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A General Convergence Result for Particle Filtering
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Abstract—The particle filter has become an important tool in solving
nonlinear filtering problems for dynamic systems. This correspondence
extends our recent work, where we proved that the particle filter con-
verges for unbounded functions, using L4-convergence. More specifically,
the present contribution is that we prove that the particle filter converge
for unbounded functions in the sense of Lp-convergence, for an arbitrary
p ≥ 2.

I. INTRODUCTION

The main purpose of the present work is to extend our previous
results on particle filtering convergence for unbounded functions [1],
where we, for simplicity, only proved L4-convergence. Here, we
will prove Lp-convergence for an arbitrary p ≥ 2, of the particle
filter. This requires some nontrivial embellishments, which form the
contribution of the present work, including the introduction and use
of a new Rosenthal-type inequality [2].

The particle filter provides a solution to the nonlinear filtering prob-
lem, which amounts to, recursively in time computing an estimate of
the state in a dynamic system,

xt+1 = ft(xt, vt), (1a)

yt = ht(xt, et). (1b)

Here, xt denotes the state, yt denotes the measurement, vt and et
denote the stochastic process and measurement noise, respectively.
Most estimation algorithms aim at computing an approximation of
the conditional expectation

E(φ(xt)|y1:t) =

∫
φ(xt)p(xt|y1:t)dxt, (2)

where y1:t , (y1, . . . , yt) and φ : Rnx → R is the function of
the state that we want to estimate. The particle filter computes an
approximation to (2) by forming an approximation of the filtering
distribution according to

p̂N (xt|y1:t) =
N∑
i=1

witδxit(dxt), (3)

where each particle xit has a weight wit associated to it, and δx(·)
denotes the delta-Dirac mass located in x.

The first complete particle filter was introduced by Gordon et al. in
1993 [3]. Since then the particle filter has become an important tool in
solving complicated estimation problems. For more information about
the particle filter we refer to the text books [4]–[6] and the survey
papers [6]–[10]. When it comes to convergence results for the particle
filter the book [11] contains a lot of useful results. Furthermore, the
excellent survey papers [12], [13] are very informative.

The outline of the paper is as follows. In Section II we briefly intro-
duce the models, the optimal filters that we are trying to approximate
and the particle filter. However, these sections are intentionally rather
brief, since a more detailed background using the same notation is
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already provided in [1] and the related technical report [20]. The main
result is then presented and proved in Section III and the conclusions
are given in Section IV. There is also an appendix containing the
necessary auxiliary lemmas.

II. BACKGROUND

In order to understand the general convergence result proved in
the present work we will here briefly explain the background when it
comes to models and optimal filters in Section II-A and the particle
filter in Section II-B.

A. Models and Optimal Filters

In order to develop the theory below we need to represent the
nonlinear system (1) in a way that facilitates the use of the relevant
theoretical tools. We are concerned with two real vector-valued
stochastic processes X = {Xt}Nt=1 and Y = {Yt}Nt=1, which
are defined on a probability space. The nx-dimensional process X
describes the evolution of the hidden state and it is a Markov process
with initial state X0 and an initial distribution π0(dx0). Furthermore,
a Markov transition kernel K(dxt+1|xt) is used to model the state
evolution over time according to

P (Xt+1 ∈ A|Xt = xt) =

∫
A

K(dxt+1|xt), (4)

for all A ∈ B(Rnx), where B(Rnx) denotes the Borel σ-algebra
on Rnx . The ny−dimensional process Y describes the available
measurements, which are assumed conditionally independent given
the states and

P (Yt ∈ B|Xt = xt) =

∫
B

ρ(dyt|xt), ∀B ∈ B(Rny ). (5)

We assume that K(dxt+1|xt) and ρ(dyt|xt) have densities with
respect to a Lebesgue measure, allowing us to write

P (Xt+1 ∈ dxt+1|Xt = xt) = K(xt+1|xt)dxt+1, (6a)

P (Yt ∈ dyt|Xt = xt) = ρ(yt|xt)dyt. (6b)

Since we are trying to approximate (2) we are indirectly interested
in finding approximations of the filtering distribution, i.e., the distri-
bution of the state conditioned on the measurements πt|t(dxt) which
is ideally given by

πt|t−1(dxt) =

∫
Rnx

πt−1|t−1(dxt−1)K(dxt|xt−1), (7a)

πt|t(dxt) =
ρ(yt|xt)πt|t−1(dxt)∫

Rnx ρ(yt|xt)πt|t−1(dxt)
. (7b)

In the interest of a more compact notation, let us introduce the
following. Given a measure ν, a function φ, and a Markov transition
kernel K, denote

(ν, φ) ,
∫
φ(x)ν(dx), Kφ(x) =

∫
K(dz|x)φ(z). (8)

This implies that E(φ(xt)|y1:t) = (πt|t, φ). From (7) we now have
the following recursive form for the optimal filter E(φ(xt)|y1:t),

(πt|t−1, φ) = (πt−1|t−1,Kφ), (9a)

(πt|t, φ) =
(πt|t−1, φρ)

(πt|t−1, ρ)
. (9b)
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B. Particle Filters

The particle filter we are concerned with in this work is given in
detail in Algorithm 1 below.

Algorithm 1: Particle filter
1) Initialize the particles, {xi0}Ni=1 ∼ π0(dx0).
2) Predict the particles by drawing samples,

x̄it ∼
N∑
j=1

αijK(dxt|xjt−1), i = 1, . . . , N.

3) If 1
N

∑N
i=1 ρ(yt|x̄it) ≥ γt, proceed to step 4 otherwise

return to step 2.
4) Rename x̃it = x̄it, compute wit = ρ(yt|x̃it) and normalize

w̃it = wit/
∑N
j=1 w

j
t for i = 1, . . . , N .

5) Resample, xit ∼ π̃Nt|t(dxt) =
∑N
i=1 w̃

i
tδx̃it(dxt), i =

1, . . . , N .
6) Set t := t+ 1 and repeat from step 2.

The particle filtering algorithm given above is different from the
standard particle filter in two ways. The first difference is that we
have, in step (2), introduced the weights αij , satisfying

αij ≥ 0,

N∑
j=1

αij = 1,

N∑
i=1

αij = 1. (10)

These weights allows us to represent two slightly different particle
filters at once. More specifically, when αij = 1 for j = i, and αij = 0
for j 6= i, the sampling method is reduced to the original particle
filter introduced by [3], see also e.g., [6], [14]. On the other hand,
when αij = 1/N for all i and j, it turns out to be a convenient form
for theoretical treatment, as used by nearly all existing theoretical
analysis, see e.g., [11]–[13], [15]. Let us also point out a useful
formula for future use. In step (2), when sampling x̄it from the
distribution

∑N
j=1 α

i
jK(dxt|xjt−1), we have

1

N

N∑
i=1

N∑
j=1

αijK(dxt|xjt−1) =
1

N

N∑
j=1

(
N∑
i=1

αijK(dxt|xjt−1)

)

=
1

N

N∑
j=1

K(dxt|xjt−1) = (πNt−1|t−1,K). (11)

The second difference worth commenting is that we in step (3) require
that the sampled particles {x̄it}Ni=1 satisfies

1

N

N∑
i=1

ρ(yt|x̄it) ≥ γt > 0, (12)

where the real number γt is selected by experience. If the above
inequality holds, the algorithm proceeds to the next step, whereas if
it does not hold, we regenerate {x̄it}Ni=1 again until (12) is satisfied.
After renaming {x̄it}Ni=1 by {x̃it}Ni=1, the requirement is

(π̃Nt|t−1, ρ) =
1

N

N∑
i=1

ρ(yt|x̃it) ≥ γt > 0. (13)

The requirement is used in the proof of the main results of this paper.
Furthermore, from the more practical side, it helps in reducing the
risk of filter divergence.

III. GENERAL CONVERGENCE RESULT

In this section we consider convergence of the particle filter,
Algorithm 1, to the optimal filter

E(φ(xt)|y1:t) (14)

in the case where φ is an unbounded function. It is also worth noting
that all the stochastic quantifiers below (like E and “w.p. 1”) are with
respect to the random variables related to the particles. Below we list
the conditions that we need in order to establish the convergence
result.

H0. For given y1:s, s = 1, 2, . . . , t, (πs|s−1, ρ) > 0, and the
constant γs used in the algorithm satisfies 0 < γs < (πs|s−1, ρ), s =
1, 2, . . . , t.

H1. ρ(ys|xs) < ∞; K(xs|xs−1) < ∞ for given y1:s, s =
1, 2, . . . , t.

H2. For some p > 1, the function φ(·) satisfies
supxs |φ(xs)|pρ(ys|xs) < C(y1:s) for given y1:s, s = 1, . . . , t.

Let us denote the set of functions φ satisfying H2 by Lpt (ρ). Denote
the maximum norm ‖%(x)‖ = maxx |%(x)| for any bounded function
of x = (x1, . . . , xt) with respect to fixed y1, . . . , yt. For example,
we have ‖ρ‖ <∞ and ‖K‖ <∞ by H1, and ‖φpρ‖ <∞ by H2.

Remark 3.1: Based on (9b) we see that (πs|s−1, ρ) > 0 in H0 is
a basic requirement for the optimal filter E(φ(xt)|y1:t) to exist.

Remark 3.2: By the conditions (πs|s−1, ρ) > 0 and
supxs |φ(xs)|pρ(ys|xs) <∞, we have

(πs|s, |φ|p) =
(πs|s−1, ρ|φ|p)

(πs|s−1, ρ)
<∞. (15)

Theorem 3.1: If H0-H2 hold, then for any φ ∈ Lpt (ρ) and p ≥
2, 1 ≤ r ≤ 2, and sufficiently large N , there exists a constant Ct|t
independent of N such that

E
∣∣∣(πNt|t, φ)− (πt|t, φ)

∣∣∣p ≤ Ct|t ‖φ‖pt,p
Np−p/r , (16)

where ‖φ‖t,p
∆
= max

{
1, (πs|s, |φ|p)1/p, s = 0, 1, . . . , t

}
.

Proof. The proof is carried out using an induction framework,
similar to the one introduced in [12] and further used in [1].

1: Initialization Let {xi0}Ni=1 be independent random variables
from the distribution π0(dx0). Then, with the use of Lemmas A.1,
A.2 and A.3 (note that A here implies that the lemmas are to be
found in the Appendix) we obtain

E
∣∣∣(πN0 , φ)− (π0, φ)

∣∣∣p =
1

Np
E

∣∣∣∣∣
N∑
i=1

(φ(xi0)− E[φ(xi0)])

∣∣∣∣∣
p

≤ C(p)

Np

[
N∑
i=1

E|φ(xi0)− E[φ(xi0)]|p

+

[
N∑
i=1

E|φ(xi0)− E[φ(xi0)]|r
]p/r ]

≤ 2pC(p)

[
E|φ(xi0)|p

Np−1
+
Ep/r|φ(xi0)|r

Np(1−1/r)

]
≤ 2p+1C(p)

E|φ(xi0)|p

Np(1−1/r)

∆
= C0|0

‖φ‖p0,p
Np(1−1/r)

. (17)

Note that in the last two inequalities i referes to an arbitrary i =
1, . . . , N . Similarly,

E
∣∣∣(πN0 , |φ|p)− (π0, |φ|p)

∣∣∣ ≤ 1

N
E

∣∣∣∣∣
N∑
i=1

(|φ(xi0)|p − E|φ(xi0)|p)

∣∣∣∣∣
≤ 2E|φ(xi0)|p. (18)

Hence,

E
∣∣∣(πN0 , |φ|p)∣∣∣ ≤ 3E|φ(xi0)|p ∆

= M0|0‖φ‖p0,p. (19)

2: Prediction Based on (17) and (19), we assume that for t − 1
and ∀φ ∈ Lpt (ρ)

E
∣∣∣(πNt−1|t−1, φ)− (πt−1|t−1, φ)

∣∣∣p ≤ Ct−1|t−1

‖φ‖pt−1,p

Np(1−1/r)
(20)
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and

E
∣∣∣(πNt−1|t−1, |φ|p)

∣∣∣ ≤Mt−1|t−1‖φ‖pt−1,p (21)

hold for sufficiently large N , where Ct−1|t−1 > 0 and Mt−1|t−1 >
0. In this step we analyze E

∣∣(π̃Nt|t−1, φ)− (πt|t−1, φ)
∣∣p and

E
∣∣(π̃Nt|t−1, |φ|p)

∣∣.
Proposition 3.1 given below shows that the modified algorithm will

not run into an infinite loop. Let Ft−1 denote the σ-algebra generated
by {xit−1}Ni=1. Notice that

(π̃Nt|t−1, φ)− (πt|t−1, φ)
∆
= Π1 + Π2 + Π3,

where

Π1
∆
= (π̃Nt|t−1, φ)− 1

N

N∑
i=1

E
(
φ(x̃it)|Ft−1

)
,

Π2
∆
=

1

N

N∑
i=1

E
(
φ(x̃it)|Ft−1

)
− 1

N

N∑
i=1

(πN,αit−1|t−1,Kφ),

Π3
∆
=

1

N

N∑
i=1

(πN,αit−1|t−1,Kφ)− (πt|t−1, φ),

and πN,αit−1|t−1 =
∑N
j=1 α

i
jδxjt−1

. Below we will consider the three
terms Π1, Π2 and Π3 separately, but first we point out some basic
facts which are needed in the analysis. Let {xit−1}Ni=1 and yt be
given, then we know from Algorithm 1 that x̄it obeys (πN,αit−1|t−1,K),
i = 1, . . . , N ,

E[φ(x̄it)|Ft−1] =

N∑
j=1

αijKφ(xjt−1) = (πN,αit−1|t−1,Kφ). (22)

Based on (22) and (11), we have

E

(
1

N

N∑
i=1

ρ(yt|x̄it)
∣∣∣Ft−1

)
=

1

N

N∑
i=1

(πN,αit−1|t−1,Kρ)

= (πNt−1|t−1,Kρ). (23)

Note that {x̄it, i = 1, . . . , N} are particles generated without
any modification and {x̃it, i = 1, . . . , N} the modified particles by
(12). The term Π2 denotes the difference between these two series
of particles. Lemma A.5 can now be used to analyze the terms Π1

and Π2 introduced above, since (40) of Proposition 3.1,

P

[
1

N

N∑
i=1

ρ(yt|x̄it) < γt

]
< εt < 1 (24)

holds for sufficiently large N .
By Lemmas A.1, A.2, A.5 (conditional case), (22) and (11),

E (|Π1|p|Ft−1) =
1

Np
E

(∣∣∣∣∣
N∑
i=1

[φ(x̃it)− E(φ(x̃it)|Ft−1)

∣∣∣∣∣
p ∣∣∣Ft−1

)

≤ 2pC(p)

Np

 N∑
i=1

E
(∣∣∣φ(x̃it)

∣∣∣p ∣∣Ft−1

)
+

(
N∑
i=1

E
(∣∣∣φ(x̃it)

∣∣∣r ∣∣Ft−1

)) p
r


≤ 2pC(p)

Np(1− εt)p/r

[
N∑
i=1

E
(∣∣∣φ(x̄it)

∣∣∣p ∣∣Ft−1

)

+

(
N∑
i=1

E
(∣∣∣φ(x̄it)

∣∣∣r ∣∣Ft−1

))p/r ]

≤ 2pC(p)

Np(1− εt)p/r

[
N∑
i=1

(
πN,αit−1|t−1,K|φ|

p
)

+

(
N∑
i=1

(
πN,αit−1|t−1,K|φ|

r
))p/r ]

≤ 2pC(p)

(1− εt)p/r

[
(πNt−1|t−1,K|φ|p)

Np−1
+

(πNt−1|t−1,K|φ|r)p/r

Np−p/r

]
.

Hence, by Lemma A.3 and (21),

E|Π1|p ≤
2p+1C(p)‖K‖pMt−1|t−1

(1− εt)p/r
·
‖φ‖pt−1,p

Np−p/r
∆
= CΠ1 ·

‖φ‖pt−1,p

Np−p/r .

(25)

By (22)-(24), applying Lemma A.5 to ξ = 1
N

∑N
i=1 φ(x̃it) and η =

1
N

∑N
i=1 φ(x̄it) with ε =

Cγt‖ρ‖
p
t−1,p

Np(1−1/r) < εt < 1 (by (23) and (38)
and the generation of {x̃it} in the algorithm), we have

|Π2|p =

∣∣∣∣∣ 1

N

N∑
i=1

E
(
φ(x̃it)|Ft−1

)
− 1

N

N∑
i=1

E
(
φ(x̄it)|Ft−1

)∣∣∣∣∣
p

≤ 2p

(1− ε)p ε
p−1 · E

[∣∣∣∣∣ 1

N

N∑
i=1

φ(x̄it)

∣∣∣∣∣
p ∣∣∣Ft−1

]

≤ 2p

(1− ε)p ε
p−1 · 1

N

N∑
i=1

E
[∣∣∣φ(x̄it)

∣∣∣p ∣∣∣Ft−1

]
≤ 2p

(1− ε)p ε
p−1 · 1

N

N∑
i=1

(πN,αit−1|t−1,K|φ|
p)

≤ 2p

(1− εt)p

(
Cγt‖ρ‖

p
t−1,p

Np(1−1/r)

)p−1

· 1

N

N∑
i=1

(πN,αit−1|t−1,K|φ|
p)

≤ C′Π2
·

(πNt−1|t−1,K|φ|p)
Np−p/r ,

where

C′Π2
=

2p
(
Cγt‖ρ‖

p
t−1,p

)p−1

(1− εt)p
.

Here, Lemma A.5 is applied in the second line and in the third line
we use Jensen’s Inequality. Hence, by (21) and the above formula

E|Π2|p ≤ CΠ2 ·
‖φ‖pt−1,p

Np−p/r , (26)

where CΠ2 = C′Π2
Mt−1|t−1‖K‖. By (11) and (20),

E|Π3|p ≤ Ct−1|t−1‖K‖p ·
‖φ‖pt−1,p

Np−p/r
∆
= CΠ3 ·

‖φ‖pt−1,p

Np−p/r . (27)

Then, using Minkowski’s inequality, (25), (26) and (27), we have

E1/p
∣∣∣(π̃Nt|t−1, φ)− (πt|t−1, φ)

∣∣∣p ≤ E1/p|Π1|p + E1/p|Π2|p

+ E1/p|Π3|p ≤
(
C

1/p
Π1

+ C
1/p
Π2

+ C
1/p
Π3

) ‖φ‖t−1,p

N1−1/r

∆
= C̃

1/p

t|t−1

‖φ‖t−1,p

N1−1/r
.

That is

E
∣∣∣(π̃Nt|t−1, φ)− (πt|t−1, φ)

∣∣∣p ≤ C̃t|t−1

‖φ‖pt−1,p

Np−p/r . (28)

Let us now derive the fact that

E
∣∣∣(π̃Nt|t−1, |φ|p)− (πt|t−1, |φ|p)

∣∣∣ ≤ M̃t|t−1‖φ‖pt−1,p. (29)

where

M̃t|t−1 ,

(
4− εt
1− εt

+ 2

)
‖K‖pMt−1|t−1‖φ‖pt−1,p
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using a separation similar to the one above. By Lemma A.5 and (21),

E

(
(E

[∣∣∣∣∣(π̃Nt|t−1, |φ|p)−
1

N

N∑
i=1

E
(
|φ(x̃it)|p|Ft−1

)∣∣∣∣∣ ∣∣∣Ft−1

])

=
1

N
E

(
E

[∣∣∣∣∣
N∑
i=1

[|φ(x̃it)|p − E(|φ(x̃it)|p|Ft−1)]

∣∣∣∣∣ ∣∣∣Ft−1

])

≤ 2

N
E

(
N∑
i=1

E(|φ(x̃it)|p|Ft−1)]

)

≤ 2

N(1− εt)
E

(
N∑
i=1

E[|φ(x̄it)|p|Ft−1)]

)
≤ 2

1− εt
E(πNt−1|t−1,K|φ|p) ≤

2

1− εt
‖K‖pMt−1|t−1‖φ‖pt−1,p.

(30)

By (22), (11), Lemma A.5 and (21),

E

∣∣∣∣∣ 1

N

N∑
i=1

E
[
|φ(x̃it)|p|Ft−1

]
− 1

N

N∑
i=1

E
(
|φ(x̄it)|p|Ft−1

)∣∣∣∣∣
= E

∣∣∣∣∣ 1

N

N∑
i=1

(
E
(
|φ(x̃it)|p|Ft−1

)
− E

(
|φ(x̄it)|p|Ft−1

))∣∣∣∣∣
≤ 1

N

N∑
i=1

E
(
E
(
|φ(x̃it)|p|Ft−1

)
+ E

(
|φ(x̄it)|p|Ft−1

))
≤
(

1

1− εt
+ 1

)
· 1

N

N∑
i=1

E(πN,αit−1|t−1,K|φ|
p)

=
2− εt
1− εt

· E(πNt−1|t−1,K|φ|p)

≤ 2− εt
1− εt

· ‖K‖pMt−1|t−1‖φ‖pt−1,p. (31)

By (21) and noticing (23), we have

E

∣∣∣∣∣ 1

N

N∑
i=1

(πN,αit−1|t−1,K|φ|
p)− (πt|t−1, |φ|p)

∣∣∣∣∣
≤ ‖K‖p(Mt−1|t−1 + 1)‖φ‖pt−1,p. (32)

Then, by (30) (31) and (32), we have now proved (29).
3: Update In this step we analyse E

∣∣(π̃Nt|t, φ)− (πt|t, φ)
∣∣p and

E(π̃Nt|t, |φ|p) based on (28) and (29). First, let us introduce the
following separation

(π̃Nt|t, φ)− (πt|t, φ) =
(π̃Nt|t−1, ρφ)

(π̃Nt|t−1, ρ)
−

(πt|t−1, ρφ)

(πt|t−1, ρ)
= Π̃1 + Π̃2,

where

Π̃1
∆
=

(π̃Nt|t−1, ρφ)

(π̃Nt|t−1, ρ)
−

(π̃Nt|t−1, ρφ)

(πt|t−1, ρ)
, Π̃2

∆
=

(π̃Nt|t−1, ρφ)

(πt|t−1, ρ)
−

(πt|t−1, ρφ)

(πt|t−1, ρ)
.

By condition H1 we have

|Π̃1| =

∣∣∣∣∣ (π̃
N
t|t−1, ρφ)

(π̃Nt|t−1, ρ)
·

[(πt|t−1, ρ)− (π̃Nt|t−1, ρ)]

(πt|t−1, ρ)

∣∣∣∣∣
≤ ‖ρφ‖
γt(πt|t−1, ρ)

∣∣∣(πt|t−1, ρ)− (π̃Nt|t−1, ρ)
∣∣∣ .

Thus, by Minkowski’s inequality and (28),

E1/p
∣∣∣(π̃Nt|t, φ)− (πt|t, φ)

∣∣∣p ≤ E1/p|Π̃1|p + E1/p|Π̃2|p

≤
C̃

1/p

t|t−1‖ρ‖ (‖ρφ‖+ γt)

γt(πt|t−1, ρ)
· ‖φ‖t−1,p

N1−1/r

∆
= C̃

1/p

t|t
‖φ‖t−1,p

N1−1/r
,

which implies

E
∣∣∣(π̃Nt|t, φ)− (πt|t, φ)

∣∣∣p ≤ C̃t|t ‖φ‖pt−1,p

Np−p/r . (33)

Using a separation similar to the one mentioned above and (29) results
in

E
∣∣∣(π̃Nt|t, |φ|p)− (πt|t, |φ|p)

∣∣∣ ≤ E ∣∣∣∣∣(π̃Nt|t, |φ|p)− (π̃Nt|t−1, ρ|φ|p)
(πt|t−1, ρ)

∣∣∣∣∣
+ E

∣∣∣∣∣ (π̃
N
t|t−1, ρ|φ|p)
(πt|t−1, ρ)

− (πt|t, |φ|p)

∣∣∣∣∣
≤
M̃t|t−1‖ρ‖ (‖ρφp‖+ γt)

γt(πt|t−1, ρ)
· ‖φ‖pt−1,p.

Now, observing that ‖φ‖s,p is increasing with respect to s results in

E
∣∣∣(π̃Nt|t, |φ|p)∣∣∣ ≤ M̃t|t−1‖ρ‖ (‖ρφp‖+ γt)

γt(πt|t−1, ρ)
· ‖φ‖pt−1,p + (πt|t, |φ|p),

≤

(
M̃t|t−1‖ρ‖ (‖ρφp‖+ γt)

γt(πt|t−1, ρ)
+ 1

)
· ‖φ‖pt,p

∆
= M̃t|t‖φ‖pt,p.

(34)

5: Resampling Finally, we analyse E
∣∣(πNt|t, φ)− (πt|t, φ)

∣∣p and
E(πNt|t, |φ|p) based on (33) and (34). Let us start by noticing that

(πNt|t, φ)− (πt|t, φ) = Π̄1 + Π̄2,

where

Π̄1
∆
= (πNt|t, φ)− (π̃Nt|t, φ), Π̄2

∆
= (π̃Nt|t, φ)− (πt|t, φ).

Let Gt denote the σ-algebra generated by {x̃it}Ni=1. From the
generation of xit, we have, E(φ(xit)|Gt) = (π̃Nt|t, φ), and then

Π̄1 =
1

N

N∑
i=1

(φ(xit)− E(φ(xit)|Gt)).

Now, using Lemma A.1 and Lemma A.2, we obtain

E
(
|Π̄1|p|Gt

)
=

1

Np
EGt

∣∣∣∣∣
N∑
i=1

(φ(xit)− E(φ(xit)|Gt))

∣∣∣∣∣
p

≤ 2pC(p)
[ 1

Np−1
E
(
|φ(xit)|p|Gt

)
+

1

Np(1−1/r)
Ep/r

(
|φ(xit)|r|Gt

) ]
.

Thus, by Lemma A.3 and (34),

E|Π̄1|p ≤ 2p+1C(p)M̃t|t
‖φ‖pt,p

Np(1−1/r)
. (35)

Then by Minkowski’s inequality, (33) and (35)

E1/p
∣∣∣(πNt|t, φ)− (πt|t, φ)

∣∣∣p ≤ E1/p|Π̄1|p + E1/p|Π̄2|p

≤
(

[2p+1C(p)M̃t|t]
1/p + C̃

1/p

t|t

) ‖φ‖t,p
N1−1/r

∆
= C

1/p

t|t
‖φ‖t,p
N1−1/r

.

That is

E
∣∣∣(πNt|t, φ)− (πt|t, φ)

∣∣∣p ≤ Ct|t ‖φ‖pt,p
Np−p/r . (36)

Using a separation similar to the one introduced above and (34) gives
us

E
∣∣∣(πNt|t, |φ|p)− (πt|t, |φ|p)

∣∣∣ ≤ (πNt|t, |φ|p) + (πt|t, |φ|p) ≤ (M̃t|t + 1)‖φ‖pt|p.
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Hence,

E
∣∣∣(πNt|t, |φ|p)∣∣∣ ≤ (M̃t|t + 1)‖φ‖pt,p

∆
= Mt|t‖φ‖pt,p. (37)

Therefore, the proof of Theorem 3.1 is completed, since (20) and (21)
are successfully replaced by (36) and (37).

By the Borel-Cantelli Lemma and Chebyshev’s inequality, we also
have a convergence result as follow.

Theorem 3.2: In addition to H1 and H2, if p > 2, then for any
function φ ∈ Lpt (ρ), limN→∞(πNt|t, φ) = (πt|t, φ) almost surely.

The proposition below guarantees that the requirement (12) does
not result in an infinite loop in Algorithm 1.

Proposition 3.1: The particle filtering algorithm given in Algo-
rithm 1 will not run into an infinite loop for sufficiently large N
under the conditions of Theorem 3.1.
Proof. Based on the starting point (20) in the step 2 of the proof of
the main theorem, we have

P
[
(πNt−1|t−1,Kρ) < γt

]
= P

[
(πNt−1|t−1,Kρ)− (πt−1|t−1,Kρ) < γt − (πt−1|t−1,Kρ)

]
≤ P

[
|(πNt−1|t−1,Kρ)− (πt−1|t−1,Kρ)| > |γt − (πt−1|t−1,Kρ)|

]
≤
E|(πNt−1|t−1,Kρ)− (πt−1|t−1,Kρ)|p

|γt − (πt−1|t−1,Kρ)|p

≤
Ct−1|t−1‖K‖p

|γt − (πt−1|t−1,Kρ)|p ·
‖ρ‖pt−1,p

Np(1−1/r)

∆
= Cγt ·

‖ρ‖pt−1,p

Np(1−1/r)
. (38)

Obviously, the probability in (38) tends to 0 as N → ∞. We will
now prove that

E(πNt−1|t−1,Kρ) > γt, (39)

for large enough N . Note that since 0 < γt < (πt|t−1, ρ) (condition
H0), there exits a γ′t such that 0 < γt < γ′t < (πt|t−1, ρ). Following
the same steps as above, we have

P [(πNt−1|t−1,Kρ) < γ′t] = O(1/Np(1−1/r))→ 0.

Then for sufficiently large N , we have

P [(πNt−1|t−1,Kρ) < γ′t] < 1− γt
γ′t
.

Thus,

P [(πNt−1|t−1,Kρ) ≥ γ′t] >
γt
γ′t
.

For notational simplicity, define ζ , (πNt−1|t−1,Kρ) and use fζ(·)
to denote the density function of ζ. Let us now prove Eζ > γt for
(39). Now,

Eζ =

∫
xfζ(x)dx =

(∫
[ζ≥γ′t]

+

∫
[ζ<γ′t]

)
xfζ(x)dx

≥
∫

[ζ≥γ′t]
xfζ(x)dx ≥ γ′tP [ζ ≥ γ′t] > γ′t ·

γt
γ′t

= γt,

which is (39). Here, we have used the the fact that ζ ≥ 0 by noticing
that Kρ ≥ 0.

By a basic fact of Algorithm 1 demonstrated by (23) and the above
formula (39) we know that

E

[
1

N

N∑
i=1

ρ(yt|x̄it)

]
= E(πNt−1|t−1,Kρ) > γt.

Therefore, for a given εt ∈ (0, 1) and a sufficiently large N , we have

P

[
1

N

N∑
i=1

ρ(yt|x̄it) < γt

]
< εt < 1. (40)

By Lemma A.4 this concludes that for sufficiently large N , with
probability 1, the algorithm will not enter an infinite recursion.

IV. CONCLUSION

The main contribution of this work is the proof that the particle fil-
ter converge for unbounded functions in the sense of Lp-convergence,
for p ≥ 2. Besides this we also provide Lemma A.1, a new Rosenthal
type inequality, which is generally applicable.
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APPENDIX

In order to establish the convergence result, the following Rosen-
thal type inequality is needed.

Lemma A.1: Let p > 0, 1 ≤ r ≤ 2, and let {ξi, i = 1, . . . , n} be
conditionally independent random variables, given σ-algebra G such
that E(ξi|G) = 0, E(|ξi|p|G) <∞ and E(|ξi|r|G) <∞. Then there
exists a constant C(p) that depends only on p such that

E

(∣∣∣∣∣
n∑
i=1

ξi

∣∣∣∣∣
p

|G

)
≤ C(p)

 n∑
i=1

E(|ξi|p|G) +

(
n∑
i=1

E(|ξi|r|G)

)p/r .
(41)

The inequality stated above hold in the almost sure sense, since it is
in the form of a conditional expectation. For convenience, we omit
the notation of almost sure in the lemma and its proof.

Remark A.1: When r = 2, (41) was first introduced in [2] for
the special case of independent random variables, and then extend
to a martingale difference sequence in [16]. The best constants C(p)
for both cases can be found in [17] and [18], respectively. For a
brief proof of the independent case we refer to Appendix C in [19].
However, all the references mentioned require that r = 2, implying
that the order of integrability should be no less than 2. This restriction
has been improved to r ∈ [1, 2] in Lemma A.1.

Remark A.2: For 0 < p ≤ 2 and r = 2 we have the following
simplified form for (41) (see also Appendix C in [19])

E

(∣∣∣∣∣
n∑
i=1

ξi

∣∣∣∣∣
p

|G

)
≤

(
E

(∣∣∣∣∣
n∑
i=1

ξi

∣∣∣∣∣
2

|G

))p/2
=

(
n∑
i=1

E
(
ξ2
i |G
))p/2

.

(42)

Proof. See [20].
Lemma A.2: If E|ξ|p <∞, then E|ξ −Eξ|p ≤ 2pE|ξ|p, for any

p ≥ 1.
Proof. By Jensen’s inequality, for p ≥ 1, (E|ξ|)p ≤ E|ξ|p. Hence,
E|ξ| ≤ (E|ξ|p)1/p. Then by Minkowski’s inequality, we have

(E|ξ − Eξ|p)1/p ≤ (E|ξ|p)1/p + |Eξ| ≤ 2(E|ξ|p)1/p,

which derives the desired inequality.

Lemma A.3: If 0 < r1 ≤ r2 and E|ξ|r2 <∞, then E1/r1 |ξ|r1 ≤
E1/r2 |ξ|r2 .
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Proof. The result follows from Hölder’s inequality: E (|ξ|r1 · 1) ≤
Er1/r2

(
(|ξ|r1)r2/r1

)
.

Lemma A.4: Assume that a random variable ξ satisfies P [ξ <
γ] < 1, where γ is a constant. Independently generate a sequence
of samples {ξi} with the same distribution as ξ until some ξi ≥ γ.
Then, this procedure cannot run into an infinite loop.
Proof. Note that

P [ξ1 < γ, ξ2 < γ, . . . , ξn < γ] = pn → 0

as n → ∞, where p = P [ξ < γ] < 1. Thus, the process is almost
surely finite. See also [20].

Lemma A.5: Let A be a Borel measurable subset of Rm and
sample the random vector ξ, obeying a probability density d(t), until
the relization belong to A, t ∈ Rm. Suppose that P [η ∈ Ω−A] ≤
ε < 1, where the random vector η obey the density d(t) and ψ is
a measurable function satisfying E|ψ(η)|p < ∞, p > 1. Then, we
have

|Eψ(ξ)− Eψ(η)| ≤ 2E1/p|ψ(η)|p

1− ε ε
p−1
p . (43)

In the case E|ψ(η)| <∞,

E|ψ(ξ)| ≤ E|ψ(η)|
1− ε . (44)

Proof. Notice that the density of ξ is

d(t)IA(t)∫
d(t)IA(t)dt

,

Let us now prove (43),

|Eψ(ξ)− Eψ(η)| =
∣∣∣∣ ∫ ψ(t)d(t)IA(t)dt∫

d(t)IA(t)dt
−
∫
ψ(t)d(t)dt

∣∣∣∣
≤ 1

1− ε

∣∣∣∣∫ ψ(t)d(t)IA(t)dt−
∫
ψ(t)d(t)dt · (1− ε)

∣∣∣∣
=

1

1− ε

∣∣∣∣−∫ ψ(t)d(t)IΩ−Adt+

∫
ψ(t)d(t)dt · ε

∣∣∣∣
≤ 1

1− ε

[∫
|ψ(t)|d(t)IΩ−Adt+

∫
|ψ(t)|d(t)dt · ε

]
≤ 1

1− ε

[(∫
|ψ(t)|pd(t)dt

) 1
p

·
(∫

d(t)IΩ−Adt

) p−1
p

+ E|ψ(η)| · ε

]
≤ 1

1− ε

[
E1/p|ψ(η)|p · ε

p−1
p + E|ψ(η)| · ε

]
≤ 2E1/p|ψ(η)|p

1− ε ε
p−1
p ,

which finishes the derivation of (43).

The set A is typically defined by an inequality, say {f(η) > γ}.
The result of Lemma A.5 can be extended to the conditional expec-
tation case. For instance, in the case of (44), the conditional form
would be

E[|ψ(ξ)| |F ] ≤ E[|ψ(η)| |F ]

1− ε ,

where F is a given σ-algebra and η has corresponding conditional
density under the same condition P [η ∈ Ω−A] ≤ ε < 1.

REFERENCES

[1] X.-L. Hu, T. B. Schön, and L. Ljung, “A basic convergence result for
particle filtering,” IEEE Transactions on Signal Processing, vol. 56,
no. 4, pp. 1337–1348, Apr. 2008.

[2] H. Rosenthal, “On the subspaces of lp(p > 2) spanned by sequences of
independent random variables,” Israel Journal of Mathematics, vol. 8,
no. 3, pp. 273–303, 1970.

[3] N. J. Gordon, D. J. Salmond, and A. F. M. Smith, “Novel approach to
nonlinear/non-Gaussian Bayesian state estimation,” in IEE Proceedings
on Radar and Signal Processing, vol. 140, 1993, pp. 107–113.

[4] J. V. Candy, Bayesian Signal Processing: Classical, Unscented And
Particle Filtering Methods, ser. Adaptive And Learning Systems For
Signal Processing, Communications And Control Series. Hoboken, NJ,
USA: John Wiley & Sons, 2009.

[5] B. Ristic, S. Arulampalam, and N. Gordon, Beyond the Kalman Filter:
particle filters for tracking applications. London, UK: Artech House,
2004.

[6] A. Doucet, S. J. Godsill, and C. Andrieu, “On sequential Monte Carlo
sampling methods for Bayesian filtering,” Statistics and Computing,
vol. 10, no. 3, pp. 197–208, 2000.

[7] A. Doucet and A. M. Johansen, “A tutorial on particle filtering and
smoothing: Fifteen years later,” in Nonlinear Filtering Handbook,
D. Crisan and B. Rozovsky, Eds. Oxford University Press, 2009, to
appear.
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