
Calibration of a magnetometer in combination
with inertial sensors

Manon Kok∗, Jeroen D. Hol†, Thomas B. Schön∗, Fredrik Gustafsson∗ and Henk Luinge†
∗Division of Automatic Control
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Abstract—Measurements from magnetometers and inertial
sensors (accelerometers and gyroscopes) can be combined to give
3D orientation estimates. In order to obtain accurate orientation
estimates it is imperative that the magnetometer and inertial
sensor axes are aligned and that the magnetometer is properly
calibrated for both sensor errors as well as presence of magnetic
distortions. In this work we derive an easy-to-use calibration
algorithm that can be used to calibrate a combination of a
magnetometer and inertial sensors. The algorithm compensates
for any static magnetic distortions created by the sensor plat-
form, magnetometer sensor errors and determines the alignment
between the magnetometer and the inertial sensor axes. The
resulting calibration procedure does not require any additional
hardware. We make use of probabilistic models and obtain the
calibration algorithm as the solution to a maximum likelihood
problem. The efficacy of the proposed algorithm is illustrated
using experimental data collected from a sensor unit placed in a
magnetically disturbed environment onboard a jet aircraft.

I. INTRODUCTION

Accelerometers and gyroscopes (inertial sensors) in combi-
nation with magnetometers are generally available in stand-
alone sensor units, but also in devices such as mobile phones
and aircraft. To estimate orientation from these sensor mea-
surements extended Kalman filters (EKFs) can be used. Ac-
celerometer measurements can be used to observe inclination
in the case that the linear acceleration of the body is much
smaller then the earth gravity vector. The rotation around the
earth gravity vector cannot be observed from accelerometer
measurements. The angle with respect to the magnetic north,
referred to as heading, can be observed using magnetometers.
In a magnetically undisturbed environment, magnetometers
measure the local earth magnetic field consisting of a vertical
component and a horizontal component pointing in the direc-
tion of the magnetic north. A combination of magnetometers
and inertial sensors can therefore be used to estimate 3D
orientation. For this purpose, however, it is imperative that
the sensor axes of the inertial sensors and the magnetometer
are aligned.

In the absence of magnetic field distortions, a magnetometer
is a reliable source of information due to its high sampling
rate and reliable sensor readings. In the presence of magnetic
field disturbances, however, erroneous heading estimates will
be obtained since the magnetometer no longer measures only
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(b) Calibrated measurements

Fig. 1. Results from the Delphin flight test discussed in Section VI-B. As
shown, a calibration of the ellipsoid of data {ym,k}Kk=1 leads to calibrated
measurements lying on the unit sphere.

the earth magnetic field. This problem occurs for instance
when mounting the magnetometer in a car, an aircraft or
a mobile phone and re-calibration is needed each time the
magnetic disturbance changes. It is therefore important to
always calibrate the magnetometer before use.

The aim of this paper is to derive a magnetometer calibration
algorithm which will account for

1) magnetometer sensor errors,
2) presence of magnetic disturbances caused by mounting

of the magnetometer,
3) misalignment between magnetometer and inertial sensor

axes.
Existing approaches [1]–[6] have focussed on stand-alone
magnetometer calibration and have therefore only considered
item 1 and 2 in the list above. However, when magnetometers
are used in combination with inertial sensors, item 3 becomes
crucial to obtain good orientation estimates.

To perform the suggested calibration, the magnetometer and
inertial sensors need to be rigidly mounted on the platform to
be used, for instance a mobile phone, an aircraft or a car.
Data subsequently needs to be collected while rotating the
platform in all possible orientations. For a properly calibrated
magnetometer the magnitude of the measured magnetic field
is not dependent on the orientation of the platform, implying
that the collected magnetometer data lies on a sphere. The
presence of magnetic distortions and/or magnetometer sensor



errors will cause the magnetometer data to lie on an ellipsoid
instead. Accounting for these errors will therefore map the
ellipsoid of magnetometer data to a sphere, where we without
loss of generality assume that this is the unit sphere. In Figure
1 an illustration of the ellipsoid of experimental data and the
calibration results can be found.

For stand-alone magnetometers the mapping of the ellipsoid
of data to a sphere gives a complete magnetometer calibration.
However, combining the magnetometer with inertial sensors
requires the sensor axes to be aligned, i.e. the sphere needs to
be rotated such that the magnetometer sensor axes are aligned
with the inertial sensor axes.

The complete calibration problem is posed and solved as a
maximum likelihood (ML) problem. Since this is a non-convex
optimization problem, a three-step procedure is described to
obtain a good initial estimate for the ML calibration problem.
Experimental results will be discussed in Section VI and will
show that the calibrated data lies on a unit sphere, as shown
in Figure 1, and is aligned with the inertial sensor axes.

II. MODEL

To be able to formulate the calibration problem as a maxi-
mum likelihood problem, a proper model of the magnetometer
measurements is needed. Here, both the magnetometer data
itself as well as the relation between the rotation of the sphere
and the inertial measurements needs to be modeled.

A. Magnetometer measurement model

A model of the magnetometer measurements relates the
measurement data set {yb

m,k}Kk=1 to the local magnetic field
mn. Here b denotes the body frame of the magnetometer,
n denotes the navigation frame and k denotes the sample
number. The rotation of sample k from navigation frame n
to body frame b will be defined as Rbn

k . Defining the local
magnetic field in body frame, mb

k, as

mb
k = Rbn

k m
n, (1)

we would hope for {yb
m,k}Kk=1 = {mb

k}Kk=1. However, there
are two reasons why they will in practice generally not be
equal and calibration is needed.

1) Sensor errors in the magnetometer triad: A first source
of error is sensor errors, which are sensor-specific and can
differ for each magnetometer triad. These sensor errors consist
of four components [1], [4], [5].

1) Non-orthogonality of the magnetometer axes. We will
define the 3 × 3 matrix Cno representing this non-
orthogonality.

2) Presence of a zero bias or null shift, implying that the
magnetometer will measure a non-zero magnetic field
even if the magnetic field is zero, defined by ozb.

3) Difference in sensitivity of the three magnetometer axes,
represented by a diagonal 3× 3 matrix Csc.

4) Presence of noise in the magnetometer measurements.
We will assume this noise to be independently and
identically distributed (i.i.d.) Gaussian noise and it will
be denoted by eb

m.

This leads to the following relationship between mb
k and yb

m,k,
accounting only for the sensor errors

yb
m,k = CscCnom

b
k + ozb + eb

m,k. (2)

2) Presence of magnetic disturbances: In the vicinity of
magnetic materials, a magnetometer will not only measure
the local magnetic field, but also an additional magnetic field
component. We assume that all magnetic disturbances present
are stationary and constant, i.e. rigidly attached to the sensor,
for instance due to mounting of the magnetometer in a phone,
a car or an aircraft. Calibration of temporary or time-varying
magnetic disturbances is very challenging and will not be
considered in this paper.

Ferromagnetic materials can lead to both so-called hard and
soft iron effects. Hard iron effects are due to the permanent
magnetization of the magnetic material and lead to a constant
additional magnetic field. The vector representing these effects
is denoted as ohi. Soft iron effects are due to magnetization of
the material as a result of an external magnetic field and will
therefore depend on the orientation of the material with respect
to the external field. It can change both the magnitude and the
orientation of the measured magnetic field. The 3× 3 matrix
representing the soft iron effect is denoted as Csi. Given the
correct mapping parameters, one is able to completely calibrate
for the hard and soft iron effects. After applying the calibration
the magnetometer measurements will represent the field as if
there were no magnetic distortions due to the ferromagnetic
object.

Note that in accordance to existing literature we assume a
linear relation between the field that the soft iron generates and
the external magnetic field, i.e. we assume that no hysteresis
occurs. As argued in [1] this is a reasonable assumption since
hysteresis will only occur when very large magnetic fields
are applied. Extending (2) to also include the model of the
magnetic disturbances introduced above, results in

yb
m,k = CscCno(Csim

b
k + ohi) + ozb + eb

m,k. (3)

3) Magnetometer model assumptions: For the model (3) to
be valid the following two requirements need to be satisfied:
• All present magnetic distortions need to be constant and

stationary, i.e. rigidly attached to the sensor, for instance
due to mounting of the magnetometer in a phone, a car
or an aircraft.

• The local magnetic field mn
k will be assumed constant,

i.e. to be equal for all samples k. This is a physically
reasonable assumption as long as the distance travelled
during calibration is not of the order of parts of the earth.
However, care should also be taken when entering or
leaving buildings or rooms during calibration.

Assuming that the requirements are satisfied, (1) implies that
the local magnetic field in body frame mb

k will lie on a sphere
with a radius equal to the magnitude of the local magnetic
field. From (3) we therefore expect the data yb

m,k to lie on
an ellipsoid which can be translated, rotated, skewed and
scaled with respect to this sphere. The number and spread of



measurements over the ellipsoid depends on the orientations
of the magnetometer during the measurement collection for
calibration.

Previous work has used similar magnetometer measurement
models as (3) [1]–[6]. Using these methods, the rotation of
the resulting magnetometer calibration is still ambiguous up
to a fixed rotation. This paper will therefore extend existing
approaches and fix the orientation of the sphere based on the
inclusion of inertial measurements. The existing magnetometer
measurement model will first be extended to include the
rotation between the inertial and magnetometer sensor axes.
Subsequently, the rotation of the sphere will be modeled.

4) Magnetometer and inertial sensor axes alignment:
Extending (3) with a rotation matrix Rim describing the mis-
alignment between the inertial sensors and the magnetometer
results in

yb
m,k = CscCno(CsiRimm

b
k + ohi) + ozb + eb

m,k. (4)

5) Resulting calibration model: To obtain a correct calibra-
tion, it is not necessary to identify all individual contributions
of the different components in (4). Instead, they can be
combined into a 3× 3 distortion matrix D and a 3× 1 offset
vector o where

D = CscCnoCsiRim, (5a)
o = CscCnoohi + ozb, (5b)

leading to the resulting magnetometer measurement model

yb
m,k = Dmb

k + o+ eb
m,k. (6)

B. Rotation of the sphere

As discussed in the previous section, magnetometer data can
be compensated for sensor errors and the presence of magnetic
distortions by mapping an ellipsoid of data to a sphere. The
rotation of the sphere can, however, not be determined from
magnetometer measurements only. Determining this rotation is
important when combining magnetometer measurements with
inertial measurements, for instance for orientation estimation.
The rotation of the sphere can be determined by using both
the magnetometer measurements and processed measurements
of the vertical {yz,k}Kk=1, defined by

yb
z,k = Rbn

k z
n + eb

z,k, (7)

where zn =
[
0 0 1

]T
. The noise eb

z,k is assumed to be
Gaussian. The processed measurements {yz,k}Kk=1 can for
instance be obtained by keeping the accelerometer stationary
in different orientations. In that case, only the gravity vector is
measured, indicating the direction of the vertical. Alternatively,
the vertical measurements can be obtained by running an
extended Kalman filter estimating inclination based on inertial
measurements.

As discussed in Section I, the local earth magnetic field mn

will consist of a horizontal component pointing in the direction

mn
d

δ

Fig. 2. Schematic of a part of the earth where the earth magnetic field mn

makes an angle δ with the horizontal plane. The vertical component of mn

defined by mn sin δ, will be denoted by d.

of the magnetic north and a vertical component,

mn =
[√
||mn||22 − d2 0 d

]T
= ||mn||2

[
cos δ 0 − sin δ

]T
, (8)

where δ denotes the dip angle, the angle between mn and the
horizontal plane, and d is the vertical component of mn as
depicted in Figure 2. Inclusion of the magnetic declination,
the angle between true and magnetic north, in (8) would lead
to a non-zero second component of mn. Since the calibration
results D and o in (6) only depend on the ratio between the
horizontal and vertical components, we can without loss of
generality assume that mn

y is zero.
Both the norm of mn and the dip angle δ are assumed to

be constant. They depend on the location on the earth but can
deviate from that in indoor or otherwise magnetically disturbed
environments. Since our algorithm does not use any prior
knowledge on the dip angle or the strength of the magnetic
field it also works in indoor or otherwise homogeneously
magnetically disturbed environments.

As can be seen from (8) and the definition of zn, the inner
product of mn and zn is equal to d. The inner product of
Rbn
k m

n and Rbn
k z

n is therefore also equal to d for all possible
rotations Rbn

k . When the inertial and magnetometer sensor
axes are not aligned, however, the estimated d based on the
magnetometer and vertical measurements will differ for each
Rbn
k , as schematically depicted in Figure 3. The rotation of

the sphere is chosen such that the inertial and magnetometer
sensor axes are aligned and the estimated dip angle d becomes
approximately constant.

For the model of the rotation of the sphere to be accurate,
• the dip angle needs to be constant for all measurements
k and

• the relation between the inertial and the magnetometer
sensor axes needs to be described by a rotation matrix
only, i.e. we assume that no mirroring of axes takes place.

The first requirement is again a physically reasonable assump-
tion as long as the distance travelled during calibration is not
of the order of parts of the earth, similar to the requirement
discussed in Section II-A3. The second requirement can easily
be satisfied by proper mounting of the sensor axes.

In the remainder we implicitly assume all measurements y
and noises e to be in the body frame, dropping the superscript
b.
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Fig. 3. The vertical component of the local earth magnetic field d can
also be defined as the inner product of the vectors mn and zn. In case the
magnetometer sensor axes are rotated with respect to the inertial sensor axes
leading to a measurement m′n, the resulting vertical component d′ differs
from d.

III. MAXIMUM LIKELIHOOD FORMULATION

In Section II-A a model was derived for the magnetometer
measurements as a function of the local magnetic field, the
distortion matrix D and the offset vector o. As argued, we
expect the measurements to lie on an ellipsoid before calibra-
tion and to lie on a sphere with radius ||mn||2 after calibration.
The magnitude of the magnetometer readings is irrelevant
in most applications, for instance in the case of orientation
estimation. The radius of the sphere will in this paper without
loss of generality be scaled to one, i.e. ||mn||2 = 1. However,
other options like scaling towards the magnitude of the local
magnetic field in Gauss or Tesla are of course also possible.

In Section II-B a model relating the inertial and magnetome-
ter measurements to determine the rotation of the sphere of
magnetometer data was introduced. The models from Sections
II-A and II-B will be combined and used in a maximum
likelihood (ML) problem.

Combining (6) and (1) results in

ym,k = DRbn
k m

n + o+ em,k, (9a)

where from Section II we know that mn is constant and
given by (8). Furthermore, the measurements of the vertical
are defined by (7), which for clarity is repeated here,

yz,k = Rbn
k z

n + ez,k. (9b)

We define the parameter θ1 as θ1 = {D,o,mn, {Rbn
k }Kk=1},

D ∈ R3×3, o ∈ R3,

mn ∈ {R3 : ||mn||22 = 1,mn
y = 0},

{Rbn
k }Kk=1 ∈ SO(3), (10)

where mn
y denotes the second component of the vector mn.

Assuming the noise to be independent and Gaussian,

em,k ∼ N (0,Σm), (11a)
ez,k ∼ N (0,Σz), (11b)

we define the parameter θ2 as θ2 = {Σm,Σz},

Σm ∈ {R3x3 : Σm = ΣTm ,Σm � 0},
Σz ∈ {R3x3 : Σz = ΣTz ,Σz � 0}. (12)

We will find an estimate of the unknown parameters θ1, θ2

by solving the associated maximum likelihood problem

θ̂ML = arg max
θ1,θ2

pθ(y1:k), (13)

where y1:k , {ym,1,yz,1, . . . ,ym,k,yz,k}. Assuming indepen-
dent Gaussian noise reduces the ML problem to

θ̂ML = arg min
θ1,θ2

1

2

K∑
k=1

(
||em,k||2Σ−1

m
+ ||ez,k||2Σ−1

z

)
+
K

2
log det Σm +

K

2
log det Σz. (14)

The requirements on θ1 in (10) do not need to enter as
constraints in the optimization problem, when parametrizing
the rotation matrices with three components and mn with one
component. In Section VI we have assumed Σm and Σz to
be diagonal. The results are obtained by first solving for θ1

assuming θ2 to be identity, afterwards solving for θ2 given θ1

and subsequently solving for θ1 given the obtained θ2 instead
of solving the complete problem (14) at once.

The ML problem (14) is a non-convex optimization problem
requiring a good initial estimate for θ1. This initial estimate is
obtained by a three-step algorithm described in the subsequent
section.

IV. COMPUTING AN INITIAL ESTIMATE

To obtain a good initial estimate {D̂0, ô0, m̂
n
0, {R̂bn

0,k}Kk=1}
for the ML problem (14), a three-step algorithm is used.
The first step maps the magnetometer data to a unit sphere
and obtains initial estimates ô0 and can partially determine
D̂0, where the estimate after the ellipse fit is denoted D̃0. A
second step determines the rotation between the inertial and
magnetometer measurements to obtain estimates D̂0 and m̂n

0.
A third step uses the results from the previous steps to obtain
estimates of the rotations {R̂bn

0,k}Kk=1.

A. Ellipse fit

As a first step, we focus on the magnetic field measure-
ments. As mentioned in the previous section, we scale the
norm of the local magnetic field such that ||mn||2 = 1. This
leads to

0 = ||mn||22 − 1 = ||Rnb
k m

b
k||22 − 1 = ||mb

k||22 − 1

= ||D−1(ym,k − o− em,k)||22 − 1

≈ yTm,kAym,k + bTym,k + c, (15)

where the noise em,k is neglected and we introduced the
notation

A , D−TD−1, (16a)

bT , −2oTD−TD−1, (16b)

c , oTD−TD−1o− 1. (16c)

This can be recognized as the definition of an ellipsoid. A
standard ellipse fitting approach can be taken to determine
A, b and c. We use the least squares approach introduced in



[7]. As argued by [5], an adaptive least squares approach as
described in [8] leads to better, unbiased estimates. However,
since our approach uses the ellipse fitting only as an initial
estimate for the final ML problem, a least squares approach
is sufficient.

It is straightforward to rewrite (15) as a linear relation in η
according to

Jη ≈ 0, (17)

with

J =
[
yTm,k ⊗ yTm,k yTm,k 1

]
, (18a)

η =

vecA
b
c

 , (18b)

where ⊗ denotes the Kronecker product and vec denotes the
vectorization operator.

This problem can be solved by assuming that the matrix A
is symmetric. An easy way to obtain a solution is through a
singular value decomposition of the matrix J . The solution η̂
is the right eigenvector corresponding to the smallest singular
value of J [7]. Obtaining the solution in this way automatically
avoids the trivial zero solution since the norm of the obtained
solution vector η̂ is by definition equal to 1.

Since any αη will be an equally valid solution to (17), we
will only find a scaled version of our desired solution. Defining
the obtained solution as

η̂ =

vecÂs

b̂s
ĉs

 , (19)

and the desired solution asvecÂ
b̂
ĉ

 = αη̂, (20)

the scaling factor α can be determined from (16)

1 = oTD−TD−1o− c
= 1

4b
TA−1b− c

= α( 1
4b
T
s A
−1
s bs − cs), (21)

leading to

α =
(

1
4b
T
s A
−1
s bs − cs

)−1

. (22)

This ellipse fitting step is a first step towards obtaining the
initial estimate θ0 and its components will be denoted D̃0 and
ô0, where from (16)

D̂−T0 D̂−1
0 = αÂs, (23a)

ô0 = − 1
2 Â
−1
s b̂s. (23b)

From (23a) it is not possible to uniquely determine D̂0. Any
D̂0U where UUT = I3 will also fulfill (23a). As described
in Section II-B, we assume that the sensor axes of the inertial
sensors and the magnetometers are only related by a rotation.

Denoting a solution to (23a) by D̃0, obtained by Cholesky
decomposition, the eventual solution can there be defined as

D̂0 = D̃0R, (24)

where the unknown rotation matrix R will be determined
in Section IV-B. Supporting data is needed to determine the
rotation matrix R. For this, measurements of the vertical will
be used.

B. Determine the rotation of the ellipse

In Section IV-A the measurements were fitted to an ellipse,
but the rotation R in (24) is still unknown. A second step in
obtaining the initial estimate θ0 is to determine this rotation
matrix R. As discussed in II-B and illustrated in Figure 3,
this can be done by imposing the assumption that the vertical
component of the estimated local magnetic field should be
constant for all k, resulting in the following optimization
problem

min
R,d

1

2

K∑
k=1

||d− yTz,kRT D̃−1
0

(
ym,k − o

)
||22

s.t. R ∈ SO(3), (25)

The optimization can be initialized with R = I3 and d = 0.
From the estimated R̂ in (25), an initial estimate D̂0 can be

obtained using (24). The estimate d̂ can be used to obtain an
initial estimate of m̂n

0 according to

m̂
n
0 =

[√
1− d̂2 0 d̂

]T
. (26)

C. Initial estimate of {Rbn
k }Kk=1

From Sections IV-A and IV-B we have obtained initial
estimates D̂0, ô0 and m̂n

0. These can be used in combination
with (1), (7) to obtain initial estimates for {Rbn

k }Kk=1.
Applying Theorem 4.1 in [9], the rotation quaternion qbn

k is
given by the eigenvector corresponding to the largest eigen-
value of Ak,

Ak = −(m̂
b
0,k)L(m̂

n
0)R − (yb

z,k)L(zn)R, (27)

where

m̂
b
0 = D̂−1

0

(
ym,k − ô0

)
, (28)

and

yL =


0 −yx −yy −yz
yx 0 −yz yy
yy yz 0 −yx
yz −yy yx 0

 , (29a)

yR =


0 −yx −yy −yz
yx 0 yz −yy
yy −yz 0 yx
yz yy −yx 0

 . (29b)

Here, yx, yy , yz denote the first, the second and the third
components of y respectively.

Initial estimates {R̂bn
0,k}Kk=1 can be obtained by straightfor-

ward conversion of the quaternions {qbn
k }Kk=1.



V. COMPLETE ALGORITHM

The complete algorithm is summarized in Algorithm 1. The
algorithm requires magnetometer measurements and processed
vertical measurements, where the latter can be obtained from
inertial measurements as described in Section II-B. Collect
data {yb

m,k}Kk=1 and {yb
z,k}Kk=1 by rotating the assembly in all

possible orientations, so that the magnetometer measurements
describe (a part of) an ellipsoid. During collection of the
measurements, the inertial sensors and magnetometer need to
be rigidly attached to each other. Furthermore, they need to
be rigidly mounted onto the platform, for instance a phone or
an aircraft. Make sure that the calibration takes place in an
otherwise homogeneous magnetic field. Also avoid proximity
of objects generating non-constant magnetic fields.

Algorithm 1 Magnetometer and inertial calibration

1) Obtain initial estimates D̂0, ô0, m̂n
0 and {R̂bn

0,k}Kk=1

a) Perform an ellipse fit as described in Section IV-A
to obtain D̃0 and ô0.

b) Determine the rotation of the ellipse as described
in Section IV-B to obtain D̂0 and m̂n

0.
c) Determine the rotations {R̂bn

0,k}Kk=1 as described in
Section IV-C.

2) Compute the ML estimate using (14), starting the op-
timization in θ̂0 = {D̂0, ô0, m̂

n
0, {R̂bn

0,k}Kk=1, I3, I3} to
obtain θ̂ML = {D̂, ô, m̂n

, {R̂bn
k }Kk=1, Σ̂m, Σ̂z}.

3) Apply the obtained D̂ and ô to the magnetometer data in
subsequent measurements to obtain measurements that
are calibrated for the relevant setup.

VI. EXPERIMENTAL RESULTS

In this section, calibration results from two experiments
will be presented. The first experiment is performed to test
the calibration results for a misalignment between the inertial
sensors and the magnetometer. The second experiment shows
calibration results for a sensor mounted in a magnetically
disturbed environment onboard a jet aircraft. It shows that the
calibration algorithm works well for real-world applications,
also with limited rotation possibility.

A. Misalignment magnetometer inertial sensor axes

Algorithm 1 has been used to correct for a possible
misalignment between the accelerometer and magnetometer
sensor axes. Data has been collected with a standalone sensor
unit with aligned magnetometer and accelerometer axes, from
which the accelerometer data has been rotated by 30 degrees
around the y-axis. The vertical measurements are obtained by
keeping the sensor unit stationary in different orientations.
Since a calibration using the same algorithm is performed
before rotating the data, the expected calibration results only
show a rotation of the sensor axes.
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Fig. 4. The vertical component of mn (d, see Figure 2 for definition) for the
experiment discussed in Section VI, estimated from data before (grey dashed
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Fig. 5. Residuals of ML problem for the experiment discussed in Section
VI. Left: Residuals related to (9a); Right: Residuals related to (9b).

The obtained calibration results are

D̂ =

 0.86 −0.00 −0.50
−0.01 1.01 −0.00

0.50 0.00 0.87

±
2.4 3.5 1.9

6.8 2.5 3.0
2.3 4.1 1.5

 10−3,

ô =

 7.3
− 0.3

0.6

 10−3 ±

1.5
2.9
1.0

 10−3. (30)

As expected, these show only a rotation around the y-axis of
−30 degrees, which compensates the applied rotation of the
accelerometer measurements.

As described in Section II-B the inner product of the local
magnetic field and the vertical measurements gives the vertical
component of mn, defined as d according to (8). When
the misalignment between the magnetometer and the inertial
sensor axes has been properly calibrated for, the estimated d is
constant for all rotations. In Figure 4 the vertical component of
the estimated local magnetic field, before and after calibration
is shown. As can be seen, d is much more constant after
calibration. The residuals from the ML problem are depicted in
Figure 5, showing that the problem gives reasonable residuals.



Fig. 6. The Aero L-29 Delphin jet aircraft used for the experiments reported
in Section VI-B.

B. Delphin flight test

A second experiment has been performed by collecting
data from inertial sensors and a magnetometer in an Aero
L-29 Delphin jet aircraft shown in Figure 6 [9]. The inertial
sensors and the magnetometer are in this case aligned, but
the magnetometer suffers from magnetic distortions due to its
mounting in the metallic aircraft. Since the aircraft experiences
high accelerations, the accelerometer measurements are not
a good source of vertical measurements in this case. The
vertical measurements {yz,k}Kk=1 are instead obtained using
an EKF estimating the aircraft’s inclination based on inertial
measurements. The aircraft is not able to easily rotate into all
orientations, but some looping maneuvers were performed. As
shown in Figure 1 the calibration results lie on a unit sphere
even if not all rotations are present. The obtained calibration
results including their 99% confidence intervals are

D̂ =

 0.86 −0.02 0.08
−0.04 0.94 −0.16

0.15 0.03 1.22

±
1.6 1.1 1.2

1.6 0.7 0.8
1.5 0.9 0.5

 10−2,

ô =

 −0.14
− 0.06

0.10

±
7.6

4.5
5.0

 10−3. (31)

The determined distortion matrix D̂ and offset vector ô show
a significant correction for magnetic field distortions, as visu-
alized in Figure 1. Correcting for these magnetic distortions
will lead to a significant improvement of the heading estimate.
In Section 8.2.2 in [9], the calibrated magnetometer data is
used in an EKF together with inertial and GPS measurements
to obtain orientation and position estimates, where applying
Algorithm 1 to the magnetometer data improves the root mean
square error (RMSE) in the heading from 43.2 to 1.8 degrees.

VII. CONCLUSION

A magnetometer calibration algorithm has been developed,
capable of both determining the misalignment between the
inertial sensors and the magnetometer as well as compensat-
ing for magnetometer sensor errors and magnetic distortions
arising from the sensor platform. The calibration algorithm
was derived using a maximum likelihood formulation resulting

in a nonlinear optimization problem. In order to obtain a
good solution to this problem we are relying on a good
initialization, which is provided by a three-step approach. The
real world experiments illustrate that the algorithm appears to
perform well and that it is indeed capable of correcting for
both magnetic field distortions and misalignment between the
inertial and the magnetometer sensor axes.
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