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Abstract—This contribution aims at unifying two recent trends
in applied particle filtering (PF). The first trend is the major
impact in simultaneous localization and mapping (SLAM) ap-
plications, utilizing the FastSLAM algorithm. The second one
is the implications of the marginalized particle filter (MPF) or
the Rao-Blackwellized particle filter (RBPF) in positioning and
tracking applications. An algorithm is introduced, which merges
FastSLAM and MPF, and the result is an MPF algorithm for
SLAM applications, where state vectors of higher dimensions
can be used. Results using experimental data from a 3D SLAM
development environment, fusing measurements from inertial
sensors (accelerometer and gyro) and vision are presented.

Keywords: Rao-Blackwellized/marginalized particle filter,
sensor fusion, simultaneous localization and mapping,
inertial sensors, vision.

I. INTRODUCTION

The main task in localization/positioning and tracking is
to estimate, for instance, the position and orientation of the
object under consideration. The particle filter (PF), [1], [2],
has proven to be an enabling technology for many applications
of this kind, in particular when the observations are com-
plicated nonlinear functions of the position and heading [3].
Furthermore, the Rao-Blackwellized particle filter (RBPF) also
denoted the marginalized particle filter (MPF), [4]–[9] enables
estimation of velocity, acceleration, and sensor error models by
utilizing any linear Gaussian sub-structure in the model, which
is fundamental for performance in applications as surveyed
in [10]. As described in [9], the MPF splits the state vector
xt into two parts, one part xp

t which is estimated using the
particle filter and another part xk

t where Kalman filters are
applied. Basically, it uses the following factorization of the
posterior distribution of the state vector, which follows from
Bayes’ rule,

p(xp
1:t, x

k
t |y1:t) = p(xk

t |x
p
1:t, y1:t)p(xp

1:t|y1:t), (1)

where y1:t , {y1, . . . , yt} denotes the measurements up to
time t. If the model is conditionally linear Gaussian, i.e., if
the term p(xk

t |x
p
1:t, y1:t) is linear Gaussian, it can be optimally

estimated using the Kalman filter, whereas for the second
factor we have to resort to the PF.

Simultaneous localization and mapping (SLAM) is an ex-
tension of the localization or positioning problem to the case
where the environment is un-modeled and has to be mapped
on-line. An introduction to the SLAM problem is given in
the survey papers [11], [12] and the recent book [13]. From
a sensor point of view, there are two ways of tackling this
problem. The first way is to use only one sensor, such as
vision, see e.g., [14]–[17] and the second way is to fuse
measurements from several sensors. This work considers the
latter.

The FastSLAM algorithm introduced in [18] has proven to
be an enabling technology for such applications. FastSLAM

can be seen as a special case of RBPF/MPF, where the map
state mt, containing the positions for all landmarks used in
the mapping, can be interpreted as a linear Gaussian state.
The main difference is that the map vector is a constant
parameter with a dimension increasing over time, rather than
a time-varying state with a dynamic evolution over time. The
derivation is completely analogous to (1), and makes use of
the following factorization

p(x1:t,mt|y1:t) = p(mt|x1:t, y1:t)p(x1:t|y1:t). (2)

The FastSLAM algorithm was originally devised to solve the
SLAM problem for mobile robots, where the dimension of
the state vector is small, typically consisting of three states
(2D position and a heading angle) [13]. This implies that all
platform states can be estimated by the PF.

Parallelling the evolution of PF applications to high di-
mensional state vectors, the aim of this contribution is to
unify the ideas presented in [9], [19] in order to extend
the FastSLAM [18] algorithm to be able to cope with high
dimensional state vectors as well. Basically, the main result
follows from

p(xp
1:t,x

k
t ,mt|y1:t)

= p(mt|xk
t , xp

1:t, y1:t)p(xk
t |x

p
1:t, y1:t)p(xp

1:t|y1:t). (3)

The derived algorithm is applied to experimental data from a
development environment tailored to provide accurate values
of ground truth. Here, a high precision industrial robot is
programmed to move, possibly using its 6 degrees-of-freedom



Figure 1. The 6 DoF ABB IRB1400 industrial robot equipped with the
custom made sensor.

(DoF), while the sensor unit, consisting of three accelerom-
eters, three gyroscopes, and a camera is attached to it. See
Figure. 1 for the experimental setup. This allows us to perform
repeatable experiments with access to the ground truth (from
the industrial robot), so the performance of the algorithm can
be accurately assessed.

In Section II the problem under consideration is formulated
in more detail. The proposed algorithm is given and explained
in Section III. This algorithm is then applied to an application
example in Section IV. Finally, the conclusions are given in
Section V.

II. PROBLEM FORMULATION

The aim of this work is to solve the SLAM problem when
the state dimension of the platform is too large to be estimated
by the PF. This section provides a more precise problem
formulation and introduces the necessary notation.

The total state vector to be estimated at time t is

xt =
(
(xp

t )T (xk
t )T mT

t

)T
, (4)

where xp
t denotes the states of the platform that are estimated

by the particle filter, and xk
t denotes the states of the platform

that are linear-Gaussian given information about xp
t . These

states together with the map mt are estimated using Kalman
filters. The map states mt consists of the entire map at time
t, i.e.,

mt =
(
mT

1,t . . . mT
Mt,t

)T
, (5)

where mj,t denotes the position of the jth map entry and Mt

denotes the number of entries in the map at time t.
The aim of this work can be formalized as trying to estimate

the following filtering probability density function (PDF),

p(xp
t , x

k
t ,mt|y1:t). (6)

In other words, we are trying to solve the nonlinear filtering
problem, providing an estimate of (6).

The key factorization, which allows us to solve this problem
successfully is

p(xp
1:t, x

k
t ,mt|y1:t)

=
Mt∏
j=1

p(mj,t|xp
1:t, x

k
t , y1:t)p(xk

t |x
p
1:t, y1:t)︸ ︷︷ ︸

(extended) Kalman filter

p(xp
1:t|y1:t)︸ ︷︷ ︸

particle filter

(7)

In order to devise an estimator for (6) a system model and
a measurement model are needed. The former describes the
dynamic behaviour of the platform, that is how the state
xt evolves over time. The measurement model describes the
sensors, i.e., it consists of equations relating the measurements
yt to the state xt. We want a general algorithm, which is
applicable to many different platforms (aircraft, helicopters,
cars, etc.). Hence, the model structure should be as general as
possible, leading us to,

xp
t+1 = fp

t (xp
t ) + Ap

t (x
p
t )x

k
t + Gp

t (x
p
t )w

p
t , (8a)

xk
t+1 = fk

t (xp
t ) + Ak

t (xp
t )x

k
t + Gk

t (xp
t )w

k
t , (8b)

mj,t+1 = mj,t, (8c)

y1,t = h1,t(x
p
t ) + Ct(x

p
t )x

k
t + e1,t, (8d)

y
(j)
2,t = h2,t(x

p
t ) + Hj,t(x

p
t )mj,t + e

(j)
2,t , (8e)

where j = 1, . . . ,Mt and the noise for the platform states is
assumed white and Gaussian distributed with

wt =
(

wp
t

wk
t

)
∼ N (0, Qt), Qt =

(
Qp

t Qpk
t

(Qpk
t )T Qk

t

)
. (8f)

To simplify the notation in the rest of the paper, denote fp
t (xp

t )
with fp

t , Ap
t (x

p
t ) withAp

t and so on. The measurement noise
is assumed white and Gaussian distributed according to

e1,t ∼ N (0, R1,t), (8g)

e
(j)
2,t ∼ N (0, Rj

2,t), j = 1, . . . ,Mt. (8h)

Finally, xk
0 is Gaussian,

xk
0 ∼ N (x̄0, P̄0), (8i)

and the density for xp
0 can be arbitrary, but it is assumed

known.
There are two different measurement models, (8d) and (8e),

where the former only measures quantities related to the
platform, whereas the latter will also involve the map states.
Section IV describes a detailed application example using
experimental data, where (8d) is used to model inertial sensors
and (8e) is used to model a camera.

III. PARTICLE FILTER FOR SLAM UTILIZING STRUCTURE

In Section III-A the proposed SLAM algorithm is given and
in the subsequent sections the details of the algorithm are
discussed.



A. Algorithm

The algorithm presented in this paper draws on several
rather well known algorithms. It is based on the RBPF/MPF

method, [4]–[9]. The FastSLAM algorithm [18] is extended
by not only including the map states, but also the states
corresponding to a linear Gaussian sub-structure present in the
model for the platform. Assuming that the platform is modeled
in the form given in (8), the SLAM-method utilizing structure
is given in Algorithm 1.

Algorithm 1: Particle filter for SLAM utilizing structure

1) Initialize the particles

x
p,(i)
1|0 ∼ p(xp

1|0),

x
k,(i)
1|0 = x̄k

1|0,

P
k,(i)
1|0 = P̄1|0, i = 1, . . . , N,

where N denotes the number of particles.
2) If there is a new map related measurement available

perform data association for each particle, otherwise
proceed to step 3.

3) Compute the importance weights according to

γ
(i)
t = p(yt|xp,(i)

1:t , y1:t−1), i = 1, . . . , N,

and normalize γ̃
(i)
t = γ

(i)
t /

∑N
j=1 γ

(j)
t .

4) Draw N new particles with replacement (resam-
pling) according to, for each i = 1, . . . , N

Pr(x(i)
t|t = x

(j)
t|t ) = γ̃

(j)
t , j = 1, . . . , N.

5) If there is a new map related measurement, perform
map estimation and management (detailed below),
otherwise proceed to step 6.

6) Particle filter prediction and Kalman filter (for each
particle i = 1, . . . , N )

a) Kalman filter measurement update,

p(xk
t |x

p
1:t, y1:t) = N (xk

t |x̂
k,(i)
t|t , P

(i)
t|t ),

where x̂
k,(i)
t|t and P

(i)
t|t are given in (11).

b) Time update for the nonlinear particles,

x
p,(i)
t+1|t ∼ p(xt+1|t|x

p,(i)
1:t , y1:t).

c) Kalman filter time update,

p(xk
t+1|x

p
1:t+1, y1:t)

= N (xk
t+1|t|x̂

k,(i)
t+1|t, P

(i)
t+1|t),

where x̂
k,(i)
t+1|t and P

(i)
t+1|t are given by (12).

7) Set t := t + 1 and iterate from step 2.

Note that yt denotes the measurements present at time t. The
following theorem will give all the details for how to compute
the Kalman filtering quantities. It is important to stress that

all embellishments available for the particle filter can be used
together with Algorithm 1. To give one example, the so-called
FastSLAM 2.0 makes use of an improved proposal distribution
in step 6b [20].

Theorem 1: Using the model given by (8), the conditional
probability density functions for xk

t and xk
t+1 are given by

p(xk
t |x

p
1:t, y1:t) = N (x̂k

t|t, Pt|t), (10a)

p(xk
t+1|x

p
1:t+1, y1:t) = N (x̂k

t+1|t, Pt+1|t), (10b)

where

x̂k
t|t = x̂k

t|t−1 + Kt(y1,t − h1,t − Ctx̂
k
t|t−1), (11a)

Pt|t = Pt|t−1 −KtS1,tK
T
t , (11b)

S1,t = CtPt|t−1C
T
t + R1,t, (11c)

Kt = Pt|t−1C
T
t S−1

1,t , (11d)

and

x̂k
t+1|t = Āk

t x̂k
t|t + Gk

t (Qkp
t )T (Gp

t Q
p
t )
−1zt

+ fk
t + Lt(zt −Ap

t x̂
k
t|t), (12a)

Pt+1|t = Āk
t Pt|t(Āk

t )T + Gk
t Q̄k

t (Gk
t )T − LtS2,tL

T
t , (12b)

S2,t = Ap
t Pt|t(A

p
t )

T + Gp
t Q

p
t (G

p
t )

T , (12c)

Lt = Āk
t Pt|t(A

p
t )

T S−1
2,t , (12d)

where

zt = xp
t+1 − fp

t , (13a)

Āk
t = Ak

t −Gk
t (Qkp

t )T (Gp
t Q

p
t )
−1Ap

t , (13b)

Q̄k
t = Qk

t − (Qkp
t )T (Qp

t )
−1Qkp

t . (13c)

Proof: See [9].

B. Data Association

Data association is a complicated problem, but it has
been studied extensively in the literature for many tracking
applications, see e.g., [21]–[23]. Classical methods such as
the nearest neighbor (NN), probabilistic data association
(PDA), joint probabilistic data association (JPDA) or multi-
hypothesis tracking (MHT) exist for single and multiple tar-
gets. Depending on the number of targets, the false alarm
rate and the probability of detection, these methods varies
in performance and ability to express these phenomena. The
methods mentioned above were originally developed to be
used together with estimators based on Kalman filters. The use
of particle filters opens up for other data association methods,
typically more integrated with the filter.

The particle implementation of the SLAM problem will lead
to an increased complexity for the data association. This is
because for each particle in the filter there exist several map
entries. Hence, many classical association methods will be too
computationally intensive for a direct implementation.



C. Likelihood Computation

In order to compute the importance weights {γ(i)
t }N

i=1 in
Algorithm 1, the following likelihoods have to be evaluated

γ
(i)
t = p(yt|xp,(i)

1:t , y1:t−1), i = 1, . . . , N. (14)

The standard way of performing this type of computation
is simply to marginalize the Kalman filter variables xk

t and
{mj,t}Mt

j=1,

p(yt|xp,(i)
1:t , y1:t−1) =

∫
p(yt, x

k
t ,mt|xp,(i)

1:t , y1:t−1)dxk
t dmt,

(15)

where

p(yt, x
k
t ,mt|xp,(i)

1:t , y1:t−1) = p(yt|xk
t ,mt, x

p,(i)
t )×

p(xk
t |x

p,(i)
1:t , y1:t−1)

Mt∏
j=1

p(mj,t|xp,(i)
1:t , y1:t−1).

(16)

Let us consider the case where both y1,t and y2,t are present,
i.e., yt =

(
yT
1,t yT

2,t

)T
. Note that the cases where either y1,t

or y2,t are present are obviously special cases. First of all, the
measurements are conditionally independent given the state,
implying that

p(yt|xk
t ,mt, x

p,(i)
t ) = p(y1,t|xk

t , x
p,(i)
t )

Mt∏
j=1

p(y(j)
2,t |x

p,(i)
t ,mj,t).

(17)

Now, inserting (17) into (16) gives

p(yt, x
k
t ,mt|xp,(i)

1:t , y1:t−1) =

p(y1,t|xk
t , x

p,(i)
t )p(xk

t |x
p,(i)
1:t , y1:t−1)×

Mt∏
j=1

p(mj,t|xp,(i)
1:t , y1:t−1)p(y(j)

2,t |x
p,(i)
t ,mj,t), (18)

which inserted in (15) finally results in

p(yt|xp,(i)
1:t , y1:t−1) =

∫
p(y1,t|xk

t , x
p,(i)
t )p(xk

t |x
p,(i)
1:t , y1:t−1)dxk

t

×
Mt∏
j=1

∫
p(y

(j)
2,t |x

p,(i)
t , mj,t)p(mj,t|xp,(i)

1:t , y1:t−1)dm1,t · · · dmMt,t.

(19)

All the densities present in (19) are known according to

p(xk
t |x

p
1:t, y1:t−1) = N (xk

t |x̂k
t|t−1, Pt|t−1), (20a)

p(mj,t|xp
1:t, y1:t−1) = N (mt|m̂j,t−1,Σt−1), (20b)

p(y1,t|xk
t , xp

t ) = N (y1,t|h1,t + Ctx
k
t , R1), (20c)

p(y(j)
2,t |x

p
t ,mj,t) = N (y(j)

2,t |h2,t + Hj,tmj,t, R
j
2). (20d)

Here it is important to note that the standard FastSLAM

approximation has been invoked in order to obtain (20d). That
is, the measurement equation (8e) is linearized with respect to
the map states mj,t. The reason for this approximation is that
we for computational reasons want to use a model suitable

for the RBPF/MPF, otherwise the dimension will be much too
large for the particle filter to handle. Using (20), the integrals
in (19) can now be solved, resulting in

p(yt|xp,(i)
1:t , y1:t−1) =

N (y1,t − h1,t − Ctx̂
k,(i)
t|t−1, CtP

(i)
t|t−1C

T
t )

×
Mt∏
j=1

N (y(j)
2,t−h2,t−Hj,tm̂j,t−1,Hj,tΣj,t−1(Hj,t)T +Rj

2).

(21)

D. Map Estimation and Map Management

A simple map consists of a collection of map point entries
{mj,t}Mt

j=1, each consisting of:
• m̂j,t – estimate of the position (three dimensions).

• Σj,t – covariance for the position estimate.
Note that this is a very simple map parameterization. Each
particle has an entire map estimate associated to it. Step 5
of Algorithm 1 consists of updating these map estimates in
accordance with the new map-related measurements that are
available. First of all, if a measurement has been successfully
associated to a certain map entry, it is updated using the
standard Kalman filter measurement update according to

mj,t = mj,t−1 + Kj,t

(
y
(j)
2,t − h2,t

)
, (22a)

Σj,t =
(
I −Kj,tH

T
i,t

)
Σj,t−1, (22b)

Kj,t = Σj,t−1Hj,t

(
Hj,tΣj,t−1H

T
j,t + R2

)−1
. (22c)

If an existing map entry is not observed, the corresponding
map estimate is simply propagated according to its dynamics,
i.e., it is unchanged

mj,t = mj,t−1, (23a)

Σj,t = Σj,t−1. (23b)

It has to be checked if any of the entries should be removed
from the map.

Finally, initialization of new map entries have to be handled.
If h2,t(x

p
t ,mj,t) is bijective with respect to the map mj,t

this can be used to directly initialize the position from the
measurement y2,t. However, this is typically not the case,
implying that there is a need for more than one measurement
in order to be able to initialize a new map entry, utilizing for
example triangulation.

E. Approximate Algorithm

The computational complexity of Algorithm 1 will in-
evitably be high, implying that it is interesting to consider
ideas on how to reduce it. In the present context multi-
rate sensors (sensors providing measurements with different
sampling times) are typically used. This can be exploited in
a way similar to that in [19]. The idea is that, rather than
running Algorithm 1 at the same frequency as the fast sensor,
it is executed at the same frequency as the slow sensor, with



a nested filter handling the fast sensor measurements. This
approach involves approximations.

In this way both the linear Gaussian sub-structure in the
platform model and the multi-rate properties of the sensors
are exploited in order to obtain an efficient algorithm [19].

IV. APPLICATION EXAMPLE

In this section we provide a rather detailed treatment of
a SLAM application, where Algorithm 1 is used to fuse
measurements from a camera, three accelerometers and three
gyroscopes. The sensor has been attached to a high precision
6 DoF ABB IRB1440 industrial robot. The reason for this
is that the robot will allow us to make repeatable 6 DoF
motions and it will provide the true position and orientation
with very high accuracy. This enables systematic evaluation
of algorithms. The sensor and its mounting to the industrial
robot is illustrated in Figure. 1.

The main objective is to find the position and orientation
of the sensor from sensor data only, despite problems such as
biases in the measurements. In the surrounding neighbourhood
features are placed in such a way that the vision system can
easily extract features. These are used in SLAM to reduce the
problem caused by inertial drift and bias in the IMU sensor.

A. Model

The basic part of the state vector consists of position
pt ∈ R3, velocity vt ∈ R3, and acceleration at ∈ R3,
all described in an earth-fixed reference frame. Furthermore,
the state vector is extended with bias states for acceleration
ba,t ∈ R3, and angular velocity bω,t ∈ R3 in order to account
for sensor imperfections. The state vector also contains the
angular velocity ωt and a unit quaternion qt, which is used to
parameterize the orientation.

In order to put the model in the RBPF/MPF framework, the
state vector is split into two parts, one estimated using Kalman
filters xk

t and one estimated using the particle filter xp
t . Hence,

define

xk
t =

(
vT

t aT
t (bω,t)T (ba,t)T ωT

t

)T
, (24a)

xp
t =

(
pT

t qT
t

)T
, (24b)

which means xk
t ∈ R15 and xp

t ∈ R7. In inertial estimation it
is essential to clearly state which coordinate system any entity
is expressed in. Here the notation is simplified by suppressing
the coordinate system for the earth-fixed states, which means
that

pt = pe
t , vt = ve

t , at = ae
t , (25a)

wt = we
t , bω,t = bb

ω,t, ba,t = bb
a,t. (25b)

Likewise, the unit quaternions represent the rotation from the
earth-fixed system to the body (IMU) system, since the IMU is
rigidly attached to the body (strap-down),

qt = qbe
t =

(
qt,0 qt,1 qt,2 qt,3

)T
. (26)

The quaternion estimates are normalized, to make sure that
they still parameterizes an orientation. Further details re-
garding orientation and coordinate systems are given in Ap-
pendix A.

1) Dynamic Model: The dynamic model describes how the
platform and the map evolve over time. These equations are
given below, in the form (8a) – (8d), suitable for direct use in
Algorithm 1.

vt+1

at+1

bω,t+1

ba,t+1

ωt+1


︸ ︷︷ ︸

xk
t+1

=


I TI 0 0 0
0 I 0 0 0
0 0 I 0 0
0 0 0 I 0
0 0 0 0 I


︸ ︷︷ ︸

Ak
t


vt

at

bω,t

ba,t

ωt


︸ ︷︷ ︸

xk
t

+


0 0 0 0
I 0 0 0
0 I 0 0
0 0 I 0
0 0 0 I


︸ ︷︷ ︸

Gk
t


w1,t

w2,t

w3,t

w4,t


︸ ︷︷ ︸

wk
t

(27a)

(
pt+1

qt+1

)
︸ ︷︷ ︸

xp
t+1

=
(

pt

qt

)
︸ ︷︷ ︸
fp

t (xp
t )

+

(
TI T 2

2 I 03×9

04×3 04×9 −T
2 S̃(q)

)
︸ ︷︷ ︸

Ap
t (xp

t )


vt

at

bω,t

ba,t

ωt


︸ ︷︷ ︸

xk
t

+wp
t ,

(27b)

mj,t+1 = mj,t, j = 1, . . . ,Mt, (27c)

where

S̃(q) =


−q1 −q2 −q3

q0 q3 −q2

−q3 q0 q1

q2 −q1 q0

 , (28)

and where I denotes the 3 × 3 unit matrix and 0 denotes
the 3 × 3 zero matrix, unless otherwise stated. The process
noise wk

t is assumed to be independent and Gaussian, with
covariance Qk

t = diag(Qa, Qbω
, Qba

, Qω).
2) Measurement Model – Inertial Sensors: The IMU con-

sists of accelerometers measuring accelerations ya,t in all three
dimensions, a gyroscope measuring angular velocities yω,t in
three dimensions and a magnetometer measuring the direction
to the magnetic north pole. Due to the fairly magnetic environ-
ment it is just the accelerometers and gyroscopes that are used
for positioning. The inertial sensors operate at 100 Hz. For
further details on inertial sensors, see for instance [24]–[26].
The inertial measurements are related to the states according



to,

y1,t =
(

yω,t

ya,t

)
=
(

0
−R(qt)ge

)
︸ ︷︷ ︸

h(xp
t )

+
(

03 03 I 03 R(qt)
03 R(qt) 03 I 03

)
︸ ︷︷ ︸

C(xp
t )


vt

at

bω,t

ba,t

ωt


︸ ︷︷ ︸

xk
t

+
(

e1,t

e2,t

)
︸ ︷︷ ︸

et

, (29)

which obviously is in the form required by (8). The mea-
surement noise et is assumed Gaussian with covariance Rt =
diag(Rω, Ra).

3) Measurement Model – Camera: Before the camera im-
ages are used they are adjusted according to the calibration.
This allows us to model the camera using the pinhole model
with focal length f = 1, according to [27], [28],

y2,t = ymj ,t =
1
zc
t

(
xc

t

yc
t

)
︸ ︷︷ ︸

hc(mj,t,pt,qt)

+ e3,t, (30)

where

mc
j,t =

xc
t

yc
t

zc
t

 = R(qcb
t )R(qbe

t )(mj,t − pt) + rc. (31)

Here, rc is a fixed vector representing the translation between
the camera and the IMU and qcb

t is the unit quaternion describ-
ing the rotation from the IMU to the camera. The covariance
for the measurement noise is denoted Rc.

This particular sensor is equipped with an internal camera,
which is synchronized in time with the inertial measurements.
This provides a good setup for fusing vision information with
the inertial information. Images are available at 12.5 Hz in
a resolution of 340 × 280 pixels. In order to use vision for
feature extraction and estimation we have made use of standard
camera calibration techniques, see e.g., [29].

The features are not exactly in the form suitable for
marginalization in the particle filter. Hence, we are forced to
use an approximation in order to obtain a practical algorithm.
The standard approximation [13] is in this case simply to
linearize the camera measurement equations according to,

ymj,t = hc(mj,t, pt, qt) + e3,t (32a)

≈ hc
j(m̂j,t|t−1, pt, qt)−Hj,tm̂j,t|t−1︸ ︷︷ ︸

h(xp
t )

+ Hj,tmj,t + e3,t, j = 1, . . . ,Mt, (32b)

where the Jacobian matrix Hj,t is straightforwardly computed
using the chain rule, i.e.,

Hj,t =
∂hc

∂mj
=

∂hc

∂mc
j

∂mc
j

∂mj
, (33)

Figure 2. The SLAM setup in the industrial robot laboratory, with the camera
and IMU sensor in the robot manipulator. The scene consists of black balls
on a stick, making the feature extraction very simple.

The two partial derivatives in (33) are given by

∂hc

∂mc
j

=

(
1
zc 0 − xc

(zc)2

0 1
zc − yc

(zc)2

)
, (34a)

∂mc
j

∂mj
= R(qcb

t )R(qbe
t ). (34b)

The camera model delivers point-measurements of features
in the field-of-view. This can be done using several different
methods with different performance. An often used detector is
the Harris detector [30], which basically extracts well-defined
corners in an image. There are more elaborate detectors
available, for example the so-called scale-invariant feature
transform (SIFT) [31]. It is also possible to refine the feature
detection process even further by estimating the slope of an
image plane [14]. Many of these have good performance,
however at a rather high computational complexity. From
a computer vision perspective the current environment is
rather simple, hence fast and simple corner detectors can be
successfully applied.

B. Experiment Setup

The scene surrounding the platform is equipped with easily
detectable features placed in the vicinity as depicted in Fig-
ure. 2. In Table I the parameters in the SLAM example are
presented.

In the example presented here, the noise level in the
measurements is such that a simplified version of the NN
method can be used to solve the data association problem.
Hence, the idea is to associate only one measurement to a
track (map entry) at any given time. Instead of optimizing
globally (global nearest neighbor (GNN)), this is done sub-
optimally, assigning the closest one first. This seems to work
perfectly well for the present application.

The experiment begins with zero velocity at a given point.
Before starting the experiment the IMU sensor was calibrated,
in order to correct for initial bias contribution. In Figure. 3 the



Table I
SYSTEM, FILTER, AND SENSOR PARAMETERS FOR THE EXPERIMENT.

Process Noise
Cov. Acceleration Qa = diag

(
0.52 0.52 0.52

)
Cov. Bias angular rate Qbω = diag

(
10−10 10−10 10−10

)
Cov. Bias acceleration Qba = diag

(
0.0012 0.0012 0.0012

)
Cov. Angular rate Qω = diag

(
0.0012 0.0012 0.0012

)
Measurement Noise
Cov. Camera Rc = diag

(
0.012 0.012

)
Cov. Accelerometer Ra = diag

(
0.022 0.022 0.032

)
Cov. Gyroscope Rw = diag

(
0.022 0.032 0.032

)
System
Sample freq. (IMU) 1/T = 100 Hz
Sample freq. camera 1/Tc = 12.5 Hz
Camera resolution 340× 280 pixels
Number of particles N = 100

true trajectory is depicted. Note that the motion is only in the
horizontal plane, i.e., with a fixed height, and with constant
orientation.

C. Experimental Results

In this section results from the experiment are presented. In
Figure. 3 the result from dead-reckoning, i.e., direct double
integration of the IMU acceleration data (after appropriate
rotation from sensor to the earth-fixed system) is depicted
together with the estimated trajectory using the MPF-SLAM

method. The ground truth is provided from accurate measure-
ments in the robot. Since the motion was rather smooth, high
frequency dynamics in the robot arm was not excited, hence
yielding a very accurate ground truth value. As can be seen
the performance in position is significantly improved when the
MPF-SLAM method is used, compared to only dead-reckoning.
The reason is the filter, where the orientation and acceleration
coupling together with the map features improve the estimates.
In the current experiment the bias terms were not used.

In Figure. 4 the measurement from the accelerometers, the
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Figure 3. The ground truth position from the industrial robot, dead-reckoned
position from inertial sensor data (5 seconds in 100 Hz), the estimate from
the MPF-SLAM algorithm with vision measurements.
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Figure 4. The true acceleration (from the industrial robot), the measured
acceleration (from the IMU sensor) and the estimates from Algorithm 1.

MPF-SLAM, and the ground truth from the industrial robot are
depicted for the experiment.

The vision system is used to build up the map (feature tracks
of landmarks), which is depicted in Figure. 5 for a specific
time. Note that the uncertainty is visible in the spread of the
particle cloud.

t=65

Figure 5. Vision measurements from the feature extraction (cross) and current
map represented by the particle cloud (red dots). Please note that this figure
has to be viewed in color.

V. CONCLUSION

This contribution has introduced a Rao-Black-
wellized/marginalized particle filtering framework for
solving the SLAM problem, enabling high dimensional state
vectors for the moving platform. The idea draws on the
FastSLAM algorithm, but rather than using only the map, we
also include all the states corresponding to a linear Gaussian
sub-structure in the analytically solvable Kalman filter part.
The approach was validated using a simple application



example, where inertial measurements were fused with vision
measurements. The correctness of the result was assessed
using the ground truth.
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APPENDIX A
COORDINATE SYSTEMS

The following convention is used to rotate a vector from a
coordinate system A to a coordinate system B,

xB = RBAxA.

where RBA is used to denote the rotation matrix describing the
rotation from A to B. Hence, we can get from system A to C,
via B according to

RCA = RCBRBA.

This can also be expressed using unit quaternions qA,

uB = q̄A � uA � qA,

where uA is the quaternion extension of the vector xA, i.e.,
uA = (0 xT

A )T and � represents quaternion multiplica-
tion. Furthermore, ū denotes the quaternion conjugate. See
e.g., [32], [33] for an introduction to unit quaternions and
other rotation parameterizations.

It is straightforward to convert a given quaternion into the
corresponding rotation matrix,

R(q) =
(

(q2
0 + q2

1 − q2
2 − q2

3) 2(q1q2 − q0q3) 2(q1q3 + q0q2)
2(q1q2 + q0q3) (q2

0 − q2
1 + q2

2 − q2
3) 2(q2q3 − q0q1)

2(q1q3 − q0q2) 2(q2q3 + q0q1) (q2
0 − q2

1 − q2
2 + q2

3)

)
.

The following coordinate systems are used in this paper. An
earth-fixed (denoted with e), body or inertial sensor system
(denoted with b), and camera system (denoted c).
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