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Abstract— An essential part of future collision avoidance sys- enough for the lateral movement of the tracked vehicles to in
tems is to be able to predict road curvature. This can be basedn  fact improve the road prediction. On the other hand, it néeds
vision data, but the lateral movement of leading vehicles caalso be large enough so that a lane departure of a leading vehicle

be used to support road geometry estimation. This paper preaits . . . =
a method for%eetecting gne de;yartures, includingpl)aﬁe C'%ages, is not misinterpreted as a curve entry. This exemplifies the

of leading vehicles. This information is used to adapt the dyamic fundamental compromise present .in all recur§ive esf[imatio
models used in the estimation algorithm in order to accommodte problems, the trade-off between noise attenuation anditrgc

for the fact that a lane departure is in progress. The goal is accuracy. This compromise is illustrated in Fig. 2, wherm th
to improve the accuracy of the road geometry estimates, Wit  egtimated road curvature, one of the road geometry parasnete

is affected by the motion of leading vehicles. The significaly . - ) . . ) . )
improved performance is demonstrated using sensor data fra YS9 two different filters is plotted; one filter with a highlue

authentic traffic environments. of Qiat and one filter with a low. For reasons of comparison,
. ) . the true values for the road curvature which is obtainedgusin
Index Terms— Automotive tracking, change detection, state .
estimation, Kalman filter, CUSUM-test the method proposed in [7] and the raw measurements from

the vision system are also included. It is interesting to gara
the raw vision measurements to the result from the filters Thi
. INTRODUCTION clearly illustrates the power of a model based sensor fusion
This paper is concerned with the problem of simultaneousiypproach.

estimating the position of surrounding vehicles and thelroa In Fig. 2, an exit phase of a curve where the curvature
geometry. The position of the surrounding vehicles is medrops from aboutl.8 - 102 [m~!] to zero can be seen. In
sured using a vision system and a radar, whereas the shapthisfparticular scenario there are two leading vehicles ¢tha
the road is measured using vision only. It has been shown tkapport our curvature estimate, see Fig. 1. It can be seén tha
integrating the tracking of other vehicles with the trackiof  the filter with a low value ofQ)5 performs much better during
the road geometry parameters can give better performaane tthe curve exit and this is how we would really like to tune our
treating these problems separately [1, 4, 6, 16]. A funddaterfilter. However, at a later stage the performance of thisrfilte
assumption is that leading vehicles will keep followingithe deteriorates. If the recorded video is studied, see Fig.&ri
lane, and their lateral movement can thus be used to supps#tseen that this performance degradation coincides gxactl
the otherwise difficult process of road geometry predictiowith a lane change of one of the leading vehicles. The filter
For example, when entering a curve as in Fig. 1 it can lpdth a higher value of);;; does not suffer from this problem,
seen that the vehicles ahead all start moving to the right abgt on the other hand it has a time delay in the estimate during
thus there is a high probability that the road is turning te th
right. This information can be used to significantly impraie
rather crude road geometry estimates provided by the vision
system. The assumption introduced above can mathemsticall
be represented ag = 0, wherey’ is the lateral position of
vehiclei. Note thaty’ is the position in relation to the lane,
not the position in global Cartesian coordinates or co@tdis
attached to the host vehicle. In order to efficiently hanbis, t
a road aligned, curved coordinate system is employed. It is
important to note that the assumption of zero lateral vgfoci
of the leading vehicles does not hold when they depart from
the lane. This is typically accounted for in the model by
adding white noise to the equation. The amount of noise, ] ) o
parameterized by the covariance mat€, that should be Fig. 1. When entering a curve, all vehicles start moving ie thteral

. . . direction. This information can be used to support the roamhgetry estimate.
used is a compromise. On the one hand it needs to be small
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Fig. 2. Comparison of estimation performance from two fifesne with a

The paper is structured as follows. First, the dynamic model
and the estimation algorithm are briefly reviewed in Section
This is followed by a discussion on how to detect lane depar-
tures of leading vehicles and how this information can beluse
to obtain better estimates. In Section IV it is discussed tiewv
error caused by using the wrong model during the detection
phase can be corrected. Finally, we provide a discussion on
alternative methods in Section V and state our conclusion in
Section VI.

Il. ESTIMATION PROBLEM

The dynamic model is based on a curved, road-aligned
coordinate system, defined in Fig. 4, wherds the longi-
tudinal position along the road andis the lateral position
perpendicular taz. For example, this means thatyf is the
lateral position of object, theny® = 0 simply means that
objecti is at the center of our own lane, irrespective of road

large Qi and one with a smaj,.. The raw measurement signal from theshape. For the lateral dynamics, a constant position madel i
image processing unit and the reference signal are alsoded! Comparing used, i.e.zy* = 0, and for the longitudinal dynamics a constant

the raw vision measurement to the result from the filtersrijléustrates the
power of a model based sensor fusion approach.

the curve exit.

velocity model is used. Other states in the model are langhwid
W, host vehicle lateral positiogs, host vehicle heading angle
relative to the lanel g, road curvature parametey, which is
defined as the inverse road radius and finally the road cldthoi
parameter;, i.e. the curvature change rate. The vision system

The aim of this paper is to detect lane departures of tikelivers estimates ofV, yofr, Vel and ¢o, Which are used
leading vehicles and adapt the models accordingly, in ordgs measurements in our estimation problem. Furthermage, th
to obtain an improved road geometry estimate. When thgdar provides measurements of the relative position afabj
lane departures have been detected, the compromise discusssolved in the coordinate syste, ), attached to the host
above can systematically be resolved. This is accompliblgedvehicle. The dynamic model is discussed in more detail in the
using a smallQ,x when the assumptiop; = 0 is valid and Appendix and the resulting estimation problem and its smtut

only increaseR|y; during lane departure maneuvers.

is treated in [5, 6, 8]. Tuning of the process and measurement

Detection of lane departures and other model changesnipise will not be discussed in detail, except for the process

automotive tracking has previously been studied, for etammoise ofy’. The discrete-time dynamic model describing the
in [10] and [14], where Interacting Multiple Models (IMM)2 evolution ofy over time is given by

are used. However, their purpose is to improve the position
estimates of the surrounding objects, rather than the road
geometry parameters. Another approach is presented in [15]
where a neural network is used to detect lateral movementin a
vision based system. The method we propose is different and
based on the standacdmulative sunCUSUM) algorithm [9,

12], which is augmented with a module for correcting the rerro
caused by using the wrong model during the detection phase,
before the CUSUM algorithm alarms.

i i
Yip1 = Yp + Wy,

(1)

Fig. 3. A snapshot from the video just after time 4270 [s], wehthe lane Fig. 4. The surrounding vehicles are conveniently modefetiteacked using
change of the tracked vehicle commences. a curved, road-aligned coordinate systémy).
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wherew! is zero mean white Gaussian noise, with variandbe longitudinal distance to the leading vehicle, whereas f
Qiat- In applying an Extended Kalman Filter (EKF), the tuningletecting lane departures we are only interested in lateral
parameterQ,; describes to what degree it is believed thatistances. If the longitudinal distance to the leading ekehi
vehicles will keep driving at the same lateral position iis small, a small change of its lateral position would lead to

relation to the lane. a large angular change. If the same change of lateral positio
would be observed for a vehicle further away, the angular
I1l. DETECTING LANE DEPARTURES change would be smaller. Hence, we need a distance measure

The approach employed for improving the road geometl;gat is invariant to the distance to the leading vehicle. The
ost natural choice in this respect is provided by lateral

estimates based on detecting lane departures is illudtiate ', . i X .
Fig. 5. This is a standard approach within the area of Chan(&léplacement of the leading vehicle, approximately given b

St = |€t7"t|, (2)
Ys By)p—1 wherer, denotes the distance to the leading vehicle, available
T | Estimation [ & Alarm  from the estimation algorithm, primarily based on the radar
ut Algorithm Detector measurements. The reason for usjag-| and not justs,r,
Pt in (2) is that we want to be able to detect both left and right

lateral displacements, using a one-sided test.

Fig. 5. The estimation algorithm delivers residuals, whick used in the .
detector to decide whether a change has occurred or nothHrege is detected B. Stopping Rule

this information is fed back for use in the estimation algon. Note that in The Stopping rule is used to give an alarm when an auxiliary
this application, one detector for each tracked vehicleeisded. . .
test statisticg; exceeds a certain threshold. One of the most
powerful tools for obtaining a good stopping rule in change
detection, which is a well established research area, gpe éetection problems is provided by t@&SUM-testintroduced
[3,9,11]. The aim of the detector in Fig. 5 is to detect lanky Page [12].
departures pased on the m_formauon ava_ulable in the ratsdu ALGORITHM 1 (CUSUM-test):
e = y¢ — ¢y from the estimation algorithm. When a lane
departure is detected this is indicated by an alarm from thel) 9 = gi-1 s —v,
detector, which is used to temporarily change model for the2) !f 9: > h: Alarm, g, = 0 andtajam = ,
vehicle performing the lane departure. This implies that th 3) If g: <0: g, = 0 andtchange= t-

estimation algorithm can provide a better estimate, Sindply o rather detailed account of the CUSUM algorithm and its
to the fact that a more accurate model is used. This sectighyjication in state estimation problems is provided in. [9]

is concerned with devising the detection algorithm ille®d | ovever. for the discussion to come we point out that the
with the detection box in Fig. 5. The estimation algorithredis yatection delay is the time delay between the actual event,
in the present studies is based on the extended Kalman fillelinis case the start of a lane change manoeuvre, and the

[5, 6]. The basic components of a change detection algorittygiection. In the CUSUM algorithm the detection delay is the
are illustrated in Fig. 6. time it takes forg, to reach the thresholll, i.e., tajarm— fchange
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Fig. 6. The components of the detector are a distance measute stopping
rule, where the latter consists of an averaging and a thidisigoprocedure.
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A. Distance Measure 1.5}

The distance measure is used to assess whether a chanc
has occurred or not. It is an important design variable, that
should be chosen with the application in mind. Common =25 : : : :
standard choices are to use the residuals= ¢; or the 4200 4268 Time [514270 w2 4280
squared residualg = 7. However, in the present application
this would provide poor detection performance. The reaséig. 7. lllustrating how the estimation performance is ioyed using lane
is that the residuals onIy contain angular information.sThFePanure detection. This is the same data using in Fig. 2theuestimates

. . . L rom the filter based on change detection is also included.
would imply that the distance measure implicitly depend on




This means that when an alarm is triggered, the actual ev x10°
. . . . . I L
took place a certain time ago. We will get back to this facti  1s} — No detection 1
; it i ; ---- Detecti
Section IV, where it is used to further enhance the estimati T DZS&!SE, enhanced
performance. ir True 1
05 5
C. Application and Result
or ~ PR

When the CUSUM-test gives an alarm this is fed back S b
the estimation algorithm, where an increaggd; is employed o5k |
for the vehicle performing the lane departure. Since thisieho \W
better describes the lane departure it will result in bett = -1} 1
estimates, which also is clear from Fig. 7. This lane departL
model is employed during an appropriate time, correspandi 15[ 1
to a typical lane change. After this we switch back to th
original model. The idea outlined above has been testedjus
35 minutes of authentic traffic data. The detection perforrman 5 ‘ ‘ ‘

Curvature [1/m]

is detailed in Table |. For the present application a miss: 4260 s [314270 4215 4280
TABLE | Fig. 9. The behavior of the the three approaches when the dhaage
DETECTION PERFORMANCEBASED ON 35 MINUTES OF AUTHENTIC is detected. The filter with no detection scheme deterisratee filter with
TRAFFIC DATA. detection converges when switching to the correct model, the enhanced
detection algorithm jumps to the value it would have had iiad used the
Correct detections 35 correct model from the beginning of the lane change.
Missed detections| 3
False detections | 27

detection is much worse than false detection. A missed detestimate that is obtained using the correct model. A schemat
tion clearly degrades the estimation performance subatgnt illustration of this idea is given in Fig. 8.

see Fig. 7, whereas a false detection merely implies a slightin our application, this means th&t; is increased at time
performance degradation, since more noise than necessaghgeand then kept high according to the previous section so
is used in the model. It is interesting, and perhaps not tdeat the total time equals the time of a typical lane change.
surprising, to note that most of the false detections aretdueA result of this is typically a jump in the estimate at the
sharp road turns. If these could be isolated, most of the falgetection times. Two detailed examples of the behavior ef th
detections could probably be eliminated. However, sin@ tenhanced algorithm are illustrated in Fig. 9 and Fig. 10. The
false detections do not significantly degrade the perfomaarperformance for a five minute data set is shown in Fig. 11.

this has not been investigated further. From this figure it is interesting to note that in the last turn
around time 4500 [s], there is a time delay in the filter which
IV. FURTHER ENHANCEMENT is not present in any of the other turns. This is due to the fact

In this section, we introduce a way of correcting for théhat there are no vehicles to support the estimate and tleus th

error that is caused due to the fact that the wrong model
is used during the detection phase. The idea is to store
old measurementg;, input signalsu;, estimatesz,, and x 10

-3

covariance matrices,|; in a memory. We proposerefiltering L] T No detection
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Fig. 8. The change from Fig. 5 is that a memory block has begdnded. The 0.6

memory block stores the recent history of the measuremerst signals, 0.8
estimates and their covariance.

ERs ]

scheme, that on detection at timgm, the filter is rerun with 4315 4320 4325 4330 _43‘35 4340 4345 4350 4355
the correct model between timéghange and tajam in order Time [s]

to correct for the error that 1S Qaused by using th_e Wrorfigg. 10. Same plots as in Fig. 9 but for a different time ingérv
model. The estimate at tim&;m is then replaced with the
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Fig. 11. This figure shows the curvature estimate for a fiveuteirdata set collected in an authentic traffic environmenmpared to the true curvature
value. The vertical lines indicates detection of lane cleandt is interesting to note that in the last turn, arouncetié®00 [s], there is a time delay in the
filter which is not present in any of the other turns. This i da the fact that there are no vehicles to support the estiamad thus the turn can only be
detected robustly once we have entered it.

curve can only be detected robustly once we have enteredhienefit from detecting any kind of lateral movement, not just
lateral movement related to a lane change.
V. ALTERNATIVE METHODS
VI. CONCLUSION
By detecting behavior that deviates from the model in a
acking system, we can rely more on the model when it in
act is accurate. In the present application, this meartstiiea

The paper [14] by Weisgt al. discuss the use of a filter
based on interacting multiple models (IMM) for detectin
lane changes. The goal of their work is to improve th%
position estimates of surrounding vehicles, rather theadro . e .
geometry. Of course, the same approach could be used in' ﬁd geometry estimate, which is _sup_ported b_y the motion
integrated road geometry and object tracking model as the 0 surrounding vehicles, can be significantly improved. A

proposed in this article in order to also improve road geoynet _U_SUM-test is used, which has the advant_age of giving a
estimation. distinct alarm when a change has occurred. It is also cordiud

In an IMM approach, two or more models are run Simut_hat the method of correcting for the error that was caused by

taneously and they are each given a probability, of being ttfé'ng the wrong model during t.he Qetectlon phase does give
“correct model”, based on their residuals. The final esmaurther improvements of the estimation accuracy.

is then formed as a weighted average, using the probabilitie

as weights. We believe that the methods we propose here, VII. A CKNOWLEDGMENT

based on the CUSUM-test, have several advantages. FirstlyThe authors would like to thank the SEnsor Fusion for
a lane change is a distinct event, so either one or the otlSafety systems (SEFS) program, the Intelligent Vehicleyaf
model is valid, not something in between. This means th8ystems (IVSS) program and Volvo Car Corporation for
conceptually, it is preferable to switch models completelyupporting this work.

rather than averaging two models. Secondly, the CUSUM-test

provides a clear indication that something has happentttrra APPENDIX - DYNAMIC MODEL

than a continuous change in probabilities and this indicati
can be used to take appropriate countermeasures. For exarrhpg

this is necessary for initiating the refiltering scheme entésd derivation is performed in continuous-time. The discr

in Section IV. dynamic is obtained using the standard sampling formulj [13

Another idea that could be interesting to investigate IS {¢f, o1 the assumption of piecewise constant input signals.
use a two-sided test. In the proposed method, the absolute

value of the residuals was used in combination with a one-

sided test. An alternative could be to use the signed relsidugyStem Model

and a two-sided test, which might eliminate some of the falseThe coordinates: andy denote the position in the curved
alarms. The reason is that an alarm could be triggered by@ordinate system, which is attached to the road according
driver who is "wobbling” in the lane but actually not changin to Fig. 4. The longitudinal coordinate is relative, i.e.,z
lanes. On the other hand, it could be argued that we woul the longitudinal distance between the host vehicle and

In this appendix the underlying dynamic model that is
ed throughout the paper is discussed in more detail. The



the tracked object. The motion model for the surroundingpordinate system, which is attached to the

vehicle. The

vehicles is greatly simplified in using the curved, ratherth resulting measurement model is,

a Cartesian coordinate system. For example, it allows us
to use the equatioy’ = 0, to model the assumption that
the surrounding vehicles will follow their own lanes. In the
longitudinal directioni’ = —a cos(¥re) Will be used, where

a is the measured acceleration of the host vehicle, if aviglab

If there are no measurements of the host vehicle’s accilarat

it is simply modeled as a random walk. Hence, we typically<5E

have the following motion model:
it =0, (3a)
0" = —acos(Upel), (3b)
§' =0, (3¢)

wherev? is the longitudinal relative velocity of objedt i.e.,
the time derivative ofz?. It is affected by the host vehicle
acceleration since it is theelative velocity that is modeled.
For the road geometry parameters we first clarify tha

is the angle between the host vehicle and the lane, see Fig(4),

whereasl s is the angle to some fix reference. A relationship[z]
between the two can be obtained by differentiatiing w.r.t.

time, [3]

Wrel = Waps+v = (4a)

(4b)

. . ) . v [4]
Wrel = Yaps+ 7 = Paps+ ; = Waps+ cov,
wherer is the current road radius,the velocity andy denotes [5]
the angle between the lane and some fix referefcg, is

typically measured using a yaw rate sensor. Furthermore,

G

Using W = 0 and¢; = 0 continuous-time motion equations (8]
for the road model can be written

(6]

yoff = Sin(\I/re|)v ~ \I/reﬂ).

W =0, (6a)
. [0

Co = vey, (6b)
& =0, 6c) 19

and for the motion of host vehicle we have

) [11]

Yoft = vWrel, (7a)
‘Prel = vco + \i/abs (7b) [12]

To account for uncertainties in the model we add zefgg)
mean white Gaussian noise to the corresponding discrate-ti
equations. The covariance matrices @gad @host and Qop;

for the road, host and object states, respectively. Noté tha
Qia, defined in Section | is the diagonal component(hf; [15]
corresponding to (3c), the lateral movement of the tracked

vehicles.
[16]

Measurement Model

The measurements for the host vehicle 88, ¢, L™
and R™, where the two latter are the distances to the left
and right lane marking, see Fig. 4. Superscriptis used to
denote measured quantities. The (relative) positioh, §™)
of the surrounding vehicles is measured using radar. Note
that the radar delivers measurements resolved in the Gartes

Y

" =W/2 = Yo, (8a)
R™ = —W/2 — yorr, (8b)
rel = Yrel, (8c)
gt = ¢, (8d)
b _ R(—Trel) (1 + coy’) sin(coz’)
o Co (14 coy*) cos(cox’) — 1 — coyott )’

(8e)

where R(—W) is a rotational matrix performing clockwise
rotation of ¥, radians. Furthermore, zero mean Gaussian
white measurement noise is added to (8). The covariance
matrices areRnost and Rop; for the host/road and object states,
respectively.
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