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A Basic Convergence Result for Particle Filtering
Xiao-Li Hu, Thomas B. Schön and Lennart Ljung

Abstract—The basic nonlinear filtering problem for dynamical
systems is considered. Approximating the optimal filter estimate
by particle filter methods has become perhaps the most common
and useful method in recent years. Many variants of particle
filters have been suggested, and there is an extensive literature
on the theoretical aspects of the quality of the approximation. Still
a clear cut result that the approximate solution, for unbounded
functions, converges to the true optimal estimate as the number
of particles tends to infinity seems to be lacking. It is the purpose
of this contribution to give such a basic convergence result for
a rather general class of unbounded functions. Furthermore,
a general framework, including many of the particle filter
algorithms as special cases, is given.

I. INTRODUCTION

The nonlinear filtering problem is formulated as follows.
The objective is to recursively in time estimate the state in the
dynamic model,

xt+1 = ft(xt, vt), (1a)
yt = ht(xt, et), (1b)

where xt ∈ Rnx denotes the state, yt ∈ Rny denotes the
measurement, vt and et denote the stochastic process and
measurement noise, respectively. Furthermore, the dynamic
equations for the system are denoted by ft : Rnx×Rnv → Rnx

and the equations modelling the sensors are denoted by
ht : Rnx × Rne → Rny . Most applied signal processing
problems can be written in the following special case of (1),

xt+1 = ft(xt) + vt, (2a)
yt = ht(xt) + et, (2b)

with vt and et i.i.d. and mutually independent. Note that
any deterministic input signal ut is subsumed in the time-
varying dynamics. The most commonly used estimate is an
approximation of the conditional expectation,

E(φ(xt)|y1:t), (3)

where y1:t , (y1, . . . , yt) and φ : Rnx → R is the function
of the state that we want to estimate. We are interested
in estimating a function of the state, such as φ(xt) from
observed output data y1:t. An especially common case is of
course when we seek an estimate of the state itself φ(xt) =
xt[i], i = 1, . . . , nx, where xt = (xt[1], . . . , xt[nx])T . In
order to compute (3) we need the filtering probability density
function p(xt|y1:t). It is well known that this density function
can be expressed using multidimensional integrals [1]. The
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problem is that these integrals only permits analytical solutions
in a few special cases. The most common special case is of
course when the model (2) is linear and Gaussian and the
solution is then given by the Kalman filter [2]. However,
for the more interesting nonlinear/non-Gaussian case we are
forced to approximations of some kind. Over the years there
has been a large amount of ideas suggested on how to perform
these approximations. The most popular being the extended
Kalman filter (EKF) [3], [4]. Other popular ideas include the
Gaussian-sum approximations [5], the point-mass filters [6],
[7], the unscented Kalman filter (UKF) [8] and the class
of multiple model estimators [9]. See, e.g., [10] for a brief
overview of the various approximations. In the current work
we will discuss a rather recent and popular family of methods,
commonly referred to as particle filters (PF) or sequential
Monte Carlo methods.

The key idea underlying the particle filter is to approximate
the filtering density function using a number of particles
{xi

t}N
i=1 according to

p̂N (xt|y1:t) =
N∑

i=1

wi
tδxi

t
(xt), (4)

where each particle xi
t has a weight wi

t associated to it,
and δx(·) denotes the delta-Dirac mass located in x. Due to
the delta-Dirac form in (4), a finite sum is obtained when
this approximation is passed through an integral and hence,
multidimensional integrals are reduced to finite sums. All the
details of the particle filter were first assembled by Gordon
et al. in 1993 in their seminal paper [11]. However, the main
ideas, save for the crucial resampling step, have been around
since the 1940’s [12].

Whenever an approximation is used it is very important
to address the issue of its convergence to the true solution
and more specifically, under what conditions this convergence
is valid. An extensive treatment of the currently existing
convergence results can be found in the book [13] and the
excellent survey papers [14], [15]. They consider stability, uni-
form convergence (see also [16], [17]), central limit theorems
(see also [18]) and large deviations (see also [19], [20]). The
previous results prove convergence of probability measures
and only treat bounded functions φ, effectively excluding
the most commonly used state estimate, the mean value.
To the best of our knowledge there are no results available
for unbounded functions φ. The main contribution of this
paper is that we prove convergence of the particle filter for
a rather general class of unbounded functions, applicable in
many practical situations. This contribution will also describe
a general framework for particle filtering algorithms.

It is worth stressing the key mechanisms that enables us to
study unbounded functions in the particle filtering context.
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1) The most important idea, enabling the contribution in the
present paper, is that we consider the relation between
the function φ and the density functions for noises. This
implies that the class of functions φ will depend on the
involved noise densities.

2) We have also introduced a slight algorithm modification,
required to complete the proof. It is worth mentioning
that this modification is motivated from the mathematics
in the proof. However, it is a useful and reasonable
modification of the algorithm in its own right. Indeed,
it has previously been used to obtain a more efficient
algorithm [21].

In Section II we provide a formal problem formulation and
introduce the notation we need for the results to follow. A
brief introduction to particle filters is given in Section III. In an
attempt to make the results as available as possible the particle
filter is discussed both in an application oriented fashion and in
a more general setting. The algorithm modification is discussed
and illustrated in Section IV. Section V provides a general
account of convergence results and in Section VI we state the
main result and discuss the conditions that are required for
the result to hold. The result is then proved in Section VII.
Finally, the conclusions are given in Section VIII.

II. PROBLEM FORMULATION

The problem under consideration in this work is the follow-
ing. For a fixed time t, under what conditions and for which
functions φ does the approximation offered by the particle
filter converge to the true estimate,

E(φ(xt)|y1:t). (5)

In order to give the results in the most simple form possible
we are only concerned with L4-convergence in this paper. The
more general case of Lp-convergence for p > 1 is also under
consideration, using a Rosenthal-type inequality [22].

A. Dynamic Systems
We will now represent model (1) in a slightly different

framework, more suitable for a theoretical treatment. Let
(Ω,F , P ) be a probability space on which two real vector-
valued stochastic processes X = {Xt, t = 0, 1, 2, . . .} and
Y = {Yt, t = 1, 2, . . .} are defined. The nx-dimensional
process X describes the evolution of the hidden state of a
dynamic system, and the ny-dimensional process Y denotes
the available observation process of the same system.

The state process X is a Markov process with initial state
X0 obeying an initial distribution π0(dx0). The dynamics,
describing the state evolution over time, is modelled by a
Markov transition kernel K(dxt+1|xt) such that

P (Xt+1 ∈ A|Xt = xt) =
∫

A

K(dxt+1|xt), (6)

for all A ∈ B(Rnx), where B(Rnx) denotes the Borel σ-
algebra on Rnx . Given the states X , the observations Y are
conditionally independent and have the following marginal
distribution,

P (Yt ∈ B|Xt = xt) =
∫

B

ρ(dyt|xt), ∀B ∈ B(Rny ). (7)

For convenience we assume that K(dxt+1|xt) and ρ(dyt|xt)
have densities with respect to a Lebesgue measure, allowing
us to write

P (Xt+1 ∈ dxt+1|Xt = xt) = K(dxt+1|xt)
= K(xt+1|xt)dxt+1, (8a)

P (Yt ∈ dyt|Xt = xt) = ρ(dyt|xt) = ρ(yt|xt)dyt.
(8b)

In the following example it is explained how a model in the
form (2) relates to the more general framework introduced
above.

Example 2.1: Let the model be given by (2), where the
probability density functions of vt and et are denoted by pvt(·)
and pet

(·), respectively. Then we have the following relations,

K(xt+1|xt) = pvt
(xt+1 − ft(xt)), (9a)

ρ(yt|xt) = pet
(yt − h(xt)). (9b)

B. Conceptual Solution

In practice, we are most interested in the marginal distribu-
tion πt|t(dxt), since the main objective is usually to estimate
E(xt|y1:t) and the corresponding conditional covariance. This
section is devoted to describing the generally intractable form
of πt|t(dxt). By the total probability formula and Bayes’ for-
mula, we have the following recursive form for the evolution
of the marginal distribution,

πt|t−1(dxt) =
∫

Rnx

πt−1|t−1(dxt−1)K(dxt|xt−1) (10a)

, bt(πt−1|t−1),

πt|t(dxt) =
ρ(yt|xt)πt|t−1(dxt)∫

Rnx
ρ(yt|xt)πt|t−1(dxt)

, at(πt|t−1),

(10b)

where we have defined at and bt as transformations between
probability measures on Rnx .

Let us now introduce some additional notation, commonly
used in this context. Given a measure ν, a function φ, and a
Markov transition kernel K, denote

(ν, φ) ,
∫
φ(x)ν(dx), Kφ(x) =

∫
K(dz|x)φ(z).

(11)

Hence, E(φ(xt)|y1:t) = (πt|t, φ). Using this notation, by (10),
for any function φ : Rnx → R, we have the following recursive
form for the optimal filter E(φ(xt)|y1:t),

(πt|t−1, φ) = (πt−1|t−1,Kφ), (12a)

(πt|t, φ) =
(πt|t−1, φρ)
(πt|t−1, ρ)

. (12b)

Here it is worth noticing that we have to require that
(πt|t−1, ρ) > 0, otherwise the optimal filter (12) will not exist.
Furthermore, note that

E(φ(xt)|y1:t) = (πt|t, φ) (13)

=
∫
···
∫
π0(x0)K1ρ1 · · ·Ktρtφ(xt)dx0:t∫

···
∫
π0(x0)K1ρ1 · · ·Ktρtdx0:t

,



IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. X, NO. X, X X 3

where Ks , K(xs|xs−1), ρs , ρ(ys|xs), s = 1, . . . , t,
dx0:t , {dx0 · · · dxt}, and the integral areas have all been
omitted, for the sake of brevity. In general it is, as previously
mentioned, impossible to obtain an explicit solution for the
optimal filter E(φ(xt)|y1:t) by (13). This implies that we have
to resort to numerical methods, such as particle filters, to
approximate the optimal filter.

III. PARTICLE FILTERS

We start this section with a rather intuitive and application
oriented introduction to the particle filter and then we move
on to a general description, more suitable for the theoretical
treatment that follows.

A. Introduction

Roughly speaking, particle filtering algorithms are numeri-
cal methods used to approximate the conditional filtering dis-
tribution πt|t(dxt) using an empirical distribution, consisting
of a cloud of particles at each time t. The main reason for
using particles to represent the distributions is that this allows
us to approximate the integral operators by finite sums. Hence,
the difficulty inherent in (10) has successfully been removed.
The basic particle filter, as it was introduced by [11] is given
in Algorithm 1 and it is briefly described below. For a more
complete introduction, see e.g., [11], [23], [10], [21] where
the latter contains a straightforward MATLAB implementation
of the particle filter. There are also several books available on
the particle filter [24], [25], [26], [13].

Algorithm 1: Particle filter
1) Initialize the particles, {xi

0}N
i=1 ∼ π0(dx0).

2) Predict the particles by drawing independent samples
according to

x̃i
t ∼ K(dxt|xi

t−1), i = 1, . . . , N.

3) Compute the importance weights {wi
t}N

i=1,

wi
t = ρ(yt|x̃i

t), i = 1, . . . , N,

and normalize w̃i
t = wi

t/
∑N

j=1 w
j
t .

4) Draw N new particles, with replacement (resampling),
for each i = 1, . . . , N,

P (xi
t = x̃j

t ) = w̃j
t j = 1, . . . , N.

5) Set t := t+ 1 and repeat from step 2.

The particle filter is initialized at time t = 0 by drawing a
set of N particles {xi

0}N
i=1 that are independently generated

according to the initial distribution π0(dx0). At time t− 1 the
estimate of the filtering distribution πt−1|t−1(dxt−1) is given
by the following empirical distribution

πN
t−1|t−1(dxt−1) ,

1
N

N∑
i=1

δxi
t−1

(dxt−1), (14)

In step 2, the particles from time t− 1 are predicted to time t
using the dynamic equations in the Markov transition kernel

K. When step 2 has been performed we have computed the
empirical one-step ahead prediction distribution,

π̃N
t|t−1(dxt) ,

1
N

N∑
i=1

δx̃i
t
(dxt), (15)

which constitutes an estimate of πt|t−1(dxt). In step 3 the
information in the present measurement yt is used. This step
can be understood simply by substituting (15) into (10b),
resulting in the following approximation of πt|t(dxt)

π̃N
t|t(dxt) ,

ρ(yt|xt)π̃N
t|t−1(dxt)∫

Rnx
ρ(yt|xt)π̃N

t|t−1(dxt)

=

∑N
i=1 ρ(yt|x̃i

t)δx̃i
t
(dxt)∑N

i=1 ρ(yt|x̃i
t)

. (16)

In practice (16) is usually written using the so called normal-
ized importance weights w̃i

t, defined as

π̃N
t|t(dxt) =

N∑
i=1

w̃i
tδx̃i

t
(dxt), w̃i

t ,
ρ(yt|x̃i

t)∑N
i=1 ρ(yt|x̃i

t)
. (17)

Intuitively, these weights contain information about how prob-
able the corresponding particles are. Finally, the important
resampling step is performed. Here, a new set of equally
weighted particles is generated using the information in the
normalized importance weights. This will reduce the problem
of having a high dependence on a few particles with large
weights. With sample xi

t obeying π̃N
t|t(dxt) the resample step

will provide an equally weighted empirical distribution

πN
t|t(dxt) =

1
N

N∑
i=1

δxi
t
(dxt) (18)

to approximate πt|t(dxt). This completes one pass of the
particle filter as it is given in Algorithm 1.

B. Extended Setting

We will now introduce an extended algorithm, which is used
in the theoretical analysis that follows. The extension is that
the prediction step (step 2 in Algorithm 1) is replaced with
the following

x̃i
t ∼

N∑
j=1

αi
jK(dxt|xj

t−1), (19)

where a new set of weights αi have been introduced. Note
that this case occurs for instance if samples are drawn from a
Gaussian-sum approximation as in [27] and when the particle
filter is derived using point-wise approximations as in [28].

The weights αi are defined according to

αi = (αi
1, α

i
2, . . . , α

i
N ), (20)

where

αi
j ≥ 0,

N∑
j=1

αi
j = 1,

N∑
i=1

αi
j = 1. (21)
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Clearly,

1
N

N∑
i=1

N∑
j=1

αi
jK(dxt|xj

t−1) =
1
N

N∑
j=1

(
N∑

i=1

αi
jK(dxt|xj

t−1)

)

=
1
N

N∑
j=1

K(dxt|xj
t−1) = (πN

t−1|t−1,K). (22)

Note that if αi
j = 1 for j = i, and αi

j = 0 for j 6= i, the
sampling method introduced in (19) is reduced to the one
employed in Algorithm 1. Furthermore, when αi

j = 1/N
for all i and j, (19) turns out to be a convenient form for
theoretical treatment. This is exploited by nearly all existing
references dealing with theoretical analysis of the particle
filter, see for example [14], [16], [15]. An extended particle
filtering algorithm is given in Algorithm 2 below.

Algorithm 2: Extended particle filter

1) Initialize the particles, {xi
0}N

i=1 ∼ π0(dx0).
2) Predict the particles by drawing independent samples

according to

x̃i
t ∼

N∑
j=1

αi
jK(dxt|xj

t−1), i = 1, . . . , N.

3) Compute the importance weights {wi
t}N

i=1,

wi
t = ρ(yt|x̃i

t), i = 1, . . . , N,

and normalize w̃i
t = wi

t/
∑N

j=1 w
j
t .

4) Resample, xi
t ∼ π̃N

t|t(dxt), i = 1, . . . , N . (π̃ defined in
(16).) πN

t|t(dxt) = 1
N

∑N
i=1 δxi

t
(dxt).

In Fig. 1 we provide a schematic illustration of the particle
filter given in Algorithm 2. Let us now discuss the trans-

πt−1|t−1

πN
t−1|t−1

{xi
t−1}N

1 {
∑N

j=1 α
i
jK(dxt|xi

t−1)}N
i=1

{x̃i
t}N

1 π̃N
t|t−1 π̃N

t|t

πt|t−1

{xi
t}N

1

πN
t|t-

πt|t- -

6
-

?
-

6
-

6

Fig. 1: Illustration of how the particle filter transforms the
probability measures. The theoretical transformation (10) is
given at the top. The bottom describes what happens during
one pass in the particle filter.

formations of the involved probability measures a bit further,

they are

πN
t−1|t−1

projection−−−−−−→

 δx1
t−1

. . .
δxN

t−1

 bt−→

 K(dxt|x1
t−1)

. . .
K(dxt|xN

t−1)


Λ−→


∑N

j=1 α
i
jK(dxt|x1

t−1)
. . .∑N

j=1 α
i
jK(dxt|xN

t−1)

 ,
where Λ denotes the N × N weight matrix (αi

j)i,j . Let us,
for simplicity, denote the entire transformation above by Λbt.
Furthermore, we will use cn(ν) to denote the empirical dis-
tribution of a sample of size n from a probability distribution
ν. Then, we have

π̃N
t|t−1 = c(N)◦̄Λbt(πN

t−1|t−1), (23)

where c(N) , 1
N [c1 . . . c1] (Note that c1 refers to a single

sample.) and ◦̄ denotes composition of transformations in the
form of a vector multiplication. Hence, we have

πN
t|t = cN ◦ at ◦ c(N)◦̄Λbt(πN

t−1|t−1), (24)

where ◦ denotes composition of transformations. Therefore,

πN
t|t =cN ◦ at ◦ c(N)◦̄Λbt ◦ · · · ◦ cN ◦ a1 ◦ c(N)◦̄Λb1 ◦ cN (π0).

While, in the existing theoretical versions of particle filter
algorithm in [14], [16], [15], [13], as stated in [14], the
transformation between time t − 1 and t is in a somewhat
simpler form,

πN
t|t = cN ◦ at ◦ cN ◦ bt(πN

t−1|t−1)

= cN ◦ at ◦ cN ◦ bt ◦ · · · ◦ cN ◦ a1 ◦ cN ◦ b1 ◦ cN (π0).
(25)

The theoretical results and analysis in [29] are based on the
following transformation (in our notation):

πN
t|t = at ◦ bt ◦ cN (πN

t−1|t−1), (26)

rather than (25).

IV. A MODIFIED PARTICLE FILTER

The particle filter algorithm has to be modified in order to
perform the convergence results which follows in the subse-
quent sections. This modification is described in Section IV-A
and its implications are illustrated in Section IV-B.

A. Algorithm Modification
From the optimal filter recursion (12b) it is clear that we

have to require that

(πt|t−1, ρ) > 0, (27)

in order for the optimal filter to exist. In the approximation
to (12b) we have used (15) to approximate πt|t−1(dxt), im-
plying that the following is used in the particle filter algorithm

(πt|t−1, ρ) ≈ (π̃N
t|t−1, ρ) =

∫
ρ(yt|xt)

1
N

N∑
i=1

δx̃i
t
(dxt)

=
1
N

N∑
i=1

ρ(yt|x̃i
t). (28)
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This is implemented in step 3 of Algorithm 1 and 2, i.e., in
the importance weight computation. In order to make sure
that (27) is fulfilled the algorithm has to be modified. The
modification takes the following form, in sampling for {x̃i

t}N
i=1

in step 2 of Algorithm 1 and 2, it is required that the following
inequality is satisfied

(π̃N
t|t−1, ρ) =

1
N

N∑
i=1

ρ(yt|x̃i
t) ≥ γt > 0. (29)

Now, clearly, the threshold γt must be chosen so that the
inequality may be satisfied for sufficiently large N , i.e., so
that the true conditional expectation is larger than γt. Since
this value is typically unknown, it may mean that the problem
dependent constant γt has to be selected by trial and error and
experience. If the inequality (29) holds, the algorithm proceeds
as proposed, whereas if it does not hold, a new set of particles
{x̃i

t}N
i=1 is generated and (29) is checked again and so on. The

modified algorithm is given in Algorithm 3 below.

Algorithm 3: A modified particle filter
1) Initialize the particles, {xi

0}N
i=1 ∼ π0(dx0).

2) Predict the particles by drawing independent samples
according to

x̄i
t ∼

N∑
j=1

αi
jK(dxt|xj

t−1), i = 1, . . . , N.

3) If 1
N

∑N
i=1 ρ(yt|x̄i

t) ≥ γt, proceed to step 4 otherwise
return to step 2.

4) Rename x̃i
t = x̄i

t, i = 1, . . . , N and compute the
importance weights {wi

t}N
i=1,

wi
t = ρ(yt|x̃i

t), i = 1, . . . , N,

and normalize w̃i
t = wi

t/
∑N

j=1 w
j
t .

5) Resample, xi
t ∼ π̃N

t|t(dxt) =
∑N

i=1 w̃
i
tδx̃i

t
(dxt), i =

1, . . . , N .
6) Set t := t+ 1 and repeat from step 2.

For each time step, the conditional distribution is

πN
t|t(dxt) =

1
N

N∑
i=1

δxi
t
(dxt)

The reason for renaming in step 4 is that distribution of the
particles changes by the test in step 3, x̃ which have passed
the test have a different distribution from x̄. It is interesting to
note that this modification, motivated by (12b), makes sense
in its own right. Indeed, it has previously, more or less ad
hoc, been used as an indicator for divergence in the particle
filter and to obtain a more robust algorithm. Furthermore, this
modification is related to the well known degeneracy of the
particle weights, see e.g., [14], [17] for insightful discussions
on this topic.

Clearly, the choice of γt may be non-trivial. If it is chosen
too large (larger than the true conditional expectation), steps
2-3 may be an infinite loop. However, it will be proved in

Theorem 6.1 in Section VI that such an infinite loop will not
occur if γt is chosen small enough. It may have to involve
some trial and error to tune in such a choice.

It is worth noting that originally given {xi
t−1}N

i=1 the joint
density of {x̃i

t}N
i=1 is

P
[
x̃i

t = si, i = 1, . . . , N
]

=
N∏

i=1

N∑
j=1

αi
jK(si|xj

t−1)

, ΠN
α1,...,αN

. (30)

Yet, after the modification it is changed to be

Π̄N
α1,...,αN

=
ΠN

α1,...,αN
I
[ 1

N

∑N

i=1
ρ(yt|si)≥γt]∫

···
∫

ΠN
α1,...,αN

I
[ 1

N

∑N

i=1
ρ(yt|si)≥γt]

ds1:N
,

(31)

where the record yt is also given.

B. Numerical Illustration
In order to illustrate the impact of the algorithm modifi-

cation (29), we study the following nonlinear time-varying
system,

xt+1 =
xt

2
+

25xt

1 + x2
t

+ 8 cos(1.2t) + vt, (32a)

yt =
x2

t

20
+ et, (32b)

where vt ∼ N (0, 10), et ∼ N (0, 1), the initial state x0 ∼
N (0, 5) and γt = 10−4. In the experiment we used 250 time
instants and 500 simulations, all using the same measurement
sequence. We used the modified particle filter given in Algo-
rithm 3 in order to compute an approximation of the estimate
x̂t = E(xt|y1:t). In accordance with both Theorem 6.1 and
intuition the quality of the estimate improves with the number
of particles N used in the approximation. The algorithm
modification (29) is only active when a small amount of
particles is used. That this is indeed the case is evident from
Fig. 2, where the average number of interventions due to
violations of (29) are given as a function of the number of
particles used in the filter.

50 100 150 200 250 300 350 400
0

2

4

6

8

10

12

Number of particles

In
te

rv
en

tio
ns

Fig. 2: Illustration of the impact of the algorithm modifica-
tion (29) introduced in Algorithm 3. The figure shows the
number of times (29) was violated and the particles had to
be regenerated, as a function of the number of particles used.
This is the average result from 500 simulations.
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V. THE BASIC CONVERGENCE RESULT

The filtered state estimate is

x̂t = E(xt|Y1:t). (33)

This is the mean of the conditional distribution

πt|t(dxt) = P (Xt ∈ dxt|Y1:t = y1:t). (34)

The modified particle filter, given in Algorithm 3, provides an
estimate of these two quantities based on N particles which
we denote by

x̂N
t (35)

and

πN
t|t(dxt). (36)

For given y1:t, x̂t is a given vector, and πt|t(dxt) is a given
function. However, x̂N

t and πN
t|t(dxt) are random, since they

depend on the randomly generated particles. Clearly, a crucial
question is how these random variables behave as N increases.
We will throughout the remainder of this paper consider this
question for a given t and given observed outputs y1:t. Hence
all stochastic quantifiers below (like E and “w.p.1”) will be
with respect to the random variables related to the particles.

This problem has been well studied in the literature. The
excellent survey [14] gives several results of the kind

(πN
t|t, φ) =

∫
φ(xt)πN

t|t(dxt) → E(φ(xt)|y1:t) as N →∞,

(37)

for functions of the posterior distribution. The notation intro-
duced in (11) has been used in the first equality in (37). Note
that the i-th component of the estimate x̂N

t is obtained for
φ(x) = x[i] where x = (x[1], . . . , x[nx])T , i = 1, . . . , nx.
However, apparently all known results on convergence and
other properties of (37) assume φ to be a bounded function.
Therefore convergence of the particle filter state estimate itself
cannot be handled by these results.

In this and the following sections we develop results that
are valid also for a class of unbounded functions φ.

The basic result is a bound on the 4-th moment of the
estimated conditional mean

E
∥∥∥∥∫ φ(xt)πN

t|t(dxt)−
∫
φ(xt)πt|t(dxt)

∥∥∥∥4

≤ Cφ

N2
. (38)

Here Cφ is a constant that depends on the function φ, which
will be defined later. (Of course, it also depends on the fixed
variables t and y1:t. There is no guarantee that the bound will
be uniform in these variables.)

From the Glivenko-Cantelli Lemma [30] we have∫
φ(xt)πN

t|t(dxt) →
∫
φ(xt)πt|t(dxt) w.p.1 as N →∞.

(39)

In particular, under certain conditions applying this result to
the cases φ(x) = x[i] where x = (x[1], . . . , x[nx])T , i =
1, . . . , nx, we obtain

x̂N
t → x̂t w.p.1 as N →∞.

So the particle filter state estimate will converge to the true
estimate as the number of particles tends to infinity (for given t
and for any given sequence y1:t), subject to certain conditions
(see the discussions of the defined conditions below).

VI. THE MAIN RESULT

To formally prove the results of the previous section we
need to assume certain conditions for the filtering problem and
the function φ in (37). The first one is to assure that Bayes’
formula (10b) (or (12b)) is well defined, so that the numerator
is guaranteed to be nonzero:

(πt|t−1, ρ) =
∫

Rnx

ρ(yt|xt)πt|t−1(dxt) > 0

Since ρ(yt|xt) is the conditional density of yt given the state
xt and πt|t−1(dxt) is the conditional density of xt given y1:t−1

this expression is the conditional density of yt given previous
outputs p(yt|y1:t−1). To assume that this conditional density
is nonzero is no major restriction, since the condition is to be
imposed on the observed sequence of yt.

H0. For given y1:s, s = 1, . . . , t, (πs|s−1, ρ) > 0; and the
constant γs used in the modified algorithm satisfies

0 < γs < (πs|s−1, ρ), s = 1, . . . , t.

We also need to assume that the conditional densities K
and ρ are bounded. Hence, the first condition on the densities
of the system is

H1. ρ(ys|xs) < ∞; K(xs|xs−1) < ∞ for given y1:s, s =
1, . . . , t.

To prove results for a general function φ(x) in (37) we also
need some mild restrictions on how fast it may increase with x.
This is expressed using the conditional observation density ρ:

H2. The function φ(·) satisfies supxs
|φ(xs)|4ρ(ys|xs) <

C(y1:s) for given y1:s, s = 1, . . . , t.
Note that C(y1:s) in H2 is a finite constant that may depend

on y1:s.
The essence of condition H2 is that the conditional observa-

tion density (for given ys) decreases faster than the φ function
increases. Since typical distributions decay exponentially or
have bounded support, this is not a strong restriction for φ.

Note that H1 and H2 imply that the conditional fourth
moment of φ is bounded.∫

|φ(x)|4πs|s(dx) =

∫
|φ(x)|4ρ(ys|x)πs|s−1(dx)

(πs|s−1, ρ)

≤
C(y1:s)

∫
πs|s−1(dx)

(πs|s−1, ρ)
<∞

The following examples provide two typical one dimensional
noises, i.e., nx = ny = 1, satisfying condition H2.

Example 6.1: pe(z, s) = O(exp(−|z|ν)) as z → ∞ with
ν > 0; and lim inf |x|→∞

|h(x,s)|
|x|ν1 > 0 with ν1 > 0, s =

1, . . . , t. It is now easy to verify that H2 holds for any function
φ satisfying φ(z) = O(|z|q) as z →∞, where q ≥ 0.

Example 6.2: pe(z, s) = 1
b−aI[a,b] with a < 0 < b; and

function h(x, s) ∆= hs satisfying that the set h−1
s ([y−b, y−a])

is bounded for any given ys, s = 1, . . . , t. It is now easy to
verify that H2 holds for any function φ.
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Before we give the main result, let us introduce the follow-
ing notation. The class of functions φ satisfying H2 will be
denoted by

L4
t (ρ), (40)

where ρ satisfies H1.
Theorem 6.1: Suppose that H0, H1 and H2 hold and con-

sider the modified version of the particle filter algorithm
(Algorithm 3). Then the following holds:

(i) For sufficiently large N , the algorithm will not run into
an infinite loop in steps 2-3.

(ii) For any φ ∈ L4
t (ρ), there exists a constant Ct|t,

independent of N such that

E
∣∣∣(πN

t|t, φ)− (πt|t, φ)
∣∣∣4 ≤ Ct|t

‖φ‖4t,4
N2

, (41)

where ‖φ‖t,4
∆= max

{
1, (πs|s, |φ|4)1/4, s = 0, 1, . . . , t

}
and

πN
s|s is generated by the algorithm.

By the Borel-Cantelli lemma, e.g., [30], we have a corollary
as follow.

Corollary 6.1: If H1 and H2 hold, then for any φ ∈ L4
t (ρ),

lim
N→∞

(πN
t|t, φ) = (πt|t, φ), almost surely. (42)

VII. PROOF

In this section we will give the proof for the main result,
given above in Theorem 6.1. However, before starting the
proof we list some lemmas that will be used in the proof.

A. Auxiliary Lemmas

It is clear that the inequalities in Lemmas 7.1 and 7.4 hold
almost surely, since they are in the form of a conditional
expectation. For the sake of brevity we omit the notation
for almost sure in the following lemmas and their proof.
Furthermore, it is also easy to see that Lemmas 7.2 and 7.3
also hold if conditional expectation is used.

Lemma 7.1: Let {ξi, i = 1, . . . , n} be conditionally in-
dependent random variables given σ-algebra G such that
E(ξi|G) = 0, E(|ξi|4|G) <∞. Then

E

∣∣∣∣∣
n∑

i=1

ξi

∣∣∣∣∣
4

|G

 ≤
n∑

i=1

E(|ξi|4|G) +

(
n∑

i=1

E(|ξi|2|G)

)2

.

(43)

Proof: Notice that

E

∣∣∣∣∣
n∑

i=1

ξi

∣∣∣∣∣
4

|G

 =
n∑

i=1

E(|ξi|4|G) +
n∑

i,j,i6=j

E(|ξi|2|G) · E(|ξj |2|G),

the assertion follows.
Lemma 7.2: If E |ξ|p < ∞, then E |ξ − E ξ|p ≤ 2p E |ξ|p,

for any p ≥ 1.
Proof: By Jensen’s inequality (e.g., [30]), for p ≥ 1,

(E |ξ|)p ≤ E |ξ|p. Hence, E |ξ| ≤ (E |ξ|p)1/p. Then by
Minkowski’s inequality (e.g., [30]),

(E |ξ − E ξ|p)1/p ≤ (E |ξ|p)1/p + |E ξ| ≤ 2(E |ξ|p)1/p, (44)

which derives the desired inequality.
Lemma 7.3: If 1 ≤ r1 ≤ r2 and E |ξ|r2 < ∞, then

E1/r1 |ξ|r1 ≤ E1/r2 |ξ|r2 .
Proof: Simply by Hölder’s inequality (e.g., [30]):

E (|ξ|r1 · 1) ≤ Er1/r2

(
(|ξ|r1)r2/r1

)
. Then the assertion fol-

lows.
Based on Lemmas 7.1 and 7.3, we have
Lemma 7.4: Let {ξi, i = 1, . . . , n} be conditionally in-

dependent random variables given σ-algebra G such that
E(ξi|G) = 0, E(|ξi|4|G) <∞. Then

E

∣∣∣∣∣ 1n
n∑

i=1

ξi

∣∣∣∣∣
4

|G

 ≤ 2 max1≤i≤n E(|ξi|4|G)
n2

. (45)

Lemma 7.5: Let the probability density function for the
random variable η be p(x) and let the probability density
function for the random variable ξ be

p(x)IA∫
p(y)IAdy

,

where IA is the indicator function for a set A, such that

P [η ∈ Ω−A] ≤ ε < 1. (46)

Let ψ be a measurable function satisfying Eψ2(η) <∞. Then,
we have

|Eψ(ξ)− Eψ(η)| ≤
2
√
Eψ2(η)
1− ε

√
ε. (47)

In the case E|ψ(η)| <∞,

E|ψ(ξ)| ≤ E|ψ(η)|
1− ε

. (48)

Proof. Clearly, since the density of ξ is

p(t)IA∫
p(y)IAdy

,

it is easy to show (48) as follows

E |ψ(ξ)| =
∣∣∣∣∫ ψ(t)p(t)IAdt∫

p(y)IAdy

∣∣∣∣ ≤ 1
1− ε

∫
|ψ(t)p(t)IA|dt

≤ 1
1− ε

∫
|ψ(t)p(t)|dt =

E |ψ(η)|
1− ε

While

|Eψ(ξ)− Eψ(η)| =
∣∣∣∣∫ ψ(t)p(t)IAdt∫

p(y)IAdy
−
∫
ψ(t)p(t)dt

∣∣∣∣
≤ 1

1− ε

∣∣∣∣∫ ψ(t)p(t)IAdt−
∫
ψ(t)p(t)dt · (1− ε)

∣∣∣∣
≤ 1

1− ε

[∫
|ψ(t)|p(t)IΩ−Adt+

∫
|ψ(t)|p(t)dt · ε

]
≤ 1

1− ε

[√∫
|ψ(t)|2p(t)dt ·

√∫
p(t)IΩ−Adt+ E|ψ(η)| · ε

]

≤ 1
1− ε

[√
Eψ2(η) ·

√
ε+ E |ψ(η)| · ε

]
≤

2
√
Eψ2(η)
1− ε

√
ε,

which derives (47).

The result of Lemma 7.5 can be extended to cover condi-
tional expectations as well.
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B. Proof of Theorem 6.1

Proof: The proof is carried out in the standard induction
framework, employed for example in [14].

1: Initialization
Let {xi

0}N
i=1 be independent random variables with the same

distribution π0(dx0). Then, using Lemmas 7.4 and 7.2, it is
clear that

E
∣∣(πN

0 , φ)− (π0, φ)
∣∣4 =

1
N4

E

∣∣∣∣∣
N∑

i=1

(φ(xi
0)− E(φ(xi

0)))

∣∣∣∣∣
4

≤ 2
N2

E |φ(xi
0)− E(φ(xi

0))|4

≤ 32
N2

E |φ(xi
0)|4 ≤

32
N2

‖φ‖40,4

∆= C0|0
‖φ‖40,4

N2
. (49)

Similarly,

E
∣∣(πN

0 , |φ|4)− (π0, |φ|4)
∣∣

≤ 1
N

E

∣∣∣∣∣
N∑

i=1

(|φ(xi
0)|4 − E |φ(xi

0)|4)

∣∣∣∣∣
≤ 2 E |φ(xi

0)|4.

Note that xi
0 have the same distribution for all i, so the

expected values do not depend on i. Hence,

E
∣∣(πN

0 , |φ|4)
∣∣ ≤ 3 E |φ(xi

0)|4
∆= M0|0‖φ‖40,4. (50)

2: Prediction
Based on (49) and (50), we assume that for t− 1 and ∀φ ∈

L4
t (ρ)

E
∣∣∣(πN

t−1|t−1, φ)− (πt−1|t−1, φ)
∣∣∣4 ≤ Ct−1|t−1

‖φ‖4t−1,4

N2

(51)

and

E
∣∣∣(πN

t−1|t−1, |φ|
4)
∣∣∣ ≤Mt−1|t−1‖φ‖4t−1,4 (52)

holds, where Ct−1|t−1 > 0 and Mt−1|t−1 > 0. We anal-

yse E
∣∣∣(π̃N

t|t−1, φ)− (πt|t−1, φ)
∣∣∣4 and E

∣∣∣(π̃N
t|t−1, |φ|

4)
∣∣∣ in this

step.
Let Ft−1 denote the σ-algebra generated by {xi

t−1, i =
1, . . . , N}. Notice that

(π̃N
t|t−1, φ)− (πt|t−1, φ) ∆= Π1 + Π2 + Π3,

where

Π1
∆= (π̃N

t|t−1, φ)− 1
N

N∑
i=1

E
[
φ(x̃i

t)|Ft−1

]
,

Π2
∆=

1
N

N∑
i=1

E
[
φ(x̃i

t)|Ft−1

]
− 1
N

N∑
i=1

(πN,αi

t−1|t−1,Kφ),

Π3
∆=

1
N

N∑
i=1

(πN,αi

t−1|t−1,Kφ)− (πt|t−1, φ),

and πN,αi

t−1|t−1 =
∑N

j=1 α
i
jδxj

t−1
(dxt−1). We consider the three

terms Π1, Π2 and Π3 separately in the following.

Let x̄i
t be drawn from the distribution (πN,αi

t−1|t−1,K) as in
step 2 of the algorithm. Then we have

E[φ(x̄i
t−1)|Ft−1] = (πN,αi

t−1|t−1,Kφ). (53)

Recall that the distribution of x̄i
t differs from the distribution

of x̃i
t, which has passed the test in step 3 of the algorithm and

is thus conditioned on the event

At = {(πN
t−1|t−1,Kρ) ≥ γt} (54)

Now, let us check the probability of this event. In view of (53)
and (22)

E

[
1
N

N∑
i=1

ρ(ys|x̄i
s)
∣∣∣Ft−1

]
= (πN

t−1|t−1,Kρ).

Thus,

P

[
1
N

N∑
i=1

ρ(yt|x̄i
t) < γt

∣∣∣Ft−1

]
= P

[
(πN

t−1|t−1,Kρ) < γt

]
.

(55)

By (51), we have

P
[
(πN

t−1|t−1,Kρ) < γt

]
= P

[
(πN

t−1|t−1,Kρ)− (πt−1|t−1,Kρ)

< γt − (πt−1|t−1,Kρ)
]

≤ P
[
|(πN

t−1|t−1,Kρ)− (πt−1|t−1,Kρ)| > |γt − (πt−1|t−1,Kρ)|
]

≤
E|(πN

t−1|t−1,Kρ)− (πt−1|t−1,Kρ)|4

|γt − (πt−1|t−1,Kρ)|4

≤
Ct−1|t−1‖K‖4

|γt − (πt|t−1, ρ)|4
·
‖ρ‖4t−1,4

N2

∆= Cγt ·
‖ρ‖4t−1,4

N2
. (56)

Here we used condition H0. Consequently, for sufficiently
large N we have

P (At) > 1− εt; 0 < εt < 1

We can now handle the difference between x̄i
t and x̃i

t using
Lemma 7.5, and by Lemmas 7.1, 7.2, (53) and (22), we obtain

E
[
|Π1|4|Ft−1

]
=

1
N4

E

∣∣∣∣∣
N∑

i=1

[φ(x̃i
t)− E(φ(x̃i

t)|Ft−1)

∣∣∣∣∣
4 ∣∣∣Ft−1


≤ 24

N4

 N∑
i=1

E
[∣∣φ(x̃i

t)
∣∣4 ∣∣Ft−1

]
+

(
N∑

i=1

E
[∣∣φ(x̃i

t)
∣∣2 ∣∣Ft−1

])2


≤ 24

N4(1− εt)2

 N∑
i=1

E
[∣∣φ(x̄i

t)
∣∣4 ∣∣Ft−1

]
+

(
N∑

i=1

E
[∣∣φ(x̄i

t)
∣∣2 ∣∣Ft−1

])2


≤ 24

N4(1− εt)2

 N∑
i=1

(
πN,αi

t−1|t−1,K|φ|
4
)

+

(
N∑

i=1

(
πN,αi

t−1|t−1,K|φ|
2
))2


≤ 24

(1− εt)2

[
(πN

t−1|t−1,K|φ|
4)

N3
+

(πN
t−1|t−1,K|φ|

2)2

N2

]
.

Hence, by Lemma 7.3 and (52),

E|Π1|4 ≤
25‖K‖4Mt−1|t−1

(1− εt)2
·
‖φ‖4t−1,4

N2

∆= CΠ1 ·
‖φ‖4t−1,4

N2
.

(57)
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By (53), Lemma 7.5 and (22),

|Π2|4 =

∣∣∣∣∣ 1
N

N∑
i=1

E
[
φ(x̃i

t)|Ft−1

]
− 1
N

N∑
i=1

E
[
φ(x̄i

t)|Ft−1

]∣∣∣∣∣
4

=

∣∣∣∣∣ 1
N

N∑
i=1

(
E
[
φ(x̃i

t)|Ft−1

]
− E

[
φ(x̄i

t)|Ft−1

])∣∣∣∣∣
4

≤
24C2

γt
‖ρ‖8t−1,4

(1− εt)4N4
· 1
N

N∑
i=1

(πN,αi

t−1|t−1,Kφ
4)

=
24C2

γt
‖ρ‖8t−1,4

(1− εt)4N4
· (πN

t−1|t−1,Kφ
4)

∆= CΠ2 ·
(πN

t−1|t−1,Kφ
4)

N4
.

Hence,

E|Π2|4 ≤ CΠ2 ·
‖K‖ · ‖φ‖4t−1,4

N4
≤ CΠ2‖K‖ ·

‖φ‖4t−1,4

N2
.

(58)

This proves the first part of Theorem 6.1, i.e., that the
algorithm will not run into an infinite loop in steps 2− 3.

By (22) and (51),

E|Π3|4 ≤ Ct−1|t−1‖K‖4 ·
‖φ‖4t−1,4

N2

∆= CΠ3 ·
‖φ‖4t−1,4

N2
.

(59)

Then, using Minkowski’s inequality, (57), (58) and (59), we
have

E1/4
∣∣∣(π̃N

t|t−1, φ)− (πt|t−1, φ)
∣∣∣4 ≤ E1/4 |Π1|4 + E1/4 |Π2|4

+ E1/4 |Π3|4 ≤
(
C

1/4
Π1

+ [CΠ2‖K‖]1/4 + C
1/4
Π3

) ‖φ‖t−1,4

N1/2

∆= C̃
1/4
t|t−1

‖φ‖t−1,4

N1/2
.

That is

E
∣∣∣(π̃N

t|t−1, φ)− (πt|t−1, φ)
∣∣∣4 ≤ C̃t|t−1

‖φ‖4t−1,4

N2
. (60)

By Lemma 7.2 and (52)

E

(
E

(
(π̃N

t|t−1, |φ|
4)− 1

N

N∑
i=1

(πN,αi

t−1|t−1,K|φ|
4)
∣∣Ft−1

))

=
1
N

E

(
E

(∣∣∣∣∣
N∑

i=1

(|φ(x̃i
t−1)|4 − E(|φ(x̃i

t−1)|4|Ft−1))

∣∣∣∣∣
))

≤ 2 E(πN
t−1|t−1,K|φ|

4) ≤ 2‖K‖4Mt−1|t−1‖φ‖4t−1,4.

Then, using a similar separation mentioned above, by (52) we
have

E
∣∣∣(π̃N

t|t−1, |φ|
4)− (πt|t−1, |φ|4)

∣∣∣
≤ ‖K‖4(3Mt−1|t−1 + 1)‖φ‖4t−1,4

∆= M̃t|t−1‖φ‖4t−1,4. (61)

3: Update

In this step we go one step further to analyse

E
∣∣∣(π̃N

t|t, φ)− (πt|t, φ)
∣∣∣4 and E(π̃N

t|t, |φ|
4) based on (60)

and (61). Clearly,

(π̃N
t|t, φ)− (πt|t, φ) =

(π̃N
t|t−1, ρφ)

(π̃N
t|t−1, ρ)

−
(πt|t−1, ρφ)
(πt|t−1, ρ)

= Π̃1 + Π̃2,

where

Π̃1
∆=

(π̃N
t|t−1, ρφ)

(π̃N
t|t−1, ρ)

−
(π̃N

t|t−1, ρφ)

(πt|t−1, ρ)
,

Π̃2
∆=

(π̃N
t|t−1, ρφ)

(πt|t−1, ρ)
−

(πt|t−1, ρφ)
(πt|t−1, ρ)

.

By condition H1 and the modified version of the algorithm
we have,

|Π̃1| =

∣∣∣∣∣ (π̃
N
t|t−1, ρφ)

(π̃N
t|t−1, ρ)

·
[(πt|t−1, ρ)− (π̃N

t|t−1, ρ)]

(πt|t−1, ρ)

∣∣∣∣∣
≤ ‖ρφ‖
γt(πt|t−1, ρ)

∣∣∣(πt|t−1, ρ)− (π̃N
t|t−1, ρ)

∣∣∣ . (62)

Here, γt is the threshold used in step 3 of the modified filter
(Algorithm 3). Thus, by Minkowski’s inequality, (60) and (62),

E1/4
∣∣∣(π̃N

t|t, φ)− (πt|t, φ)
∣∣∣4

≤ E1/4 |Π̃1|4 + E1/4 |Π̃2|4

≤
C̃

1/4
t|t−1‖ρ‖ (‖ρφ‖+ γt)

γt(πt|t−1, ρ)
· ‖φ‖t−1,4

N1/2

∆= C̃
1/4
t|t

‖φ‖t−1,4

N1/2
,

which implies

E
∣∣∣(π̃N

t|t, φ)− (πt|t, φ)
∣∣∣4 ≤ C̃t|t

‖φ‖4t−1,4

N2
. (63)

Using a similar separation mentioned above, by (61),

E
∣∣∣(π̃N

t|t, |φ|
4)− (πt|t, |φ|4)

∣∣∣
≤ E

∣∣∣∣∣ (π̃
N
t|t−1, ρ|φ|

4)

(πN
t|t−1, ρ)

−
(π̃N

t|t−1, ρ|φ|
4)

(πt|t−1, ρ)

∣∣∣∣∣
+ E

∣∣∣∣∣ (π̃
N
t|t−1, ρ|φ|

4)

(πt|t−1, ρ)
−

(πt|t−1, ρ|φ|4)
(πt|t−1, ρ)

∣∣∣∣∣
≤ ‖ρφ4‖ · 2‖ρ‖
γt(πt|t−1, ρ)

+
M̃t|t−1 max{‖ρ‖, 1}

(πt|t−1, ρ)
‖φ‖4t−1,4.

Observe that ‖φ‖s,4 ≥ 1 is increasing with respect to s. We
have

E
∣∣∣(π̃N

t|t, |φ|
4)
∣∣∣

≤ ‖ρφ4‖ · 2‖ρ‖
γt(πt|t−1, ρ)

+
M̃t|t−1 max{‖ρ‖, 1}

(πt|t−1, ρ)
‖φ‖4t−1,4 + (πt|t, |φ|4),

≤ 3 max

{
‖ρφ4‖ · 2‖ρ‖
γt(πt|t−1, ρ)

,
M̃t|t−1 max{‖ρ‖, 1}

(πt|t−1, ρ)
, 1

}
· ‖φ‖4t,4

∆= M̃t|t‖φ‖4t,4. (64)
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4: Resampling
Finally, we analyse E

∣∣∣(πN
t|t, φ)− (πt|t, φ)

∣∣∣4 and
E(πN

t|t, |φ|
4) based on (63) and (64). It is now easy to

see that
(πN

t|t, φ)− (πt|t, φ) = Π̄1 + Π̄2,

where

Π̄1
∆= (πN

t|t, φ)− (π̃N
t|t, φ), Π̄2

∆= (π̃N
t|t, φ)− (πt|t, φ).

Let Gt denote the σ-algebra generated by {x̃i
t, i =

1, . . . , N}. From the generation of xi
t, we have,

E(φ(xi
t)|Gt) = (π̃N

t|t, φ),

and then

Π̄1 =
1
N

N∑
i=1

(φ(xi
t)− E(φ(xi

t)|Gt)).

Then, by Lemmas 7.4, 7.2,

E
(
|Π̄1|4|Gt

)
=

1
N4

E

∣∣∣∣∣
N∑

i=1

(φ(xi
t)− E(φ(xi

t)|Gt])

∣∣∣∣∣
4 ∣∣Gt


≤ 25 E

(
|φ(x1

t )|4|Gt

)
N2

= 25
(π̃N

t|t, |φ|
4)

N2
.

Thus, by (64),

E |Π̄1|4 ≤ 25M̃t|t
‖φ‖4t,4
N2

. (65)

Using Minkowski’s inequality, (63) and (65) we have

E1/4
∣∣∣(πN

t|t, φ)− (πt|t, φ)
∣∣∣4 ≤ E1/4 |Π̄1|4 + E1/4 |Π̄2|4

≤
(
[25M̃t|t]1/4 + C̃

1/4
t|t

) ‖φ‖t,4

N1/2

∆= C
1/4
t|t

‖φ‖t,4

N1/2
.

That is

E
∣∣∣(πN

t|t, φ)− (πt|t, φ)
∣∣∣4 ≤ Ct|t

‖φ‖4t,4
N2

. (66)

Using a separation similar to the one mentioned above,
by (64), we have,

E
∣∣∣(πN

t|t, |φ|
4)− (πt|t, |φ|4)

∣∣∣
≤ E

∣∣∣(πN
t|t, |φ|

4)− (π̃N
t|t, |φ|

4)
∣∣∣+ E

∣∣∣(π̃N
t|t, |φ|

4)− (πt|t, |φ|4)
∣∣∣

≤ [2M̃t|t + (M̃t|t + 1)]‖φ‖4t,4
≤ (3M̃t|t + 1)‖φ‖4t,4.

Hence,

E
∣∣∣(πN

t|t, |φ|
4)
∣∣∣ ≤ (3M̃t|t + 2)‖φ‖4t,4

∆= Mt|t‖φ‖4t,4. (67)

Therefore, the proof of Theorem 6.1 is completed, since (51)
and (52) are successfully replaced by (66) and (67).

VIII. CONCLUSION

The basic contribution of this paper has been the extension
of the existing convergence results to unbounded functions φ,
which has allowed statements on the filter estimate (condi-
tional expectation) itself. We have had to introduce a slight
modification of the particle filter (Algorithm 3) in order to
complete the proof. This modification leads to an improved
result in practise, which was illustrated by a simple simulation.
The simulation study also showed that the effect of the
modification decreases with an increased number of particles,
all in accordance to theory.

Results similar to the one in (38) can be obtained for
moments other than four. This more general case of Lp-
convergence for an arbitrary p > 1 is under consideration,
using a Rosenthal-type of inequality [22].
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Linköping, Sweden. He has held visiting positions at
the University of Cambridge (UK) and the Univer-
sity of Newcastle (Australia). His research interests
are mainly within the areas of signal processing,
sensor fusion and system identification, with appli-

cations to the automotive and aerospace industry. He is currently a Research
Associate at Linköping University.
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