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Abstract

Creating a 3D model from photos require an estimate
of the position and orientation (pose) of the camera for
each photo that is acquired. This paper presents a method
to estimate the camera pose using only image data. The
images are acquired at a low frequency using a stereo rig,
consisting of two rigidly attached SLR cameras. Features are
extracted and an optimization problem is solved for each
new stereo image. The results are used to merge multiple
stereo images and building a larger model of the scene. The
accumulated error after processing 10 images can with the
present methods be less than 1.2 mm in translation and 0.1
degrees in rotation.

1. Introduction

The problem of creating 3D-models from images is not
new, and many papers have been published on this matter,
see for example [1]–[4]. The traditional aim is to produce
a real-time system with low resolution video cameras and
high image frequency. [5] assumes a world with only straight
lines and 90 degree angles. With this information a 3D-
model of the world is reconstructed from a single photo.
This assumption limits this system to a very small range of
environments.

The aim in this paper is to describe a method to compute
estimates of the camera pose using stereo image data only.
These estimates are then to be used to create a scene
model. The department for Sensor Systems at Saab Bofors
Dynamics has developed a system for creating three dimen-
sional maps from high resolution aerial photos. The elevation
of each point is determined through a stereo calculation
between two subsequent photos. In order to determine the
distance between the cameras taking the photos, each photo
is associated with a position from a GPS and measurements
from an inertial navigation system. This data is also used to
merge each height map in the software to form a coherent
model of the ground.

The same software system has the possibility to process
photos of an indoor environment, but one of the problems is
to get the exact pose for each photo, this as there is generally

no possibility to use GPS indoors. The method described in
this paper has been developed during a master thesis project
and can be used in this system to determine the pose of each
new stereo image.

2. Hardware configuration

Several different hardware setups are possible when trying
to solve the problem of creating a 3D model of an indoor
environment. Potential sensors besides cameras might be
inertial sensors, laser range sensors, ultra wide band and
ultrasonic sensors. If it would not be for bad reception in an
indoor environment, a GPS would also be a natural sensor
to use. Numerous configurations have already been tried, [6]
building a model of an urban environment using an inertial
navigation system, a GPS, and four video cameras mounted
with different viewing angles. Another configuration, used in
[3], is three video stereo pairs mounted orthogonally to each
other, covering a wider area, to minimize the weak points
from a single stereo camera system. Another approach is to
use only a single video camera to solve the SLAM problem
[7].

This paper presents a solution that uses two calibrated
SLR cameras mounted on a stereo rig, see Figure 1. The
distance between the cameras has been set to about 20
centimetres to minimize the areas seen by only one camera,
but at the same time giving a good-enough measurement of
the disparity in an indoor environment. The benefit of using
two cameras mounted together instead of a single camera is
that it is as easy to calculate the disparity in all images as
the relation between the cameras is fixed. The scale in the
images is also known since the rig is fixed and the distance
between the cameras is known.

An inertial measurement unit (IMU) could give valuable
support when positioning the camera, but in this work an
IMU is not used. This decision is made to simplify the
hardware and minimize the integration problems, and to
examine if it is possible to solve this problem with only
image data. Due to the problem with reception indoors, a
solution with GPS has not been considered.

The lenses used on the cameras are wide-angle fish-eye
lenses, which makes the overlapping of images simpler, as



Figure 1: Stereo image registration hardware consisting of
two 10 megapixel Nikon D200 DSLR cameras with Nikon
10.5mm f2.8 lenses and a common trigger.

the cameras can move more and still capture overlapping
photos with a low frequency.

3. Feature extraction and outlier rejection

The scale-invariant feature transform (SIFT) introduced
in [8] is used to extract corresponding features between
the four images in two stereo pairs. SIFT is a rotation
and affine invariant Harris point operator. Every keypoint is
assigned a scale, location and an orientation, which ensures
that the keypoints are described in a way that is invariant to
location, scale and orientation of the image. The keypoints
are converted into descriptor vectors, that can be compared
to find similar and matching points.

To remove outliers from the features extracted from the
images, the random sample consensus (RANSAC) algorithm
has been used. RANSAC can handle a large amount of
outliers, and the algorithm is described in [9] p. 118. Some
modifications are made to the algorithm to always perform
a fixed number of iterations, and a few threshold values are
added to decrease the processing time.

4. Algorithms

To estimate the relative pose between each stereo image
from the corresponding points, two types of algorithms have
been subject to experiments.

4.1. Eight-point algorithm

The eight-point algorithm presented in [10] p. 121 Al-
gorithm 5.1, is a closed form solution that uses SVD to
compute the essential matrix. The essential matrix can then
be decomposed into a translation and a rotation matrix.
This approach together with some improvements, proposed
by [11], performed well with fictional data. Unfortunately
this method produced results which were completely out of
bounds when using real data from the images.

4.2. Newton-Raphson minimization

This method minimizes a cost function, that is presented
in Section 5, to iteratively estimate the pose of the stereo
images. The cost function is minimized with the Newton-
Raphson method, which is a method to successively find
better approximations to the roots of a real value function,
[12] p. 331. It is an iterative method, where each step is
calculated according to

xi+1 = xi −
f(xi)
f ′(xi)

(1)

The iterations are aborted after a certain number of iterations
have been performed, or when the absolute relative error εa
is less than a specified relative error εs. The absolute relative
error is calculated as

εa =
∣∣∣∣xi+1 − xi

xi+1

∣∣∣∣ (2)

When starting the iterations, the starting value of xi, a vector
containing all the parameters that is to be estimated, needs
to have a value “sufficiently near” the root of the function
for the iterations to converge to the global optimum. During
this work, “sufficiently near” has meant placing each new
stereo image at the position of the last positioned stereo pair.

5. Experiments

Experiments have been made with different cost functions
in the minimization described above. The cost function used
in the first experiments can be described as√√√√ 1

NJ

N∑
n=1

J∑
j=1

(uproj
n,j − un,j)2 + (vproj

n,j − vn,j)2 (3)

where N is the number of points and J is the number
of images in the two stereo pairs, normally 4. The esti-
mation of the position of each point in the 3D space is
denoted [xn, yn, zn]T where n = 1, . . . , N . The position
of each point in the image is denoted [un,j , vn,j ]

T where
j = 1, . . . , J . The projection of the 3D-point onto the image

plane is denoted
[
uproj

n,j , v
proj
n,j

]T
.

To measure the result of the experiments, ten stereo
images have been taken while holding the camera rig by
hand, and rotating 360 degrees. After estimating the pose
of all the stereo images in the sequence, the first stereo
image is reestimated as being the last in the sequence.
The difference in the pose of the first stereo images before
and after the estimation is used as a measurement of the
accumulated error for all the poses. Some examples of
typical errors for different amounts of corresponding points
between the images can be seen in Table 1. To estimate the
pose with a higher accuracy than about 2 cm in translation
and about 0.5 degrees in rotation as an accumulated fault



Table 1: Example of errors for a sequence of 10 stereo
images.

Parameter Number of points
22 45 54-90

x (mm) 3.4 8.2 2.2
y (mm) 18.2 15.1 14.2
z (mm) 17.6 11.2 10.9
ψ (deg) 0.30 0.47 0.39
ϕ (deg) 0.44 0.05 0.05
θ (deg) 0.47 0.27 0.05

after 10 images, a global optimization while identifying a
loop closure can be used. In these experiments, loop closures
have been identified manually, but this can also be done
automatically by comparing the SIFT points. To be able to
measure the error in the estimation, the loop is closed after
20 images taken while rotating 720 degrees, but the error
of the estimation is measured as before, after 360 degrees
of rotation and 10 images. Some examples of accumulated
errors in the estimation when using loop closuring can be
seen in Table 2. In many of the images used in these

Table 2: Example of errors for a sequence of 10 stereo
images, with and without loop closing after 20 stereo images

Without With
loop closing loop closing

x (mm) 2.0 0.5
y (mm) 5.1 1.1
z (mm) 6.6 1.1
ψ (deg) 0.305 0.065
ϕ (deg) 0.082 0.096
θ (deg) 0.143 0.090

experiments, the overlap between stereo images is large
enough to allow measurements between each new stereo
image and two earlier stereo images in the sequence. This
can be described with the cost function√√√√ 1

6Nnum

∑
∀n∈N

Jend∑
j=Jstart

(uproj
n,j − un,j)2 + (vproj

n,j − vn,j)2 (4)

where Jstart = 2 ∗ (Inr − 2) − 1 and Jend = 2Inr. Inr is
the number of the stereo pair that is being calculated. N
is in this case all the points that connect Inr with Inr − 1
and Inr − 2, and Nnum is the number of points in N . As
more information is used to position each new stereo pair,
the accumulated fault after 10 stereo images decreases, one
example of the decrease is shown in Table 3. The result
shows notable improvements compared with the result from
only matching against one image.

The estimation in the Newton-Raphson iterations will be
improved as more information is given as input. Therefore,
the information from every image that has some overlap to
the new stereo image, should be used. This can be done by
searching for correspondences between SIFT points in the
stereo image that is going to be added and the points in all

Table 3: Example of errors for a sequence of 10 stereo
images, while matching each new stereo image against one
or two previous stereo images in the sequence.

Using 45 points
Nr of stereo pairs 1 2
x (mm) 8.2 7.1
y (mm) 15.1 6.5
z (mm) 11.2 4.5
ψ (deg) 0.47 0.20
ϕ (deg) 0.05 0.01
θ (deg) 0.27 0.03

of the already positioned stereo images. The cost function
used in this method is√

1
NnumJnum

∑
∀n∈N

∑
∀j∈J

(uproj
n,j − un,j)2 + (vproj

n,j − vn,j)2

(5)
where J is all the images that is already positioned and
N is all the points connecting the images in J . Jnum is the
number of images already positioned and Nnum is the number
of points in N .

With this approach, there is no longer a need for having
the stereo images in a predefined sequence. Instead, each
time a new stereo image should be added, the stereo image
that has the most correspondences to the already positioned
stereo images is selected as the next stereo image to be
positioned.

5.1. Results

When the relative poses that are calculated during the
experiments are put into the software system to position the
models created from the stereo images, the visual error in
the pose is small when multiple models are displayed at
the same time. There are still visual artifacts that need to
be removed, but this does not fall within in the scope of
this paper. In Figure 2 two views from a modeled room are
depicted. In each view at least three models are displayed at
the same time, showing the frontmost surface. The models
are speckled because the surfaces compete for visibility and
the surfaces are very close to each other, this is an indication
of high precision in the poses.

5.2. Future work

During this work there has not been feasible to determine
the accuracy of the last method, as all the available informa-
tion has been used in the calculations. A possible solution
would be to position the camera with an industrial robot.

In the two last methods, each new stereo image adds one
or several loops in the relations between the cameras. A final
optimization of all the positions would increase the accuracy
of the result further.



(a) Different stereo images displayed simultaneously. Some errors in
the position can be seen in the bottom-right corner of the image.

(b) The surfaces are very close to each other, and the three models
will compete for visibility, therefore the exposure changes several
times in the same area.

Figure 2: Multiple stereo images are displayed at the same time to form a model.

6. Conclusion

It is shown that the method presented can produce an
accuracy of about 1.1 mm in translation and an accuracy of
about 0.1 degrees in rotation after sequential and dependent
estimation of at least 10 positions using loop closur. It is
also shown that the use of relations between more than two
images in each step, together with a global optimization
using the Newton-Raphson method, can improve the result
further. From these poses it is then possible to position
separate models created from stereo images to form a larger
model.
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