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Abstract— Particle filters are becoming increasingly impor-
tant and useful for state estimation in nonlinear systems. Many
filter versions have been suggested, and several results on
convergence of filter properties have been reported. However,
apparently a result on the convergence of the state estimate
itself has been lacking. This contribution describes a general
framework for particle filters for state estimation, as well as
a robustified filter version. For this version a quite general
convergence result is established. In particular, it is proved that
the particle filter estimate convergences w.p.1 to the optimal
estimate, as the number of particles tends to infinity.

I. INTRODUCTION

The nonlinear filtering problem is formulated as follows.
The objective is to recursively in time estimate the state in
the dynamic model,

xt+1 = ft(xt, vt), (1a)
yt = ht(xt, et), (1b)

where xt ∈ Rnx denotes the state, yt ∈ Rny denotes the
measurement, vt and et denote the stochastic process and
measurement noise, respectively. Furthermore, the dynamic
equations for the system are denoted by f and the equations
modelling the sensors are denoted by h. Most applied signal
processing problems can be written in the following special
case of (1),

xt+1 = ft(xt) + vt, (2a)
yt = ht(xt) + et, (2b)

Note that any deterministic input signal is subsumed in the
time-varying dynamics. The most commonly used estimate
is the conditional expectation,

E(φ(xt)|y1:t), (3)

where y1:t , (y1, . . . , yt) and φ : Rnx → R is the function
of the state that we want to estimate. In order to compute (3)
we need the filtering probability density function p(xt|y1:t).
It is well known that this density function can be expressed
using multidimensional integrals [1]. The problem is that
these integrals only permits analytical solutions in a few
special cases. The most common special case is of course
when the model (2) is linear and Gaussian and the solution
is then given by the Kalman filter [2]. However, for the
more interesting nonlinear/non-Gaussian case we are forced
to approximations of some kind. Over the years there has
been a large amount of ideas suggested on how to perform
these approximations. Here, we will discuss a rather recent
and popular family of methods, commonly referred to as
particle filters (PF) or sequential Monte Carlo methods.
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Whenever an approximation is used it is very important to
address the issue of its convergence to the true solution and
more specifically, under what conditions this convergence
is valid. An extensive treatment of the currently existing
convergence results can be found in the book [3] and the
excellent survey papers [4], [5]. The available results prove
convergence of probability measures and only treat bounded
functions φ, effectively excluding the most commonly used
state estimate, the mean value. To the best of our knowledge
there are no results available for unbounded functions φ.
For a precise definition of what is meant by an unbounded
function we refer to Section V. The contribution of this paper
is to provide a robust particle filter, which provably converges
for a rather general class of unbounded functions.

II. BACKGROUND

This section will provide the necessary background, both
on dynamic systems in Section II-A and on the nonlinear
filtering problem in Section II-B.

A. Dynamic Systems
We will now represent model (1) in a slightly differ-

ent framework, suitable for a more general treatment. Let
(Ω,F , P ) be a probability space on which two real vector-
valued stochastic processes X = {Xt, t = 0, 1, 2, . . .} and
Y = {Yt, t = 1, 2, . . .} are defined. The nx-dimensional
process X describes the evolution of the hidden state of a
dynamic system, and the ny-dimensional process Y denotes
the available observation process of the same system.

The state process X is a Markov process with initial
state X0 obeying an initial distribution π0(dx0). The dynam-
ics (1a), describing the state evolution over time, is modelled
by a Markov transition kernel K(dxt+1|xt) such that

P (Xt+1 ∈ A|Xt = xt) =
∫

A

K(dxt+1|xt), (4)

for all A ∈ B(Rnx). Given the states X , the observations
Y are conditionally independent and have the following
marginal distribution,

P (Yt ∈ B|Xt = xt) =
∫

B

ρ(dyt|xt), ∀B ∈ B(Rny ). (5)

For convenience we assume that K(dxt+1|xt) and ρ(dyt|xt)
have densities with respect to a Lebesgue measure, allowing
us to write

P (Xt+1 ∈ dxt+1|Xt = xt) = K(xt+1|xt)dxt+1,

P (Yt ∈ dyt|Xt = xt) = ρ(yt|xt)dyt. (6a)

There is a clear relationship between the general model
discussed above and the more applied model given in (2),
illustrated by

K(xt+1|xt) = pv(xt+1 − ft(xt), t), (7a)
ρ(yt|xt) = pe(yt − ht(xt), t), (7b)



where pv(·, t) and pe(·, t) are the probability density func-
tions for vt and et, respectively.

B. Conceptual Solution
In practice, we are most interested in the marginal dis-

tribution πt|t(dxt), since the main objective is usually to
estimate E(xt|y1:t) and the corresponding conditional covari-
ance. This section is devoted to conveying the well known
and generally untractable ideal form of πt|t(dxt). By the
total probability formula and Bayes’ formula, we have the
following recursive form

πt|t−1(dxt) =
∫

Rnx

πt−1|t−1(dxt−1)K(dxt|xt−1) (8a)

, bt(πt−1|t−1),

πt|t(dxt) =
ρ(yt|xt)πt|t−1(dxt)∫

Rnx
ρ(yt|xt)πt|t−1(dxt)

, at(πt|t−1),

(8b)

where we have also defined at and bt as transformations
between probability measures on Rnx .

Let us now introduce some additional notation, commonly
used in this context. Given a measure ν, a function φ, and a
Markov transition kernel K, denote

(ν, φ) ,
∫

φ(x)ν(dx). (9)

Hence, E(φ(xt)|y1:t) = (πt|t, φ). Using this notation, by (8),
for any function φ : Rnx → R, we have the following
recursive form for the optimal filter E(φ(xt)|y1:t),

(πt|t−1, φ) = (πt−1|t−1,Kφ), (10a)

(πt|t, φ) =
(πt|t−1, φρ)
(πt|t−1, ρ)

. (10b)

Here it is worth noticing that we have to require that
(πt|t−1, ρ) > 0, otherwise the optimal filter (10) will not
exist. In general it is, as previously mentioned, impos-
sible to obtain an explicit solution for the optimal filter
E(φ(xt)|y1:t). This implies that we have to resort to nu-
merical methods, such as particle filters, to approximate the
optimal filter.

III. PARTICLE FILTERS

We start this section with a rather intuitive and application
oriented introduction to the particle filter and in Section III-
B we move on to a more general description, more suitable
for the theoretical treatment that follows.

A. Introduction
Roughly speaking, particle filtering algorithms are numer-

ical methods used to approximate the conditional filtering
distribution πt|t(dxt) using an empirical distribution, con-
sisting of a cloud of particles at each time t. The main
reason for using particles to represent the distributions is
that this allows us to approximate the integral operators
by finite sums. Hence, the difficulty inherent in (8) has
successfully been removed. Since there are two integral
operators in (8), any practical particle filter has to sample
particles at least twice to proceed from time t− 1 to t. The
basic particle filter, as it was introduced by [6] is given in
Algorithm 1 and it is briefly described below. For a more
thorough introduction, see e.g., [6], [7], [8], [9] where the
latter contains a straightforward MATLAB implementation of

the particle filter. There are also several books available on
the particle filter [10], [11], [12], [3].

Algorithm 1: Particle filter
1) Initialize the particles, {xi

0}N
i=1 ∼ π0(dx0).

2) Predict the particles by drawing independent
samples according to

x̃i
t ∼ K(dxt|xi

t−1), i = 1, . . . , N.

3) Compute the importance weights {wi
t}N

i=1,

wi
t = ρ(yt|x̃i

t), i = 1, . . . , N,

and normalize w̃i
t = wi

t/
∑N

j=1 wj
t .

4) Draw N new particles, with replacement (resam-
pling), for each i = 1, . . . , N

P (xi
t = x̃j

t ) = w̃j
t , j = 1, . . . , N.

5) Set t := t + 1 and iterate from step 2.

The particle filter is initialized at time t = 0 by drawing a
set of N particles {xi

0}N
i=1 that are independently generated

according to the initial distribution π0(dx0). At time t − 1
the estimate of the filtering distribution πt−1|t−1(dxt−1) is
given by the following empirical distribution

πN
t−1|t−1(dxt−1) ,

1
N

N∑
i=1

δxi
t−1

(dxt−1), (11)

where δx(dxt−1) denotes the delta-Dirac mass located in x.
In step 2, the particles from time t−1 are predicted to time t
using the dynamic equations in the Markov transition kernel
K. When step 2 has been performed we have computed the
empirical one-step ahead prediction distribution,

π̃N
t|t−1(dxt) ,

1
N

N∑
i=1

δx̃i
t
(dxt), (12)

which constitutes an estimate of πt|t−1(dxt). In step 3 the
information in the present measurement yt is used. This
step can be understood simply by substituting (12) into (8b),
resulting in the following approximation of πt|t(dxt)

π̃N
t|t(dxt) ,

ρ(yt|xt)π̃N
t|t−1(dxt)∫

Rnx
ρ(yt|xt)π̃N

t|t−1(dxt)

=

∑N
i=1 ρ(yt|x̃i

t)δx̃i
t
(dxt)∑N

i=1 ρ(yt|x̃i
t)

. (13)

In practice (13) is usually written using the so called nor-
malized importance weights w̃i

t, defined as

π̃N
t|t(dxt) =

N∑
i=1

w̃i
tδx̃i

t
(dxt), w̃i

t ,
ρ(yt|x̃i

t)∑N
i=1 ρ(yt|x̃i

t)
. (14)

Intuitively, these weights contains information about how
probable the corresponding particles are. Finally, the impor-
tant resampling step is performed. Here, a new set of equally
weighted particles is generated using the information in the
normalized importance weights. With sample xi

t obeying
π̃N

t|t(dxt) the resample step will provide an equally weighted



empirical distribution

πN
t|t(dxt) =

1
N

N∑
i=1

δxi
t
(dxt) (15)

to approximate πt|t(dxt). This completes one pass of the
particle filtering as it is given in Algorithm 1.

B. Extended Setting
In order to facilitate a theoretical analysis we will now

introduce a slightly more general algorithm. The generaliza-
tion is that the prediction step (step 2 in Algorithm 1) is
replaced with the following

x̃i
t ∼

N∑
j=1

αi
jK(dxt|xj

t−1), (16)

where a new set of weights αi have been introduced. These
weights are defined according to

αi = (αi
1, α

i
2, . . . , α

i
N ), (17)

where

αi
j ≥ 0,

N∑
j=1

αi
j = 1,

N∑
i=1

αi
j = 1. (18)

Clearly,

1
N

N∑
i=1

N∑
j=1

αi
jK(dxt|xj

t−1) =
1
N

N∑
j=1

(
N∑

i=1

αi
jK(dxt|xj

t−1)

)

=
1
N

N∑
j=1

K(dxt|xj
t−1) = (πN

t−1|t−1,K). (19)

Note that if αi
j = 1 for j = i, and αi

j = 0 for j 6= i, the
sampling method introduced in (16) is reduced to the one
employed in Algorithm 1. Furthermore, when αi

j = 1/N
for all i and j, (16) turns out to be a convenient form for
theoretical treatment. This is exploited by nearly all existing
references dealing with theoretical analysis of the particle
filter, see for example [4], [13], [5], [3]. An extended particle
filtering algorithm is given in Algorithm 2 below.

Algorithm 2: Extended particle filter
1) Initialize the particles, {xi

0}N
i=1 ∼ π0(dx0).

2) Predict the particles by drawing independent
samples according to

x̃i
t ∼

N∑
j=1

αi
jK(dxt|xj

t−1), i = 1, . . . , N.

3) Compute the importance weights {wi
t}N

i=1,

wi
t = ρ(yt|x̃i

t), i = 1, . . . , N,

and normalize w̃i
t = wi

t/
∑N

j=1 wj
t .

4) Resample, xi
t ∼ π̃N

t|t(dxt), i = 1, . . . , N .
πN

t|t(dxt) = 1
N

∑N
i=1 δxi

t
(dxt).

In Fig. 1 we provide a schematic illustration of the
particle filter given in Algorithm 2. Let us now discuss the

πt−1|t−1

πN
t−1|t−1

{xi
t−1}N

1 {
∑N

j=1 αi
jK(dxt|xi

t−1}N
i=1

{x̃i
t}N

1 π̃N
t|t−1 π̃N

t|t

πt|t−1

{xi
t}N

1

πN
t|t-

πt|t- -

6
-

?
-

6
-

6

Fig. 1. Illustration of how the particle filter transforms the probability
measures. The theoretical transformation (8) is given at the top. The bottom
describes what happens during one pass in the particle filter.

transformations of the involved probability measures a bit
further, they are

πN
t−1|t−1

projection−−−−−−→

 δx1
t−1

. . .
δxN

t−1

 bt−→

 K(dxt|x1
t−1)

. . .
K(dxt|xN

t−1)


Λ−→

 ∑N
j=1 αi

jK(dxt|x1
t−1)

. . .∑N
j=1 αi

jK(dxt|xN
t−1)

 ,

where Λ denotes the N × N weight matrix (αi
j)i,j . Let

us, for simplicity, denote the entire transformation above
by Λbt. Furthermore, we will use cn(ν) to denote the
empirical distribution of a sample of size n from a probability
distribution ν. Then, we have

π̃N
t|t−1 = c(N)◦̄Λbt(πN

t−1|t−1), (20)

where c(N) , 1
N [c1 . . . c1] (note that c1 refers to a single

sample) and ◦̄ denotes composition of transformations in the
form of a vector multiplication. Hence, we have

πN
t|t = cN ◦ at ◦ c(N)◦̄Λbt(πN

t−1|t−1), (21)

where ◦ denotes composition of transformations. Therefore,

πN
t|t =cN ◦ at ◦ c(N)◦̄Λbt ◦ · · · ◦

cN ◦ a1 ◦ c(N)◦̄Λb1 ◦ cN (π0). (22)

While, in the existing theoretical versions of the particle
filter algorithm in [4], [13], [5], [3], as stated in [4], the
transformation between time t − 1 and t is in a somewhat
simpler form,

πN
t|t = cN ◦ at ◦ cN ◦ bt(πN

t−1|t−1). (23)

IV. A ROBUST PARTICLE FILTER

The particle filter algorithm has to be modified in order to
perform the convergence results which follows in Section V.
This modification is described in Section IV-A and its
implications are illustrated in Section IV-B.

A. Robust Algorithm Modification
From the optimal filter recursion (10b) it is clear that we

have to require that

(πt|t−1, ρ) > 0, (24)

in order for the optimal filter to exist. In the approximation
to (10b) we have used (12) to approximate πt|t−1(dxt),



implying that the following is used in the particle filter
algorithm

(πt|t−1, ρ) ≈ (π̃N
t|t−1, ρ) =

∫
ρ(yt|xt)

1
N

N∑
i=1

δx̃i
t
(dxt)

=
1
N

N∑
i=1

ρ(yt|xi
t). (25)

This is implemented in step 3 of Algorithm 1 and 2, i.e.,
in the importance weight computation. In order to make
sure that (24) is fulfilled the algorithm has to be modified.
The modification takes the following form, in sampling for
{x̃i

t}N
1 in step 2 of Algorithm 1 and 2, it is required that the

following inequality is satisfied

(π̃N
t|t−1, ρ) =

N∑
i=1

ρ(yt|x̃i
t) ≥ γt > 0. (26)

Now, clearly, the threshold γt must be chosen so that the
inequality may be satisfied for sufficiently large N , i.e., so
that the true conditional expectation is larger than γt. Since
this value is typically unknown, it may mean that the problem
dependent constant γt has to be selected by trial and error
and experience. If the inequality (26) holds, the algorithm
proceeds as proposed, whereas if it does not hold, a new set
of particles {x̃i

t}N
i=1 is generated and (26) is checked again

and so on. The modified algorithm is given in Algorithm 3
below.

Algorithm 3: A robust particle filter
1) Initialize the particles, {xi

0}N
i=1 ∼ π0(dx0).

2) Predict the particles by drawing independent
samples according to

x̄i
t ∼

N∑
j=1

αi
jK(dxt|xj

t−1), i = 1, . . . , N.

3) If 1
N

∑N
i=1 ρ(yt|x̄i

t) ≥ γt, proceed to step 4
otherwise return to step 2.

4) Rename x̃i
t = x̄i

t, i = 1, . . . , N and compute the
importance weights {wi

t}N
i=1,

wi
t = ρ(yt|x̃i

t), i = 1, . . . , N,

and normalize w̃i
t = wi

t/
∑N

j=1 wj
t .

5) Resample, xi
t ∼ π̃N

t|t(dxt) =∑N
i=1 w̃i

tδx̃i
t
(dxt), i = 1, . . . , N .

6) Set t := t + 1 and iterate from step 2.

The reason for renaming in step 4 is that the distribution
of the particles changes by the test in step 3, x̃ which have
passed the test have a different distribution from x̄. It is
interesting to note that this modification, motivated by (10b),
makes sense in its own right. Indeed, it has previously, more
or less ad hoc, been used as an indicator for divergence
in the particle filter and to obtain a more robust algorithm.
Furthermore, this modification is related to the well known
degeneracy of the particle weights, see e.g., [4], [14] for
insightful discussions on this topic.

Clearly, the choice of γt may be non-trivial. If it is chosen
too large (larger than the true conditional expectation), steps
2 − 3 may be an infinite loop. However, it can be proved

(see [15] for details) that for a sufficiently large N such an
infinite loop will not occur.

B. Numerical Illustration
In order to illustrate the impact of the algorithm modifi-

cation (26), we study the following nonlinear time-varying
system,

xt+1 =
xt

2
+

25xt

1 + x2
t

+ 8 cos(1.2t) + vt, (27a)

yt =
x2

t

20
+ et, (27b)

where vt ∼ N (0, 10), et ∼ N (0, 1), the initial state
x0 ∼ N (0, 5) and γt = 10−4. In the experiment we used
250 time instants and 500 simulations, all using the same
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Fig. 2. Illustration of the impact of the algorithm robustification (26)
introduced in Algorithm 3. The figure shows the number of times (26) was
violated and the particles had to be regenerated, as a function of the number
of particles used. This is the average result from 500 simulations.

measurement sequence. We used the robust particle filter
given in Algorithm 3 in order to compute an approximation
of the estimate x̂t = E(xt|y1:t). In accordance with both
Theorem 1 and intuition the quality of the estimate improves
with the number of particles N used in the approximation.
The algorithm modification (26) is only active when a
small amount of particles is used. That this is indeed the
case is evident from Fig. 2, where the average number of
interventions due to violations of (26) are given as a function
of the number of particles used in the filter.

V. CONVERGENCE RESULTS

The following conditions are required for the convergence
result,

H1. (πs|s−1, ρ) > 0, ρ(ys|xs) < ∞; K(xs|xs−1) < ∞
for given y1:s, s = 1, 2, . . . , t.

H2. The function φ(·) satisfy supxs
|φ(xs)|4ρ(ys|xs) <

C(y1:s) < ∞ for given y1:s, s = 1, . . . , t.
Let the class of functions φ satisfying H2 be denoted by

L4
t (ρ), where ρ satisfies H1.
Theorem 1: If H1 and H2 hold, then for any φ ∈ L4

t (ρ),
there exists a constant Ct|t independent of N such that

E
∣∣∣(πN

t|t, φ)− (πt|t, φ)
∣∣∣4 ≤ Ct|t

‖φ‖4t,4
N2

, (28)



where ‖φ‖t,4
∆= max

{
1, (πs|s, |φ|4)1/4, s = 0, 1, . . . , t

}
and πN

s|s is generated by Algorithm 3, s = 0, 1, . . . , t.
Proof: See Appendix B.

See [15] for a more complete treatment of the convergence
proof and the premises under which it hold.

By Borel-Cantelli lemma, we have a corollary as follow.
Corollary 1: If H1 and H2 hold, then for any φ ∈ L4

t (ρ),

lim
N→∞

(πN
t|t, φ) = (πt|t, φ), almost surely. (29)

VI. CONCLUSION

This paper introduced a robust particle filter and the
intuition behind this filter is confirmed in the convergence
proof for the algorithm. The convergence proof is valid for
a rather large class of unbounded functions. We have also
provided a rather general setting for discussing particle fil-
ters, containing both the applied and the theoretical versions
of the filter.

APPENDIX

A. Auxiliary Lemmas
Before proving Theorem 1, we list some lemmas which

we need. It is worth noticing that Lemmas 1 and 4 still holds
for the case of conditional independence, which is actually
used in the proof of Theorem 1.

Lemma 1: Let {ξi, i = 1, . . . , n} be independent random
variables such that E ξi = 0, E ξ4

i < ∞. Then

E

∣∣∣∣∣
n∑

i=1

ξi

∣∣∣∣∣
4

≤
n∑

i=1

E ξ4
i +

(
n∑

i=1

E ξ2
i

)2

. (30)

Lemma 2: If E |ξ|p < ∞, then E |ξ − E ξ|p ≤ 2p E |ξ|p,
for any p ≥ 1.

Lemma 3: If 1 ≤ r1 ≤ r2 and E |ξ|r2 < ∞, then
E1/r1 |ξ|r1 ≤ E1/r2 |ξ|r2 .
Based on Lemmas 1 and 3, we have

Lemma 4: Let {ξi, i = 1, . . . , n} be independent random
variables such that E ξi = 0, E |ξi|4 < ∞. Then

E

∣∣∣∣∣ 1n
n∑

i=1

ξi

∣∣∣∣∣
4

≤ 2 max1≤i≤n E ξ4
i

n2
. (31)

Denote ‖ρ(x)‖ = max{1, sup |ρ(x)|}. Then ‖ρφ‖0,4 ≤ ‖ρ‖·
‖φ‖0,4.

B. Proof of Theorem 1
The proof is carried out using mathematical induction. For

the sake of brevity this proof does not handle the fact that
x̄ and x̃ have different distributions. The details for this can
be found in the more detailed proof to be found in [15].
Proof:

(1). Let {xi
0}N

i=1 be independent random variables with the
same distribution π0(dx0). Then, with the use of Lemmas 4
and 2, it is clear that

E
∣∣(πN

0 , φ)− (π0, φ)
∣∣4 ≤ 2

N2
E |φ(xi

0)− E[φ(xi
0)]|4

≤ 32
N2

‖φ‖40,4
∆= C0|0

‖φ‖40,4

N2
. (32)

Hence,

E
∣∣(πN

0 , |φ|4)
∣∣ ≤ 3 E |φ(xi

0)|4
∆= M0|0‖φ‖40,4. (33)

(2). Based on (32) and (33), we assume that for t− 1 and
∀φ ∈ L4

t (ρ)

E
∣∣∣(πN

t−1|t−1, φ)− (πt−1|t−1, φ)
∣∣∣4 ≤ Ct−1|t−1‖φ‖4t−1,4

N2

(34)

and

E
∣∣∣(πN

t−1|t−1, |φ|
4)
∣∣∣ ≤ Mt−1|t−1‖φ‖4t−1,4 (35)

holds, where Ct−1|t−1 > 0 and Mt−1|t−1 > 0. We analyse

E
∣∣∣(π̃N

t|t−1, φ)− (πt|t−1, φ)
∣∣∣4 and E

∣∣∣(π̃N
t|t−1, |φ|

4)
∣∣∣ in this

step.
Notice that

(π̃N
t|t−1, φ)− (πt|t−1, φ) = Π1 + Π2,

where

Π1
∆=

[
(π̃N

t|t−1, φ)− 1
N

N∑
i=1

(πN,αi

t−1|t−1,Kφ)

]
,

Π2
∆=

[
1
N

N∑
i=1

(πN,αi

t−1|t−1,Kφ)− (πt|t−1, φ)

]
and πN,αi

t−1|t−1 =
∑N

j=1 αi
jδxj

t−1
(dxt−1). Let us now investi-

gate Π1 and Π2.
Let Ft−1 denote the σ-algebra generated by {xi

t−1}N
i=1.

From the generation of x̃i
t, we have

Π1 =
1
N

N∑
i=1

(φ(x̃i
t−1)− E[φ(x̃i

t−1)|Ft−1]).

Thus, by Lemmas 1, 2, 3, (19) and (35),

E |Π1|4 ≤ 25
‖K‖4Mt−1|t−1‖φ‖4t−1,4

N2
. (36)

Furthermore, by (19) and (34),

E |Π2|4 ≤
Ct−1|t−1‖K‖4‖φ‖4t−1,4

N2
. (37)

Then, using Minkowski’s inequality, (19), (36), and (37), we
have

E1/4
∣∣∣(π̃N

t|t−1, φ)− (πt|t−1, φ)
∣∣∣4

≤ E1/4 |Π1|4 + E1/4 |Π2|4

≤ ‖K‖
(
[25Mt−1|t−1]1/4 + C

1/4
t−1|t−1

) ‖φ‖t−1,4

N1/2

∆= C̃
1/4
t|t−1

‖φ‖t−1,4

N1/2
.

That is

E
∣∣∣(π̃N

t|t−1, φ)− (πt|t−1, φ)
∣∣∣4 ≤ C̃t|t−1

‖φ‖4t−1,4

N2
. (38)

By Lemma 2, (35) and the use of a separation, similar to the
one employed above, we have

E
∣∣∣(π̃N

t|t−1, |φ|
4)− (πt|t−1, |φ|4)

∣∣∣
≤ ‖K‖4(3Mt−1|t−1 + 1)‖φ‖4t−1,4

∆= M̃t|t−1‖φ‖4t−1,4.
(39)



(4). In this step we analyse E
∣∣∣(π̃N

t|t, φ)− (πt|t, φ)
∣∣∣4 and

E(π̃N
t|t, |φ|

4) based on (38) and (39). Clearly,

(π̃N
t|t, φ)− (πt|t, φ) = Π̃1 + Π̃2,

where

Π̃1
∆=

(π̃N
t|t−1, ρφ)

(π̃N
t|t−1, ρ)

−
(π̃N

t|t−1, ρφ)

(πt|t−1, ρ)
,

Π̃2
∆=

(π̃N
t|t−1, ρφ)

(πt|t−1, ρ)
−

(πt|t−1, ρφ)
(πt|t−1, ρ)

.

By condition H1 and the modification (26) introduced in
Algorithm 3 we have,

|Π̃1| =

∣∣∣∣∣ (π̃
N
t|t−1, ρφ)

(π̃N
t|t−1, ρ)

·
[(πt|t−1, ρ)− (π̃N

t|t−1, ρ)]

(πt|t−1, ρ)

∣∣∣∣∣
≤ ‖ρφ‖

γt(πt|t−1, ρ)

∣∣∣(πt|t−1, ρ)− (π̃N
t|t−1, ρ)

∣∣∣ .
Thus, by Minkowski’s inequality and (38),

E1/4
∣∣∣(π̃N

t|t, φ)− (πt|t, φ)
∣∣∣4

≤ E1/4 |Π̃1|4 + E1/4 |Π̃1|4

≤
C̃

1/4
t|t−1‖ρ‖ (‖ρφ‖+ γt)

γt(πt|t−1, ρ)
· ‖φ‖t−1,4

N1/2

∆= C̃
1/4
t|t

‖φ‖t−1,4

N1/2
,

which implies

E
∣∣∣(π̃N

t|t, φ)− (πt|t, φ)
∣∣∣4 ≤ C̃t|t

‖φ‖4t−1,4

N2
. (40)

Using a separation similar to the one previously used,
by (39), and observing that ‖φ‖s,4 ≥ 1 is increasing with
respect to s, we have

E
∣∣∣(π̃N

t|t, |φ|
4)
∣∣∣

≤ 3 max

{
‖ρφ4‖ · 2‖ρ‖
γt(πt|t−1, ρ)

,
M̃t|t−1‖ρ‖
(πt|t−1, ρ)

, 1

}
· ‖φ‖4t,4

∆= M̃t|t‖φ‖4t,4. (41)

(5). Finally, we analyse E
∣∣∣(πN

t|t, φ)− (πt|t, φ)
∣∣∣4 and

E(πN
t|t, |φ|

4) based on (40) and (41).
Obviously

(πN
t|t, φ)− (πt|t, φ) = Π̄1 + Π̄2,

where

Π̄1
∆= (πN

t|t, φ)− (π̃N
t|t, φ), Π̄2

∆= (π̃N
t|t, φ)− (πt|t, φ).

Let Gt denote the σ-algebra generated by {x̃i
t}N

i=1. From the
generation of xi

t, we have,

E(φ(xi
t)|Gt) = (π̃N

t|t, φ),

and then

Π̄1 =
1
N

N∑
i=1

(φ(xi
t)− E(φ(xi

t)|Gt)).

Then, by Lemmas 2, 4, and (41),

E |Π̄1|4 ≤ 25M̃t|t
‖φ‖4t,4
N2

. (42)

Then by Minkowski’s inequality, (40) and (42)

E1/4
∣∣∣(πN

t|t, φ)− (πt|t, φ)
∣∣∣4

≤ E1/4 |Π̄1|4 + E1/4 |Π̄2|4

≤
(
[25M̃t|t]1/4 + C̃

1/4
t|t

) ‖φ‖t,4

N1/2

∆= C
1/4
t|t

‖φ‖t,4

N1/2
.

That is

E
∣∣∣(πN

t|t, φ)− (πt|t, φ)
∣∣∣4 ≤ Ct|t

‖φ‖4t,4
N2

. (43)

Using a similar separation mentioned above, by (41),

E
∣∣∣(πN

t|t, |φ|
4)
∣∣∣ ≤ (3M̃t|t + 2)‖φ‖4t,4

∆= Mt|t‖φ‖4t,4. (44)

Therefore, the proof of Theorem 1 is completed, since (34)
and (35) are successfully replaced by (43) and (44), respec-
tively.
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