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Abstract: The use of data from different, often complementary sources in order to obtain a
better estimate of the state of the system under consideration has recently become very popular
within many scientific areas. We will in this talk provide a framework, including the popular
Kalman and particle filters for fusing data from different, complementary sources. The theory
will be illustrated using several application examples from the automotive and the aerospace
industry. Possible applications for 3D analysis of human motion will be discussed.

1. EXTENDED ABSTRACT

Sensor fusion is the process of using information from
several different sources (sensors) to compute an overall
estimate of the state of a dynamic system. It is the aim
of this talk to describe the basic components of a sensor
fusion framework. Besides the underlying theory we will
also discuss several successful sensor fusion projects from
the automotive and the aerospace industry.

The first thing to realize is that we are dealing with
dynamical systems, that is systems where the output
depends on all the previous inputs. In other words a system
with a memory. The state contains all information about
the past that is worth knowing to be able to predict the
future behaviour of the system. In order to be able to
produce an overall estimate for the state of the system we
need a model of the system. We will make use of standard
state-space models for this purpose,

xt+1 = f(xt, ut) + vt, (1a)
yt = h(xt, ut) + et, (1b)

where xt denotes the state, ut known control inputs, yt the
measurements, vt and et stochastic process noise and mea-
surement noise, respectively. The function f(·) describes
the dynamic equations of the system and hence (1a) is
typically referred to as the system model. Furthermore, the
function h(·) describes how the measurements are related
to the state variables and (1b) is hence referred to as the
measurement model.

To illustrate the terms introduced above we can mention
one of the examples that will be discussed in the talk,
the problem of integrated road geometry estimation and
vehicle tracking. Here, the task is to use information from
a forward looking camera and radar, together with inertial
sensors, wheel speed sensors and a steering wheel sensor in
order to compute an overall estimate of the road geometry
and the position and velocity of the leading vehicles.
Hence, the system model (1a) includes dynamical models
describing the motion of the host vehicle, the leading
vehicles and the road. Each sensor gives rise to one or
more measurement equations (1b).

The overall estimate of the state is computed by a state
estimator of some kind. The state estimator makes use of
the measurements from the different sensors to produce
an estimate of the filtering probability density function
p(xt|y1:t), where y1:t = {yi}t

i=1 is all the past measure-

ments. This density function contains all there is to know
about the state xt, given all the information in the mea-
surements y1:t. Based on p(xt|y1:t) we can compute for
instance an estimate of the state. The are several different
algorithms available for estimating the filtering density,
but the two most commonly used are

• The Kalman filter introduced by Kalman in 1960 [2].
If the model (1) is linear and Gaussian, the filtering
density is also Gaussian and hence completely param-
eterized by the mean and the covariance. The Kalman
filter explains how the mean and the covariance are
recursively updated based on the measurements yt
and the control signals ut. For nonlinear systems it
is common to linearize the model and then apply the
Kalman filter to the approximated model. This gives
rise to the popular Extended Kalman Filter (EKF).

• The particle filter is capable of dealing with nonlinear
systems. It was introduced by Gordon et al. in 1993
[1] and has since then become increasingly popular.
The key idea here is to approximate the filtering
density using an empirical density function consisting
of many samples (particles). In this way linearization
can be avoided and the full nonlinear model can be
exploited. Furthermore, there is no need for the noise
to be Gaussian. The downside is that the particle
filter is computationally much more demanding than
the EKF.

A successful framework for sensor fusion will, besides the
modelling and the filtering parts briefly introduced above,
rely on a certain “surrounding infrastructure”. By this
we mean solutions to issues such as time synchronization
between the different sensors, calibration of the various
coordinate systems involved, sensor-near signal processing
etc. This part of the framework should not be overlooked.
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