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Abstract— An essential part of future collision avoidance sys-
tems is to be able to predict road curvature. This can be basedon
vision data, but the lateral movement of leading vehicles can also
be used to support road geometry estimation. This paper presents
a method for detecting lane departures, including lane changes,
of leading vehicles. This information is used to adapt the dynamic
models used in the estimation algorithm in order to accommodate
for the fact that a lane departure is in progress. The goal is
to improve the accuracy of the road geometry estimates, which
is affected by the motion of leading vehicles. The significantly
improved performance is demonstrated using sensor data from
authentic traffic environments.

Index Terms— Automotive tracking, change detection, state
estimation, Kalman filter, CUSUM-test

I. I NTRODUCTION

This paper is concerned with the problem of simultaneously
estimating the position of surrounding vehicles and the road
geometry. The position of the surrounding vehicles is mea-
sured using a vision system and a radar, whereas the shape of
the road is measured using vision only. It has been shown that
integrating the tracking of other vehicles with the tracking of
the road geometry parameters can give better performance than
treating these problems separately [1, 4, 6, 16]. A fundamental
assumption is that leading vehicles will keep following their
lane, and their lateral movement can thus be used to support
the otherwise difficult process of road geometry prediction.
For example, when entering a curve as in Fig. 1 it can be
seen that the vehicles ahead all start moving to the right and
thus there is a high probability that the road is turning to the
right. This information can be used to significantly improvethe
rather crude road geometry estimates provided by the vision
system. The assumption introduced above can mathematically
be represented aṡyi = 0, whereyi is the lateral position of
vehicle i. Note thatyi is the position in relation to the lane,
not the position in global Cartesian coordinates or coordinates
attached to the host vehicle. In order to efficiently handle this,
a road aligned, curved coordinate system is employed. It is
important to note that the assumption of zero lateral velocity
of the leading vehicles does not hold when they depart from
the lane. This is typically accounted for in the model by
adding white noise to the equation. The amount of noise,
parameterized by the covariance matrixQlat, that should be
used is a compromise. On the one hand it needs to be small

enough for the lateral movement of the tracked vehicles to in
fact improve the road prediction. On the other hand, it needsto
be large enough so that a lane departure of a leading vehicle
is not misinterpreted as a curve entry. This exemplifies the
fundamental compromise present in all recursive estimation
problems, the trade-off between noise attenuation and tracking
accuracy. This compromise is illustrated in Fig. 2, where the
estimated road curvature, one of the road geometry parameters,
using two different filters is plotted; one filter with a high value
of Qlat and one filter with a low. For reasons of comparison,
the true values for the road curvature which is obtained using
the method proposed in [7] and the raw measurements from
the vision system are also included. It is interesting to compare
the raw vision measurements to the result from the filter. This
clearly illustrates the power of a model based sensor fusion
approach.

In Fig. 2, an exit phase of a curve where the curvature
drops from about1.8 · 10−3 [m−1] to zero can be seen. In
this particular scenario there are two leading vehicles that can
support our curvature estimate, see Fig. 1. It can be seen that
the filter with a low value ofQlat performs much better during
the curve exit and this is how we would really like to tune our
filter. However, at a later stage the performance of this filter
deteriorates. If the recorded video is studied, see Fig. 3, it can
be seen that this performance degradation coincides exactly
with a lane change of one of the leading vehicles. The filter
with a higher value ofQlat does not suffer from this problem,
but on the other hand it has a time delay in the estimate during

Fig. 1. When entering a curve, all vehicles start moving in the lateral
direction. This information can be used to support the road geometry estimate.
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Fig. 2. Comparison of estimation performance from two filters, one with a
large Qlat and one with a smallQlat. The raw measurement signal from the
image processing unit and the reference signal are also included. Comparing
the raw vision measurement to the result from the filters clearly illustrates the
power of a model based sensor fusion approach.

the curve exit.
The aim of this paper is to detect lane departures of the

leading vehicles and adapt the models accordingly, in order
to obtain an improved road geometry estimate. When the
lane departures have been detected, the compromise discussed
above can systematically be resolved. This is accomplishedby
using a smallQlat when the assumptioṅyi = 0 is valid and
only increaseQlat during lane departure maneuvers.

Detection of lane departures and other model changes in
automotive tracking has previously been studied, for example
in [10] and [14], where Interacting Multiple Models (IMM) [2]
are used. However, their purpose is to improve the position
estimates of the surrounding objects, rather than the road
geometry parameters. Another approach is presented in [15],
where a neural network is used to detect lateral movement in a
vision based system. The method we propose is different and
based on the standardcumulative sum(CUSUM) algorithm [9,
12], which is augmented with a module for correcting the error
caused by using the wrong model during the detection phase,
before the CUSUM algorithm alarms.

Fig. 3. A snapshot from the video just after time 4270 [s], where the lane
change of the tracked vehicle commences.

The paper is structured as follows. First, the dynamic model
and the estimation algorithm are briefly reviewed in SectionII.
This is followed by a discussion on how to detect lane depar-
tures of leading vehicles and how this information can be used
to obtain better estimates. In Section IV it is discussed howthe
error caused by using the wrong model during the detection
phase can be corrected. Finally, we provide a discussion on
alternative methods in Section V and state our conclusion in
Section VI.

II. ESTIMATION PROBLEM

The dynamic model is based on a curved, road-aligned
coordinate system, defined in Fig. 4, wherex is the longi-
tudinal position along the road andy is the lateral position
perpendicular tox. For example, this means that ifyi is the
lateral position of objecti, then yi = 0 simply means that
object i is at the center of our own lane, irrespective of road
shape. For the lateral dynamics, a constant position model is
used, i.e.,̇yi = 0, and for the longitudinal dynamics a constant
velocity model is used. Other states in the model are lane width
W , host vehicle lateral positionyoff, host vehicle heading angle
relative to the laneΨrel, road curvature parameterc0, which is
defined as the inverse road radius and finally the road clothoid
parameterc1, i.e. the curvature change rate. The vision system
delivers estimates ofW , yoff, Ψrel and c0, which are used
as measurements in our estimation problem. Furthermore, the
radar provides measurements of the relative position of objects
resolved in the coordinate system(x̃, ỹ), attached to the host
vehicle. The dynamic model is discussed in more detail in the
Appendix and the resulting estimation problem and its solution
is treated in [5, 6, 8]. Tuning of the process and measurement
noise will not be discussed in detail, except for the process
noise ofyi. The discrete-time dynamic model describing the
evolution ofyi over time is given by

yi
t+1 = yi

t + wi
t, (1)

yoff
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Fig. 4. The surrounding vehicles are conveniently modeled and tracked using
a curved, road-aligned coordinate system(x, y).
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wherewi
t is zero mean white Gaussian noise, with variance

Qlat. In applying an Extended Kalman Filter (EKF), the tuning
parameterQlat describes to what degree it is believed that
vehicles will keep driving at the same lateral position in
relation to the lane.

III. D ETECTING LANE DEPARTURES

The approach employed for improving the road geometry
estimates based on detecting lane departures is illustrated in
Fig. 5. This is a standard approach within the area of change
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-
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Detector -Alarm

6

Fig. 5. The estimation algorithm delivers residuals, whichare used in the
detector to decide whether a change has occurred or not. If a change is detected
this information is fed back for use in the estimation algorithm. Note that in
this application, one detector for each tracked vehicle is needed.

detection, which is a well established research area, see e.g.
[3, 9, 11]. The aim of the detector in Fig. 5 is to detect lane
departures based on the information available in the residuals
εt = yt − ŷt from the estimation algorithm. When a lane
departure is detected this is indicated by an alarm from the
detector, which is used to temporarily change model for the
vehicle performing the lane departure. This implies that the
estimation algorithm can provide a better estimate, simplydue
to the fact that a more accurate model is used. This section
is concerned with devising the detection algorithm illustrated
with the detection box in Fig. 5. The estimation algorithm used
in the present studies is based on the extended Kalman filter
[5, 6]. The basic components of a change detection algorithm
are illustrated in Fig. 6.

-εt Distance
Measure

-st Averaging -gt Thresholding -Alarm

Stopping rule

Fig. 6. The components of the detector are a distance measure, and a stopping
rule, where the latter consists of an averaging and a thresholding procedure.

A. Distance Measure

The distance measure is used to assess whether a change
has occurred or not. It is an important design variable, that
should be chosen with the application in mind. Common
standard choices are to use the residualsst = εt or the
squared residualsst = ε2

t . However, in the present application
this would provide poor detection performance. The reason
is that the residuals only contain angular information. This
would imply that the distance measure implicitly depend on

the longitudinal distance to the leading vehicle, whereas for
detecting lane departures we are only interested in lateral
distances. If the longitudinal distance to the leading vehicle
is small, a small change of its lateral position would lead to
a large angular change. If the same change of lateral position
would be observed for a vehicle further away, the angular
change would be smaller. Hence, we need a distance measure
that is invariant to the distance to the leading vehicle. The
most natural choice in this respect is provided by lateral
displacement of the leading vehicle, approximately given by

st = |εtrt|, (2)

wherert denotes the distance to the leading vehicle, available
from the estimation algorithm, primarily based on the radar
measurements. The reason for using|εtrt| and not justεtrt

in (2) is that we want to be able to detect both left and right
lateral displacements, using a one-sided test.

B. Stopping Rule

The stopping rule is used to give an alarm when an auxiliary
test statisticgt exceeds a certain threshold. One of the most
powerful tools for obtaining a good stopping rule in change
detection problems is provided by theCUSUM-test, introduced
by Page [12].

ALGORITHM 1 (CUSUM-test):
1) gt = gt−1 + st − ν,
2) If gt > h: Alarm, gt = 0 and talarm = t,
3) If gt < 0: gt = 0 and t̂change= t.

A rather detailed account of the CUSUM algorithm and its
application in state estimation problems is provided in [9].
However, for the discussion to come we point out that the
detection delay is the time delay between the actual event,
in this case the start of a lane change manoeuvre, and the
detection. In the CUSUM algorithm the detection delay is the
time it takes forgt to reach the thresholdh, i.e.,talarm− t̂change.
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Fig. 7. Illustrating how the estimation performance is improved using lane
departure detection. This is the same data using in Fig. 2, but the estimates
from the filter based on change detection is also included.
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This means that when an alarm is triggered, the actual event
took place a certain time ago. We will get back to this fact in
Section IV, where it is used to further enhance the estimation
performance.

C. Application and Result

When the CUSUM-test gives an alarm this is fed back to
the estimation algorithm, where an increasedQlat is employed
for the vehicle performing the lane departure. Since this model
better describes the lane departure it will result in better
estimates, which also is clear from Fig. 7. This lane departure
model is employed during an appropriate time, corresponding
to a typical lane change. After this we switch back to the
original model. The idea outlined above has been tested using
35 minutes of authentic traffic data. The detection performance
is detailed in Table I. For the present application a missed

TABLE I

DETECTION PERFORMANCE, BASED ON35 MINUTES OF AUTHENTIC

TRAFFIC DATA.

Correct detections 35
Missed detections 3
False detections 27

detection is much worse than false detection. A missed detec-
tion clearly degrades the estimation performance substantially,
see Fig. 7, whereas a false detection merely implies a slight
performance degradation, since more noise than necessary
is used in the model. It is interesting, and perhaps not too
surprising, to note that most of the false detections are dueto
sharp road turns. If these could be isolated, most of the false
detections could probably be eliminated. However, since the
false detections do not significantly degrade the performance
this has not been investigated further.

IV. FURTHER ENHANCEMENT

In this section, we introduce a way of correcting for the
error that is caused due to the fact that the wrong model
is used during the detection phase. The idea is to store
old measurementsyt, input signalsut, estimatesx̂t|t and
covariance matricesPt|t in a memory. We propose arefiltering
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Fig. 8. The change from Fig. 5 is that a memory block has been included. The
memory block stores the recent history of the measurements,input signals,
estimates and their covariance.

scheme, that on detection at timetalarm, the filter is rerun with
the correct model between timeŝtchange and talarm in order
to correct for the error that is caused by using the wrong
model. The estimate at timetalarm is then replaced with the
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Fig. 9. The behavior of the the three approaches when the lanechange
is detected. The filter with no detection scheme deteriorates, the filter with
detection converges when switching to the correct model, and the enhanced
detection algorithm jumps to the value it would have had if ithad used the
correct model from the beginning of the lane change.

estimate that is obtained using the correct model. A schematic
illustration of this idea is given in Fig. 8.

In our application, this means thatQlat is increased at time
t̂changeand then kept high according to the previous section so
that the total time equals the time of a typical lane change.
A result of this is typically a jump in the estimate at the
detection times. Two detailed examples of the behavior of the
enhanced algorithm are illustrated in Fig. 9 and Fig. 10. The
performance for a five minute data set is shown in Fig. 11.
From this figure it is interesting to note that in the last turn,
around time 4500 [s], there is a time delay in the filter which
is not present in any of the other turns. This is due to the fact
that there are no vehicles to support the estimate and thus the

4315 4320 4325 4330 4335 4340 4345 4350 4355

-1

-0. 8

-0. 6

-0. 4

-0. 2

0

0.2

0.4

0.6

0.8

1

x 10
 -3

Time [s]

C
ur

va
tu

re
 [1

/m
]

No detection
Detection
Detection, enhanced
True

Fig. 10. Same plots as in Fig. 9 but for a different time interval.
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Fig. 11. This figure shows the curvature estimate for a five minute data set collected in an authentic traffic environment, compared to the true curvature
value. The vertical lines indicates detection of lane changes. It is interesting to note that in the last turn, around time 4500 [s], there is a time delay in the
filter which is not present in any of the other turns. This is due to the fact that there are no vehicles to support the estimate and thus the turn can only be
detected robustly once we have entered it.

curve can only be detected robustly once we have entered it.

V. A LTERNATIVE METHODS

The paper [14] by Weisset al. discuss the use of a filter
based on interacting multiple models (IMM) for detecting
lane changes. The goal of their work is to improve the
position estimates of surrounding vehicles, rather than road
geometry. Of course, the same approach could be used in an
integrated road geometry and object tracking model as the one
proposed in this article in order to also improve road geometry
estimation.

In an IMM approach, two or more models are run simul-
taneously and they are each given a probability, of being the
“correct model”, based on their residuals. The final estimate
is then formed as a weighted average, using the probabilities
as weights. We believe that the methods we propose here,
based on the CUSUM-test, have several advantages. Firstly,
a lane change is a distinct event, so either one or the other
model is valid, not something in between. This means that
conceptually, it is preferable to switch models completely
rather than averaging two models. Secondly, the CUSUM-test
provides a clear indication that something has happened, rather
than a continuous change in probabilities and this indication
can be used to take appropriate countermeasures. For example,
this is necessary for initiating the refiltering scheme presented
in Section IV.

Another idea that could be interesting to investigate is to
use a two-sided test. In the proposed method, the absolute
value of the residuals was used in combination with a one-
sided test. An alternative could be to use the signed residuals
and a two-sided test, which might eliminate some of the false
alarms. The reason is that an alarm could be triggered by a
driver who is ”wobbling” in the lane but actually not changing
lanes. On the other hand, it could be argued that we would

benefit from detecting any kind of lateral movement, not just
lateral movement related to a lane change.

VI. CONCLUSION

By detecting behavior that deviates from the model in a
tracking system, we can rely more on the model when it in
fact is accurate. In the present application, this means that the
road geometry estimate, which is supported by the motion
of surrounding vehicles, can be significantly improved. A
CUSUM-test is used, which has the advantage of giving a
distinct alarm when a change has occurred. It is also concluded
that the method of correcting for the error that was caused by
using the wrong model during the detection phase does give
further improvements of the estimation accuracy.
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APPENDIX - DYNAMIC MODEL

In this appendix the underlying dynamic model that is
used throughout the paper is discussed in more detail. The
derivation is performed in continuous-time. The discrete-time
dynamic is obtained using the standard sampling formula [13],
under the assumption of piecewise constant input signals.

System Model

The coordinatesx andy denote the position in the curved
coordinate system, which is attached to the road according
to Fig. 4. The longitudinal coordinatex is relative, i.e.,x
is the longitudinal distance between the host vehicle and
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the tracked object. The motion model for the surrounding
vehicles is greatly simplified in using the curved, rather than
a Cartesian coordinate system. For example, it allows us
to use the equatioṅyi = 0, to model the assumption that
the surrounding vehicles will follow their own lanes. In the
longitudinal directionẍi = −a cos(Ψrel) will be used, where
a is the measured acceleration of the host vehicle, if available.
If there are no measurements of the host vehicle’s acceleration
it is simply modeled as a random walk. Hence, we typically
have the following motion model:

ẋi = vi, (3a)

v̇i = −a cos(Ψrel), (3b)

ẏi = 0, (3c)

wherevi is the longitudinal relative velocity of objecti, i.e.,
the time derivative ofxi. It is affected by the host vehicle
acceleration since it is therelative velocity that is modeled.
For the road geometry parameters we first clarify thatΨrel

is the angle between the host vehicle and the lane, see Fig 4,
whereasΨabs is the angle to some fix reference. A relationship
between the two can be obtained by differentiatingΨrel w.r.t.
time,

Ψrel = Ψabs+ γ ⇒ (4a)

Ψ̇rel = Ψ̇abs+ γ̇ = Ψ̇abs+
v

r
= Ψ̇abs+ c0v, (4b)

wherer is the current road radius,v the velocity andγ denotes
the angle between the lane and some fix reference.Ψ̇abs is
typically measured using a yaw rate sensor. Furthermore,

ẏoff = sin(Ψrel)v ≈ Ψrelv. (5)

Using Ẇ = 0 and ċ1 = 0 continuous-time motion equations
for the road model can be written

Ẇ = 0, (6a)

ċ0 = vc1, (6b)

ċ1 = 0, (6c)

and for the motion of host vehicle we have

ẏoff = vΨrel, (7a)

Ψ̇rel = vc0 + Ψ̇abs. (7b)

To account for uncertainties in the model we add zero
mean white Gaussian noise to the corresponding discrete-time
equations. The covariance matrices areQroad, Qhost and Qobj

for the road, host and object states, respectively. Note that
Qlat, defined in Section I is the diagonal component ofQobj

corresponding to (3c), the lateral movement of the tracked
vehicles.

Measurement Model

The measurements for the host vehicle areΨm
rel, cm

0 , Lm

and Rm, where the two latter are the distances to the left
and right lane marking, see Fig. 4. Superscriptm is used to
denote measured quantities. The (relative) position(x̃m, ỹm)
of the surrounding vehicles is measured using radar. Note
that the radar delivers measurements resolved in the Cartesian

coordinate system, which is attached to the vehicle. The
resulting measurement model is,

Lm = W/2 − yoff, (8a)

Rm = −W/2 − yoff, (8b)

Ψm
rel = Ψrel, (8c)

cm
0 = c0, (8d)

(

x̃i,m

ỹi,m

)

=
R(−Ψrel)

c0

(

(1 + c0y
i) sin(c0x

i)
(1 + c0y

i) cos(c0x
i) − 1 − c0yoff

)

,

(8e)

whereR(−Ψrel) is a rotational matrix performing clockwise
rotation of Ψrel radians. Furthermore, zero mean Gaussian
white measurement noise is added to (8). The covariance
matrices areRhost andRobj for the host/road and object states,
respectively.
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