t +1, t +2, . . . , t + r, model (2) is obviously
reduced to

xk+1 = Akxk +Bkuk +Gkwk, wk ∼N (0,Qk), (7a)
y1,k = Ckxk +Dkuk + e1,k, e1,k ∼N (0,Rk), (7b)

which is a linear Gaussian model. This implies, as is well
known, that the solution to (5) is available in closed form
via the Kalman filter [9]. Hence, there is no reason to use
an approximate method such as the particle filter to compute
the estimates for p(xk|y1,1:k,y2,1:t),k = t + 1, . . . , t + r, since
the Kalman filter will produce the optimal estimate. Further-
more, this can be performed at a lower computational cost us-
ing the Kalman filter. The fact that p̂N(xt |y1:t), given by (6)

is non-Gaussian prevents us from direct application of the
Kalman filter. However, this can be efficiently handled using
parallel Kalman filters, initiated with

x̂(i)
k|k = x(i)

k|k, i = 1, . . . ,N, (8a)

P(i)
k|k = 0, i = 1, . . . ,N. (8b)

Note that despite of (8b) the uncertainty is still present, since
we run several Kalman filters in parallel. Hence, the uncer-
tainty is inherent in the representation. Furthermore, (8b)
is crucial since it implies that we can use the same covari-
ance matrices Pk|k,Pk+1|k and Kalman gains Kk for all parti-
cles and their computations can be performed off-line, once
and for all, before the filter is employed. This is important,
since it allows us to save computational resources for the on-
line computations. The Kalman filtering computations can
be performed using the standard recursions, the square-root
implementation or any other form. Regardless of which form
that is used the particle updates are in the following form

x(i)
t+r|t+r = g(x(i)

t|t ,y1,t+1:t+r,ut:t+r), i = 1, . . . ,N, (9)

where g denotes a general function. More specifically, if
the standard recursions for the Kalman filters are used it
is straightforward to verify that the particle updates (9) are
given by

x(i)
t+r|t+r = Lx(i)

t|t +
r

∑
j=0

J jut+ j +
r

∑
j=1

M jy1,t+ j, (10)

where i = 1, . . . ,N and

L =
1

∏
j=r

(I−Kt+ jCt+ j)At+ j−1, (11a)

J0 =

(
2

∏
i=r

(I−Kt+iCt+i)At+i−1

)
(I−Kt+1Ct+i)Bt , (11b)

J j =

(
j+2

∏
i=r

(I−Kt+iCt+i)At+i−1

)
(I−Kt+ j+1Ct+ j+1)×

(At+ jKt+ jDt+ j +Bt+ j), j = 1, . . . ,r−2, (11c)
Jr−1 = (I−Kt+rCt+r)(At+ jKt+ jDt+ j +Bt+ j) (11d)

Jr = Kt+r, (11e)

M j =

(
j+1

∏
i=r

(I−Kt+iCt+i)At+i−1

)
Kt+ j, j = 1, . . . ,r−1,

(11f)
Mr = Kt+r. (11g)

The covariance matrices and the Kalman gain are given by

Pk+1|k = AkPk|kAT
k +GkQkGT

k , (12a)

Kk = Pk|k−1CT
k (CkPk|k−1CT

k +R1,k)−1, (12b)

Pk|k = Pk|k−1 −KkCkPk|k−1. (12c)

Note that the term ∑
r
j=0 J jut+ j +∑

r
j=1 M jy1,t+ j in (10) is the

same for all particles, allowing us to save computations.
The final step is at time t + r, before the next measure-

ment from the slow sensor delivers its next measurement

y2,t+r. In order to make use of this nonlinear measurement
the result from the Kalman filters has to be assembled into a
new set of particles. This is accomplished simply by draw-
ing a set of particles from the current approximation of the
filtering PDF p(xt+r|y1,1:t+r,y2,1:t),

p̂N(xt+r|y1,1:t+r,y2,1:t) =
N

∑
i=1

q̃(i)
t+rN (xt+r|x(i)

t+r|t+r,Pt+r|t+r).

(13)

and the induction is complete. Note that the weights q(i)
t+r are

given by (see [12] for details)

q̃(i)
t+r =

∏
r
k=0 p(y1,t+k; ŷ(i)

1,t+k,St+k)

∑
N
j=1 ∏

r
k=0 p(y1,t+k; ŷ(i)

1,t+k,St+k)
. (14)

To sum up, we have now motivated Algorithm 2 below.

Algorithm 2 Multi-rate particle filter
1. Initialize the particles, {x(i)

1|0}
N
i=1 ∼ p(x0).

2. Compute the importance weights {γ
(i)
t }N

i=1

γ
(i)
t = pt(y2,t |x(i)

t|t−1), i = 1, . . . ,N, (15)

and normalize γ̃
(i)
t = γ

(i)
t /∑

N
j=1 γ

(j)
t .

3. Draw N new particles with replacement, for each
i = 1, . . . ,N,

Pr(x(i)
t|t = x(j)

t|t−1) = γ̃
(j)
t , j = 1, . . . ,N. (16)

4. Update the particles using the information in
{y1,t+i}r

i=1 and {ut+i}r
i=1according to (10).

5. Draw N new particles,

x(i)
t+r|t+r ∼ p̂N(xt+r|y1,1:t+r,y2,1:t), i = 1, . . . ,N,

where p̂N(xt+r|y1,1:t+r,y2,1:t) is given by (13).
6. Set t := t + r and iterate from step 2.

An obvious extension is the combined use of the
marginalized particle filter and the ideas presented in this
paper. The application of such an algorithm to the SLAM
problem for a robot moving in 3D equipped with vision and
inertial sensors could probably result in interesting results,
see [14]. Note that this might require linearization of certain
equations to get a model in the form (2).

3.2 Computing Estimates
The, in many respects, optimal estimate for the state at time t
is the conditional expectation,

x̂t|t = E(xt |y1:t). (17)

Using the standard particle filter (Algorithm 1) this estimate
is computed after step 2 and it is given by

x̂t|t =
N

∑
i=1

γ̃tx
(i)
t|t . (18)

When the slow measurement y2,t has just been used in step 2
in the multi-rate particle filter (Algorithm 2) the conditional
mean estimate (17) is of course given by (18) as well. The
intermediate estimates, between two slow measurements can
be computed in a similar fashion. However, that would be
very computationally intensive. Using the fact that the order
of linear operations can be interchanged will save a lot of
computations here. To be more specific,

x̂t+l|t+l =
N

∑
i=1

q̃(i)
t+lx

(i)
t+l|t+l =

N

∑
i=1

(Ll q̃
(i)
t+lx

(i)
t|t +Ml) (19)

= Ll

N

∑
i=1

q̃(i)
t+lx

(i)
t|t +Ml , (20)

where

Ll =
1

∏
j=l

(I−Kt+ jCt+ j)At+ j−1, (21)

Hence, the intermediate estimates can be computed at almost
no cost at all.

4. SIMULATIONS

In this section, the multi-rate particle filter (Algorithm 2)
will be compared to the standard particle filter (Algorithm 1).
This is done using Monte Carlo simulations for an illustrative
example.

4.1 Setup
Consider a vehicle moving in a two dimensional world. In-
formation about this vehicle is obtained using two multi-rate
sensors. One sensor measures the range to a fixed object at a
known position (the origin in this case) at 1 Hz and the other
sensor measures the velocity (vx,t , vy,t) at 10 Hz. For conve-
nience we assume that the vehicle can be modelled using a
constant velocity model according to,px,t+1

py,t+1
vx,t+1
vy,t+1

=

1 0 Ts 0
0 1 0 Ts
0 0 1 0
0 0 0 1

︸ ︷︷ ︸

A

px,t
py,t
vx,t
vy,t

+

0 0
0 0
1 0
0 1

︸ ︷︷ ︸

G

(
w1,t
w2,t

)
,

(22a)

y1,t =
(

0 0 1 0
0 0 0 1

)
︸ ︷︷ ︸

C

px,t
py,t
vx,t
vy,t

+ e1,t , (22b)

y2,t =
√

p2
x,t + p2

y,t︸ ︷︷ ︸
h(xt)

+e2,t , (22c)

where (px,t , py,t) and (vx,t , vy,t) denote the position and ve-
locity, respectively. Hence, the model is in the form (2) and
the multi-rate particle filter given in Algorithm 2 can be ap-
plied. Model (22) is time-invariant and there are no input
signals present. Hence, (10) – (11) can be simplified accord-
ing to

x(i)
t+r|t+r = Lx(i)

t|t +
r

∑
j=1

M jy1,t+ j, (23)

where i = 1, . . . ,N and

L =
1

∏
j=r

(I−Kt+ jC)A, (24a)

M j =

(
j+1

∏
l=r

(I−Kt+lC)A

)
Kt+ j, j = 1, . . . ,r−1, (24b)

Mr = Kt+r. (24c)

Furthermore, the sampling time is set to be Ts =
1/10 s, the covariance for the process noise is set to be
Cov

(
(w1,t w2,t)T

)
= 0.5I2 and the covariance for the mea-

surement noise is Cov
(
(eT

1,t e2,t)T
)

= I3. We have used 1000
Monte Carlo simulations in order to obtain reliable results.

4.2 Simulation Results
The root mean square errors (RMSE) over the Monte Carlo
simulations for the position and velocity estimates are shown
in Figure 1. The error in position estimates is lower for the
multi-rate particle filter, whereas the velocity errors are al-
most identical. Note that the sawtooth pattern in the position
error is due to a rapidly improved estimate every time an up-
date on the range is available. The increasing error over time
is due to incomplete observability. Measuring the range and
velocity is not enough to estimate the position without drift.

0 10 20 30 40 50 60 70 80 90 100
0.5

1

1.5

2

P
o
s
it
io

n
 R

M
S

E

Standard PF

Multi−rate PF

0 10 20 30 40 50 60 70 80 90 100
0.5

0.55

0.6

0.65

0.7

V
e
lo

c
it
y
 R

M
S

E

Time [s]

Standard PF

Multi−rate PF

Figure 1: RMSE in position (top) and velocity (bottom) for
1000 Monte Carlo simulations, using 3000 particles.

In Figure 2 the RMSE for the position is provided as a
function of the number of particles used in the filters. Here,
we can see that the multi-rate particle filter performs better,
but the difference becomes smaller as the number of particles
increases. This is expected and in accordance to theory, since
the particle filter converges to the optimal filter as the number
of particles tends to infinity.

The computational time using the multi-rate particle filter
is decreased, especially when a large number of particles are
used. This is illustrated in Figure 3.

In studying particle filters it is always interesting to study
the rate of divergence as a function of the number of particles
used in the filter. First of all, let us define what is meant
by divergence in this context. The filter is said to diverge

0 500 1000 1500 2000 2500 3000
2

2.5

3

3.5

4

particles [N]

P
o
s
it
io

n
 R

M
S

E

PF

MRPF

Figure 2: Position RMSE as a function of the number of par-
ticles, using 1000 Monte Carlo simulations.

0 500 1000 1500 2000 2500 3000
0

0.5

1

1.5

2

2.5

3

particles [N]

C
o
m

p
u
ta

ti
o
n
a
l
T

im
e
 [
s
]

Standard PF

Multi−rate PF

Figure 3: Illustration of the computational time as a func-
tion of the number of particles. The multi-rate particle filter
requires fewer computations for large number of particles,
compared to the standard particle filter.

whenever the sum of the importance weights fall below a
certain problem dependent threshold λt > 0, i.e., when

N

∑
i=1

p(y2,t |x(i)
t|t−1) =

N

∑
i=1

γ
(i)
t < λt . (25)

The motivation for this choice of divergence test is simply
that it indicates when the particle cloud is too far from what is
indicated by the present measurement. This is more likely to
happen if there are fewer particles. Figure 4 shows the rate of
divergence as a function of the number of particles. The per-

0 500 1000 1500 2000 2500 3000

0

20

40

60

80

particles [N]

D
iv

e
rg

e
n
c
e
 R

a
te

 [
%

]

Standard PF

Multi−rate PF

Figure 4: Rate of divergence as a function of the number of
particles used in the filters.

formance of the multi-rate particle filter is significantly better
for small N and slightly worse for large N. This makes sense
since there is no resampling during the Kalman updates, ef-
fectively giving higher variance to the weights. To redeem
this, resampling can be performed more often at the cost of
computational speed.

5. CONCLUSION

We have proposed a new algorithm for state estimation,
which can be used when the underlying dynamical model
has a certain structure. The algorithm is based on the particle
filter and exploits a linear Gaussian sub-structure. The result-
ing algorithm produces estimates of better quality at a lower
computational cost, when compared to the standard particle
filter. Finally, the structure commonly arises in sensor fusion
applications, when there is one slow (nonlinear) and one fast
(linear) sensor available.

REFERENCES

[1] M. S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp. A tu-
torial on particle filters for online nonlinear/non-Gaussian Bayesian
tracking. IEEE Transactions on Signal Processing, 50(2):174–188,
2002.

[2] R. Chen and J. S. Liu. Mixture Kalman filters. Journal of the Royal
Statistical Society, 62(3):493–508, 2000.

[3] A. Doucet, S. J. Godsill, and C. Andrieu. On sequential Monte Carlo
sampling methods for Bayesian filtering. Statistics and Computing,
10(3):197–208, 2000.

[4] H. Durrant-Whyte and T. Bailey. Simultaneous localization and
mapping (SLAM): Part I. IEEE Robotics & Automation Magazine,
13(2):99–110, June 2006.

[5] N. J. Gordon, D. J. Salmond, and A. F. M. Smith. Novel approach to
nonlinear/non-Gaussian Bayesian state estimation. In IEE Proceed-
ings on Radar and Signal Processing, volume 140, pages 107–113,
1993.

[6] F. Gustafsson, F. Gunnarsson, N. Bergman, U. Forssell, J. Jansson,
R. Karlsson, and P.-J. Nordlund. Particle filters for positioning,
navigation and tracking. IEEE Transactions on Signal Processing,
50(2):425–437, February 2002.

[7] M. Isard and A. Blake. Contour tracking by stochastic propagation of
conditional density. In Proceedings of the European Conference on
Computer Vision, volume 1, pages 343–356, Cambridge, UK, 1996.

[8] A. H. Jazwinski. Stochastic processes and filtering theory. Mathe-
matics in science and engineering. Academic Press, New York, USA,
1970.

[9] R. E. Kalman. A new approach to linear filtering and prediction
problems. Transactions of the ASME, Journal of Basic Engineering,
82:35–45, 1960.

[10] G. Kitagawa. Monte Carlo filter and smoother for non-Gaussian non-
linear state space models. Journal of Computational and Graphical
Statistics, 5(1):1–25, 1996.

[11] N. Metropolis and S. Ulam. The Monte Carlo method. Journal of the
American Statistical Association, 44(247):335–341, 1949.

[12] U. Orguner. Improved state estimation for jump Markov linear sys-
tems. PhD thesis, Middle east technical university, Ankara, Turkey,
2006.

[13] T. Schön, F. Gustafsson, and P.-J. Nordlund. Marginalized particle
filters for mixed linear/nonlinear state-space models. IEEE Transac-
tions on Signal Processing, 53(7):2279–2289, July 2005.

[14] T. B. Schön, R. Karlsson, D. Törnqvist, and F. Gustafsson. A frame-
work for simultaneous localization and mapping utilizing model
structure. In Proceedings of the 10th international conference on
information fusion, Québec, Canada, July 2007. Accepted for publi-
cation.

[15] S. Thrun, W. Burgard, and D. Fox. Probabilistic Robotics. Intelligent
Robotics and Autonomous Agents. The MIT Press, Cambridge, MA,
USA, 2005.

	 Introduction
	 Nonlinear State Filtering
	 Conceptual Solution
	 Particle Filter

	 Multi-rate Particle Filter
	 Algorithm
	 Computing Estimates

	 Simulations
	 Setup
	 Simulation Results

	 Conclusion

