
1

Complexity Analysis of the Marginalized
Particle Filter

Rickard Karlsson, Thomas Schön and Fredrik Gustafsson, Member IEEE

Abstract— In this paper the computational complexity of the
marginalized particle filter is analyzed and a general method to
perform this analysis is given. The key is the introduction of the
equivalent flop measure. In an extensive Monte Carlo simulation
different computational aspects are studied and compared with
the derived theoretical results.

Index Terms— Nonlinear estimation, Marginalized particle filter,
Kalman filter, Complexity analysis, Equivalent Flop

I. INTRODUCTION

IN particle filter (PF) applications, knowledge of the com-
putational complexity is often of paramount importance. In

this paper the computational complexity issues that arise in
the use of the marginalized particle filter (MPF), also called
the Rao-Blackwellized particle filter are studied. The MPF is
a clever combination of the standard PF, [10], and the Kalman
filter (KF), [12], which can be used when the model contains
a linear substructure, subject to Gaussian noise. It is a well
known fact that in some cases it is possible to obtain better
estimates, i.e., estimates with reduced variance, using the MPF
instead of using the standard PF [8]. By now quite a lot has
been written about the MPF, see e.g., [1, 2, 5–7, 15]. However,
to the best of the authors knowledge, nothing has yet been
written about complexity issues. In this article, expressions for
the complexity, C(p, k,N), are derived, where p, k represent
the states estimated using the PF and the KF, respectively
and N denotes the number of particles. A general method
to analyze the computational complexity of the MPF will be
provided. The method is illustrated using a common tracking
model, but can be applied to a much broader class of models.
For more details of the proposed method, the reader is referred
to [13].

II. THE MARGINALIZED PARTICLE FILTER (MPF)

Many nonlinear estimation problems can be handled using the
particle filter. A general state-space model

xt+1 = f(xt, wt), (1a)
yt = h(xt, et), (1b)

R. Karlsson, T. Schön and F. Gustafsson are with the Department of Electri-
cal Engineering, Linköping University, Linköping, Sweden (e-mail: (rickard,
schon, fredrik)@isy.liu.se, phone:+46 13 281000, fax: +46 13 282622).
EDICS: 2-ADPT Adaptive Systems and Filtering, 1-NPAR Parametric and
Non-parametric Statistical Signal Processing

has both nonlinear dynamics, f , and nonlinear measurements,
h. The noise processes wt and et have known probability
density functions. If the state-space model contains a linear-
Gaussian substructure, this can be exploited to obtain better
estimates using the MPF. In this article the case with linear-
Gaussian dynamics,

xt+1 = Atxt + wt, wt ∈ N (0, Qt), (2a)

yt = h(xn
t) + Ctx

l
t + et, (2b)

is discussed. In this context the state variable xt ∈ R
m is

xt =

[

xl
t

xn
t

]

, (3)

where xl
t ∈ R

l denote the linear states and xn
t ∈ R

n denotes
the nonlinear states. Furthermore, X

n
t = {xn

i }
t
i=0 and Yt =

{yi}t
i=0. Using Bayes’ theorem,

p(Xn
t , xl

t|Yt) = p(xl
t|X

n
t , Yt)p(Xn

t |Yt), (4)

where p(Xn
t |Yt) is given by the PF and xl

t|X
n
t is linear-

Gaussian, i.e., p(xl
t|X

n
t , Yt) is given by the KF. This marginal-

ization idea is certainly not new [1, 4, 5, 7, 8, 14, 15]. The state
vector xt can be partitioned into two parts, xp

t ∈ R
p and

xk
t ∈ R

k, which are estimated using the PF and the KF
respectively. Furthermore, p ∈ [n, n + l], k ∈ [0, l] and for
the general partitioning case p−n states can be selected from
l possibilities.

It is interesting to consider which states to put in the nonlinear
and the linear partition, respectively. Two relevant aspects
with respect to this partitioning are how it will affect the
computational complexity and the estimation performance.
This will be discussed using the following model

xp
t+1 = Ap

t x
p
t + Ak

t xk
t + wp

t , wp
t ∈ N (0, Qp

t), (5a)

xk
t+1 = F p

t xp
t + F k

t xk
t + wk

t , wk
t ∈ N (0, Qk

t), (5b)

yt = ht(x
p
t) + Ctx

k
t + et, et ∈ N (0, Rt), (5c)

where the noise is assumed to be independent. This is no
restriction, since the case of dependent noise can be reduced
to the case of independent noise using a Gram-Schmidt
procedure [11]. In Alg. 1 the MPF is summarized for the
model given in (5) (with Ct = 0, for the sake of brevity). For
a detailed derivation (including the case Ct 6= 0), the reader
is referred to [15].

Alg. 1 (Marginalized Particle Filter (MPF), Ct = 0):
1) Initialization: For i = 1, . . . , N , initialize the particles,

x
p,(i)
0|−1 ∼ pxp

0
(xp

0) and set {x
k,(i)
0|−1, P

(i)
0|−1} = {x̄k

0 , P̄0}.
Set t = 0.

2

2) For i = 1, . . . , N , evaluate the importance weights
q
(i)
t = p(yt|X

p,(i)
t , Yt−1) = N (ht(x

p,(i)
t), Rt) and

normalize q̃
(i)
t =

q
(i)
t

P

N
j=1 q

(j)
t

.

3) PF measurement update (resampling): Resample N par-
ticles with replacement according to,

Pr(xp,(i)
t|t = x

p,(j)
t|t−1) = q̃

(j)
t . (6)

4) PF time update and KF update
a) KF measurement update,

x̂
k,(i)
t|t = x̂

k,(i)
t|t−1, Pt|t = Pt|t−1. (7)

b) PF time update (prediction): For i = 1, . . . , N ,

x
p,(i)
t+1|t ∼ p(xp

t+1|t|X
p,(i)
t , Yt), (8)

where

p(x
p,(i)
t+1 |X

p,(i)
t , Yt) = N (Atx

p,(i)
t +

Ak
t x̂

k,(i)
t|t , Ak

t Pt|t(A
k
t)T + Qp

t). (9)

c) KF time update,

x̂
k,(i)
t+1|t = F k

t x̂
k,(i)
t|t + F p

t x
p,(i)
t +

Lt(x
p,(i)
t+1|t − Ap

t x
p,(i)
t − Ak

t x̂
k,(i)
t|t),

Pt+1|t = F k
t Pt|t(F

k
t)T + Qk

t − LtMtL
T
t ,

Mt = Ak
t Pt|t(A

k
t)T + Qp

t ,

Lt = F k
t Pt|t(A

k
t)T M−1

t ,

5) Set t := t + 1 and iterate from step 2.

III. COMPLEXITY ANALYSIS

In this section the computational complexity of the MPF
is discussed from a theoretical point of view, by giving
the number of floating-point operations (flops) used in the
algorithm. A flop is here defined as one addition, subtraction,
multiplication, or division of two floating-point numbers.
However, problems occur when the flop count is compared
to the actual computation time. This is due to the fact that
issues such as cache boundaries and locality of reference will
significantly influence the computation time [3]. Moreover,
there are certain steps in the algorithm that cannot easily be
measured in flops, for instance the cost of generating a random
number and the cost of evaluating a nonlinear function.
Despite these drawbacks it is still possible to analyze the
complexity using the computer to measure the absolute time
that the different steps require. These can then be compared
to the theoretical result obtained from counting flops. In the
PF the computational complexity of the resampling step is
proportional to the number of particles and the amount of time
for generating random numbers is proportional to the number
of random numbers required. The proportionality coefficients
are related to reflect the flop complexity instead of the time
complexity for ease of comparison with parts that only depend
on matrix and vector operations. This will be referred to as
the equivalent flop (EF) complexity.

TABLE I
THE EF COMPLEXITY FOR THE PF (UPPER) AND KF TIME UPDATE

(LOWER) IN ALG. 1 († REPRESENTS THE CASE k > 0, ‡ REPRESENT

OPERATIONS NOT FROM MATRIX MULTIPLICATIONS AND ADDITIONS,
SUCH AS RESAMPLING, RANDOM NUMBER GENERATION ETC.).

Instruction Mult. Add. Other‡

PA := Pt|t(A
k
t)T pk2 (k − 1)kp

M := Ak
t PA + Qp

t kp2 (k − 1)p2 + p2 †

T1 := chol(M) p3

3
+ 2p2

T2 := randn(p, N) pNc3
w := T1 ∗ T2 p2N (p − 1)pN
T3 := Apxp p2N (p − 1)pN
T4 := Akxk pkN (k − 1)pN †

x̂p

t+1|t
:= T3 + T4 + w 2pN

invM := M−1 p3

L := F k
t PAinvM k2p + kp2 k2p + p2k − 2kp

T5 := F k
t Pt|t(F

k
t)T 2k3 2(k − 1)k2

T6 := LtMtLT
t 2kp2 2(p − 1)pk

P := T5 + Qk
t − T6 2k2

T7 := F kxk k2N (k − 1)kN
T8 := F pxp kpN (p − 1)kN
T9 := x̂p

t+1|t
− T3 − T4 2pN

x̂k
t+1|t

:= T7 + T8 + LT9 kpN (p + 1)kN

Definition 1: The equivalent flop (EF) complexity for an op-
eration is defined as the number of flops that results in the
same computational time as the operation.

A. Nonlinear Measurements (Ct = 0)
In this section the case Ct = 0 in (5c) is discussed. The total
complexity of Alg. 1 is given for each code line in Table I.
For instance, the first instruction Pt|t(A

k
t)T corresponds to

multiplying Pt|t ∈ R
k×k with (Ak

t)T ∈ R
k×p, which requires

pk2 multiplications and (k − 1)kp additions [9]. The total EF
complexity is given by:

C(p,k,N) = 4pk2 + 8kp2 +
4

3
p3 + 5k3 − 5kp + 2p2+

(6kp + 4p2 + 2k2 + p − k + pc3 + c1 + c2)N. (11)

Above, the coefficient c1 has been used for the calculation of
the Gaussian likelihood, c2 for the resampling and c3 for the
random number complexity. Note that, when Ct = 0 the same
covariance matrix is used for all Kalman filters, which reduces
the computational complexity.

The analysis provided above is general and the main steps,
which will be discussed in the subsequent section are as
follows:

1) Estimate the time for one flop using linear regression.
2) Estimate the time for likelihood calculation, resam-

pling and random number generation.
3) Relate all times using the EF measure.
4) Calculate the overall complexity C(p, k,N).

By requiring C(p + k, 0, NPF) = C(p, k,N(k)), where NPF

corresponds to the number of particles used in the standard PF
N(k) can be solved for. This gives the number of particles,

3

N(k), that can be used in the MPF in order to obtain the same
computational complexity as if the standard particle filter had
been used for all states. In Fig. 1 the ratio N(k)/NPF is plotted
for systems with m = 3, . . . , 9 states. Hence, using Fig. 1 it is

0 1 2 3 4 5 6 7
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

m = 3

m = 4

m = 5

m = 6

m = 7

m = 8

m = 9

PSfrag replacements

N
(k

)/
N

P
F

Number of states in the Kalman filter (k)

C(p + k, 0, NPF) = C(p, k, N(k))

Fig. 1. The ratio N(k)/NPF for systems with m = 3, . . . , 9 states and
Ct = 0, n = 2 is shown. It is apparent the MPF can use more particles for
a given computational complexity, when compared to the standard PF.

possible to directly find out how much there is to gain in using
the MPF from a computational complexity point of view. The
figure also shows that the computational complexity is always
reduced when the MPF can be used instead of the standard PF.
Furthermore, it is well-known that the quality of the estimates
will improve or remain the same when the MPF is used [8].

B. Mixed Nonlinear/Linear Measurements (Ct 6= 0)

It is now assumed that Ct 6= 0 in (5c), which implies that the
Riccati recursions have to be evaluated for each particle. This
results in a significant increase in the computational complex-
ity. Hence, different covariance matrices have to be used for
each Kalman filter, implying that (11) has to be modified. For
details the reader is referred to [13], but approximately the
complexity is given by

C(p,k,N) = (6kp + 4p2 + 2k2 + p − k + pc3 + c1 + c2+

4pk2 + 8kp2 +
4

3
p3 + 5k3 − 5kp + 2p2 + k3)N. (12)

The problem with the increased complexity in (12) might be
reduced simply by moving one or more linear states from xk

t

to xp
t . In Fig. 2 the ratio N(k)/NPF is plotted for systems

with m = 3, . . . , 9 states. For systems with few states the MPF
is more efficient than the standard PF. However, for systems
with more states, where most of the states are marginalized the
standard PF becomes more efficient than the MPF. The reason
is the increased complexity in the Kalman filters due to the
increased dimension in the Riccati recursions. For example;
according to Fig. 2 a system with 9 states, where 7 are
marginalized, N(k) < NPF .

IV. TARGET TRACKING EXAMPLE

The general method for analyzing the computational com-
plexity presented in the previous section is illustrated using

0 1 2 3 4 5 6 7
0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

m = 3

m = 4

m = 5

m = 6

m = 7

m = 8

m = 9PSfrag replacements

N
(k

)/
N

P
F

Number of states in the Kalman filter (k)

C(p + k, 0, NPF) = C(p, k, N(k))

Fig. 2. The ratio N(k)/NPF for systems with m = 3, . . . , 9 states and
Ct 6= 0, n = 2 is shown. For systems with high state dimension and many
marginalized states the standard PF can use more particles than the MPF.

a common tracking model. The problem of estimating the
position and velocity of an aircraft is studied using

xt+1 =

1 0 T 0 T 2/2 0
0 1 0 T 0 T 2/2
0 0 1 0 T 0
0 0 0 1 0 T
0 0 0 0 1 0
0 0 0 0 0 1

xt + wt, (13a)

yt =

[√

p2
x + p2

y

arctan (py/px)

]

+ et (13b)

where Q = Cov[w] = diag[1 1 1 1 0.01 0.01], R =
Cov[e] = diag[100 10−6] and the state vector is xt =
[px py vx vy ax ay]T , i.e., position, velocity and acceleration.
The measurement equation gives the range and azimuth from
the radar system.

In the subsequent section a numerical study of the computa-
tional complexity is given, where the theoretical expressions
previously derived are validated. Furthermore the MPF will
be analyzed in an extensive Monte Carlo (MC) simulation
using the model described in (13). The main purpose of this
simulation is to illustrate the implications of the results derived
in this paper. In the simulations one state trajectory with
different noise realizations have been used. The purpose of
the simulations presented here is to show that using marginal-
ization the computational complexity is significantly reduced
and the quality of the estimates is improved.

A. Numerical Complexity Analysis

The model (13) has 2 nonlinear state variables and 4 linear
state variables, implying k ∈ [0, 4], p ∈ [2, 6]. Two cases
are now studied, the full PF, where all states are estimated
using the PF and the completely marginalized PF, where
all linear states are marginalized out and estimated using
the KF. Requiring the same computational complexity, i.e.,

4

0 2000 4000 6000 8000 10000
0

0.1

0.2

0 2000 4000 6000 8000 10000
0

0.1

0.2

0 2000 4000 6000 8000 10000
0

0.1

0.2
PPPPPP

PPPPKK

PPKKKK
C
(6

,0
,N

)
C
(4

,2
,N

)
C
(2

,4
,N

)

N

Fig. 3. Using a constant number of particles the times predicted from the
theoretical results are shown by the dashed line. The solid line corresponds
to the actual time measured using MATLAB. If a certain state variable is
estimated using the PF this is indicated with a P , and if the KF is used this
is indicated using a K.

C(6, 0, NPF) = C(2, 4, NMPF), gives

NPF =

(

1 −
4c3 + 56

c1 + c2 + 6c3 + 150

)

︸ ︷︷ ︸

<1

NMPF. (14)

From (14) it is clear that for a given computational complexity
more particles can be used in the MPF than in the standard PF.
Expression (14) is a specific instance of what has been plotted
in Fig. 1, where the curve corresponds to m = 6, k = 4.
In order to quantify this statement numerical values for the
three constants c1, c2 and c3 are needed. They are estimated by
analyzing the actual computational time consumed by various
parts of the MPF algorithm. It was fairly easy to measure the
time used for likelihood calculation, resampling and random
number generation as a function of the number of particles.
The problem is to relate them to the time consumed for a
single flop. For simpler hardware implementations one flop
would have a constant execution time. However, in order to
do this on a normal desktop computer running MATLAB, the
EF estimation has to be considered, since flop count does not
entirely reflect the actual computational time. This is due to
memory caching, pipelining, efficient computational routines
which are problem size dependent and memory swapping. For
the tracking example from (13) the estimated coefficients are
c1 = 445, c2 = 487 and c3 = 125 (on a Sun Blade 100 with
640 MB memory).

By comparing the EF complexity given by (11) to the actual
computational time measured in MATLAB it is clear that
the predictions of the computational complexity based on
theoretical considerations are quite good indeed. The result is
given in Fig. 3. The small error is mainly due to the fact that
it is quite hard to predict the time used for matrix operations,
as previously discussed.

B. Simulation - Constant Time

Using a constant time the number of particles that can be
used is computed. The study is performed by first running
the full PF and measure the time consumed by the algorithm.
A MC simulation, using N = 2000 particles, is performed
in order to obtain a stable estimate of the time consumed
by the algorithm. To avoid intervention from the operating
system the minimum value is chosen. The time is then used
as the target function for the different partitions in the MPF.
To find the number of particles needed a search method is
implemented and MC simulations are used to get a stable
estimate. In Table II the number of particles (N), the root
mean square error (RMSE) and simulation times are shown
for the different marginalization cases. RMSE is defined as
(

1
Tf

∑Tf

i=1
1

NMC

∑NMC

j=1 ‖xtrue
i − x̂

(j)
i ‖2

2

)1/2

, where Tf is the
number of time samples and NMC = 100 is the number
of MC simulations used. From Table II it is clear that the

TABLE II
RESULTS FROM THE CONSTANT TIME SIMULATION.

PPPPPP PPKKPP PPPPKK PPKKKK
N 2000 2029 1974 2574
RMSE pos 7.10 5.81 5.76 5.60
RMSE vel 3.62 3.27 3.28 3.21
RMSE acc 0.52 0.47 0.45 0.44
Time 0.59 0.58 0.57 0.60

different MPFs can use more particles for a given time,
which is in perfect correspondence with the theoretical result
given in (14). From the study it is also concluded that the
RMSE is decreasing when marginalization is used. This is
also in accordance with theory, which states that the variance
should decrease or remain unchanged when marginalization is
used [8]. Furthermore, Table II verifies the theoretical results
presented in Fig. 1. From this figure it is also clear that the
complete marginalization (m = 6, k = 4) gives N(k)/N0 =
1.44. Hence, the theoretically predicted number of particles is
2000×1.44 = 2880. This is in quite good agreement with the
result reported in Table II, 2574.

C. Simulation - Constant Velocity RMSE

In this section it is studied what happens if a constant velocity
RMSE is used. First the velocity RMSE for the full PF is found
using a MC simulation. This value is then used as a target
function in the search for the number of particles needed by
the different MPFs. Table III clearly indicates that the MPF
can obtain the same RMSE using fewer particles. The result
is that using full marginalization only requires 14% of the
computational resources as compared to the standard PF in
this example.

5

TABLE III
RESULTS USING A CONSTANT VELOCITY RMSE.

PPPPPP PPKKPP PPPPKK PPKKKK
N 2393 864 943 264
RMSE pos 7.07 6.98 7.12 7.27
RMSE vel 3.58 3.60 3.65 3.61
RMSE acc 0.50 0.51 0.49 0.48
Time 0.73 0.26 0.28 0.10

V. CONCLUSION

The contribution in this paper is a systematic approach to
analyze and partition the marginalized particle filter from
a computational complexity point of view. The method is
general and can be applied to a large class of problems.
To illustrate the idea, a common target tracking problem
is analyzed in detail. The complexity analysis is performed
theoretically by counting the number of flops and using the
equivalent flop measure to account for complex algorithmic
parts such as random number generation and resampling. In
an extensive Monte Carlo simulation different performance
aspects are shown, and the theoretical results are illustrated
and validated.

ACKNOWLEDGMENT

This work was supported by VINNOVA’s Center of Excellence
ISIS (Information Systems for Industrial Control and Super-
vision), in particular the partner NIRA Dynamics, and by the
Swedish Research Council (VR). The authors would also like
to thank the reviewers for their constructive comments.

REFERENCES

[1] C. Andrieu and A. Doucet. Particle filtering for partially observed
Gaussian state space models. Journal of the Royal Statistical Society,
64(4):827–836, 2002.

[2] C. Andrieu and S.J. Godsill. A particle filter for model based audio
source separation. In ICA 2000, Helsinki, Finland, Jun. 2000.

[3] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge
University Press, Cambridge, UK, 2004.

[4] G. Casella and C.P. Robert. Rao-Blackwellisation of sampling schemes.
Biometrika, 83(1):81–94, 1996.

[5] R. Chen and J.S. Liu. Mixture Kalman filters. Journal of the Royal
Statistical Society, 62(3):493–508, 2000.

[6] A. Doucet, N. de Freitas, and N. Gordon, editors. Sequential Monte
Carlo Methods in Practice. Springer Verlag, 2001.

[7] A. Doucet, S.J. Godsill, and C. Andrieu. On sequential Monte Carlo
sampling methods for Bayesian filtering. Statistics and Computing,
10(3):197–208, 2000.

[8] A. Doucet, N. Gordon, and V. Krishnamurthy. Particle filters for state
estimation of jump Markov linear systems. IEEE Transactions on Signal
Processing, 49(3):613–624, 2001.

[9] G.H. Golub and C.F. Van Loan. Matrix Computations. John Hopkins
University Press, Baltimore, 3 edition, 1996.

[10] N.J. Gordon, D.J. Salmond, and A.F.M. Smith. A novel approach to
nonlinear/non-Gaussian Bayesian state estimation. In IEE Proceedings
on Radar and Signal Processing, volume 140, pages 107–113, 1993.

[11] T. Kailath, A.H. Sayed, and B. Hassibi. Linear Estimation. Information
and System Sciences Series. Prentice Hall, Upper Saddle River, New
Jersey, 2000.

[12] R. E. Kalman. A new approach to linear filtering and prediction
problems. Trans. AMSE, J. Basic Engineering, 82:35–45, 1960.

[13] R. Karlsson, T. Schön, and F. Gustafsson. Complexity analysis of
the marginalized particle filter. Technical Report LiTH-ISY-R-2611,
Department of Electrical Engineering, Linköping University, 2004.

[14] P-J. Nordlund. Sequential Monte Carlo Filters and Integrated Naviga-
tion. Licentiate thesis, Linköping university, 2002. Thesis No. 945.

[15] T. Schön, F. Gustafsson, and P-J. Nordlund. Marginalized particle filters
for mixed linear/nonlinear state-space models. Accepted for publication
in IEEE Transactions on Signal Processing, 2004.

