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Abstract: The basic nonlinear �ltering problem for dynamical systems is consid-
ered. Approximating the optimal �lter estimate by particle �lter methods has
become perhaps the most common and useful method in recent years. Many
variants of particle �lters have been suggested, and there is an extensive literature
on the theoretical aspects of the quality of the approximation. Still, a clear cut
result that the approximate solution, for unbounded functions, converges to the
true optimal estimate as the number of particles tends to in�nity seems to be
lacking. It is the purpose of this contribution to give such a basic convergence
result.
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1. INTRODUCTION

The nonlinear �ltering problem is formulated as
follows. Consider the system with state xt, input
ut and output yt:

xt+1 = f(xt, ut) + vt, (1a)

yt = h(xt, ut) + et, (1b)

where vt and et are sequences of independent
random variables. The inputs and outputs are
observed for t = 1, 2, . . . and the problem is to
estimate the state based on these observations.

We will in this contribution assume that the input
u is a deterministic sequence, so we could as well
subsume the input in a time-varying dynamics:

xt+1 = f(xt, t) + vt, (2a)

yt = h(xt, t) + et, (2b)

Let pv(·, t) and pe(·, t) denote the probability
density function for the noise v and e, respectively.
The, in many respects, optimal estimate at time t
is the conditional expectation

x̂t = E(xt|y1:t), (3)

where y1:t , (y1, . . . , yt).

Now, while there exist several formulas that char-
acterize the (posterior) distribution of x̂t (Jazwin-
ski 1970) it is well known that except in some
quite special cases it is not possible to compute
x̂t with �nite computations. This has lead to a
large number of approximation methods, like ex-
tended Kalman �ltering, Gaussian sum approxi-
mations, point-mass �lters, etc., see e.g., (Jazwin-
ski 1970, Sorenson and Alspach 1971, Bucy and
Senne 1971). Recently there has been consider-
able interest in a certain approximation technique
based on Monte Carlo methods, usually called
Particle Filter, (Gordon et al. 1993, Doucet et al.
2000, Doucet et al. 2001). A basic particle �lter
will be de�ned in the next section, but in short the
main idea is to generate many random instances
('particles') of x that follow (2) and promote those
that are in good accordance with the observed y.
We shall denote the particle �lter estimate that is
based on N particles by

x̂N
t . (4)

Clearly, it is desired that x̂t and x̂N
t are close

and that the distance tends to zero as N tends
to in�nity. There are many papers dealing with
such analysis, see e.g., the excellent survey (Crisan



and Doucet 2002) and the recent book (Del Moral
2004), but they mostly deal with an estimate like

E(φ(xt)|y1:t), (5)

where φ : Rnx → R is a bounded scalar-valued
function. We are not aware of any convergence
results for unbounded φ (such as φ(x) = x[i]

for component i of x) that are applicable to
implemented particle �lters. The main result of
this paper is a theorem showing particle �lter
convergence for unbounded functions φ.

For a more complete picture of the information
about xt, it is natural to consider the posterior
density of xt, given {y1, . . . , yt}. This will be
denoted by

p(xt|y1:t). (6)

Clearly, x̂t is the mean of this posterior density.

The propagation of the posterior density is the
key tool for the estimation. It is well known,
and follows from Bayes' theorem, (e.g., (Jazwinski
1970)) that

p(xt|y1:t) =
p(yt|xt)p(xt|y1:t−1)∫
p(yt|xt)p(xt|y1:t−1)dxt

, (7a)

p(xt|y1:t−1) =
∫

p(xt|xt−1)p(xt−1|y1:t−1)dxt−1.

(7b)

2. A PARTICLE FILTER

We are trying to compute the estimate (3),

x̂t =
∫

xtp(xt|y1:t)dxt. (8)

The particle �lter can help us in doing this since
it provides an estimate of the �ltering probability
density function (pdf) p(xt|y1:t). One way of rep-
resenting a pdf is by using a set of samples {x̃i

t}N
i=1

and corresponding weights {q̃i
t}N

i=1 according to

p̃N (xt|y1:t) =
N∑

i=1

q̃i
tδ(xt − x̃i

t). (9)

Each sample x̃i
t describes a realization of the state

and the associated weight q̃i
t tells us how good this

realization is, given the information in the mea-
surement. We can also obtain an alternative ap-
proximate representation of the pdf by resampling
the samples according to their weights, resulting
in an unweighted approximation

pN (xt|y1:t) =
N∑

i=1

1
N

δ(xt − xi
t). (10)

In this resampling step the samples with high
weights have been replicated many times, whereas
the samples with low weights have possibly been
neglected. Intuitively this will provide a similar
approximation of the pdf, see e.g., (Hol et al. 2006)
for more details on various resampling algorithms.

Note that the samples xi
t are typically referred

to as particles, hence the name particle �lter. It
is worth noting that the particle �lter can be
used to compute many di�erent estimates, not
just the point estimate (3), due to the fact that it

approximates the �ltering pdf. We will now very
brie�y outline how the particle �lter works, for a
more thorough explanation, see e.g., (Doucet et
al. 2000, Doucet et al. 2001, Schön 2006), where
the latter contains a Matlab implementation of
the particle �lter and an illustration using the
example we discuss in Section 4.

Let us assume that we are given a set of un-
weighted particles {xi

t−1}N
i=1 describing N ap-

proximate realizations from a stochastic variable
with pdf p(xt−1|y1:t−1). Using the dynamics of our
system (2a), we can produce particles {x̃i

t}N
i=1 be-

ing approximate realizations of p(xt|y1:t−1) simply
by propagating the particles though the dynamics,

x̃i
t = f(xi

t−1, t− 1) + vi
t−1, (11)

where vi
t−1 denotes a realization from the pro-

cess noise vt−1. The information in the new
measurement yt can now be incorporated into
the approximation by inserting p̃N (xt|y1:t−1) =∑N

i=1
1
N δ(xt− x̃i

t) from (11) into (7a), resulting in

pN (xt|y1:t) =
N∑

i=1

p(yt|x̃i
t)∑N

j=1 p(yt|x̃j
t )︸ ︷︷ ︸

q̃i
t

δ(xt − x̃i
t),

where we have de�ned the so called normalized
importance weights {q̃i

t}N
i=1. In order to help in-

tuition it is instructive to note that q̃i
t reveals

how likely particle i is given the information in
the present measurement yt. This information is
used in the essential resampling step, to generate
a new set of unweighted particles {xi

t}N
i=1. The

resampling step was �rst introduced in (Gordon
et al. 1993). Without this step the algorithm will
rapidly diverge. All steps in the particle �lter, save
for the resampling step, have been known since the
end of the 1940's (Metropolis and Ulam 1949). To
sum up, we have the following algorithm.

Algorithm 1. Particle �lter
(1) Initialize the particles, {xi

0}N
i=1 dis-

tributed according to p(x0).
(2) Time update: predict new particles x̃i

t by
drawing new samples according to (11).

(3) Measurement update: compute the im-
portance weights {qi

t}N
i=1,

qi
t = p(yt|x̃i

t), i = 1, . . . , N

and normalize q̃i
t = qi

t/
∑N

j=1 qj
t

(4) Resampling: draw N particles, with re-
placement, for each i = 1, . . . , N

Pr(xi
t = x̃j

t ) = q̃j
t , j = 1, . . . , N

(5) Set t := t + 1 and iterate from step 2.

The estimate (3) is computed after step 3 in
Algorithm 1, by inserting (9) into (8)

x̂N
t =

N∑
i=1

q̃i
tx̃

i
t. (12)



In order to prove the basic convergence result for
x̂N

t we shall consider a particle �lter with the
following modi�cation,

N∑
i=1

p(yt|x̃i
t) ≥ γt > 0 ∀t, (13)

that is suggested by technical requirements in the
proof. It is also interesting to note that (13) has
a strong support from an intuitive point of view
as well. The modi�cation requires that the sum of
the likelihoods p(yt|x̃i

t) is greater than γt, where
the likelihood explains how probable a certain
measurement yt is given the current state x̃i

t.
Hence, if the sum of likelihoods is low that means
that the current states are not able to explain
the measurements. Now, condition (13) is checked
after step 3 in Algorithm 1. If it is not ful�lled the
particles are repropagated according to step 2 and
the condition is checked again. It can be shown
that

P

(
N∑

i=1

p(yt|x̃i
t) ≥ γt

)
−−−−→
N→∞

1, (14)

implying that the in�uence of the algorithm mod-
i�cation decreases as the number of particles in-
creases. In fact, this means that the lower bound
for (13) is almost always satis�ed, provided that
N is su�ciently large and γt is suitably chosen.

This modi�cation also turns out to reduce the de-
generacy of importance weights (see, e.g., (Crisan
and Doucet 2002, Legland and Oudjane 2001)).
Hence, we can expect a better performance in
practise. The implications of this modi�cation will
be studied in Section 4.

3. THE MAIN RESULT

The optimal estimator x̂t is a random variable,
being a function of past outputs ys, s ≤ t. Further-
more, the particle �lter estimator x̂N

t is a random
variable that depends also on the randomly drawn
particles and the random propagation in (11). We
will consider the random properties of the particle
�lter estimated in the latter respect, i.e., what
happens with averaging over the particle samples,
keeping the conditioning with respect to the past
outputs.

The main convergence result is as follows:

Theorem 1. Consider the system (2), and assume
that the joint probability density function of
ys, s = 1, . . . , t exists. Assume that

sup
xs

(
|xs|4pe(ys − h(xs), s)

)
< ∞, ∀ys, s ≤ t

(15)

where pe(·, s) is the pdf of es. Let x̂t be de�ned
by (3), and let the particle �lter estimate x̂N

t be
de�ned by (12). Then for almost all observation
records ys, s ≤ t,

E|x̂t − x̂N
t |4 = O

(
1

N2

)
, (16a)

x̂t − x̂N
t → 0 w.p.1 (16b)

as the number of particles N tends to in�nity.

PROOF. See Appendix A.

Remark: In (16), the observation record ys, s ≤ t
is �xed, and the probabilistic quanti�ers "E" and
"w.p.1" refer to the probability space of the par-
ticle �lter algorithm, i.e. the random propagation
in (11) and the resampling in step (4).

4. NUMERICAL ILLUSTRATION

In order to illustrate the impact of the algorithm
modi�cation (13), implied by the convergence
proof, we study the following nonlinear time-
varying system,

xt+1 =
xt

2
+

25xt

1 + x2
t

+ 8 cos(1.2t) + vt, (17a)

yt =
x2

t

20
+ et, (17b)

where vt ∼ N (0, 10), et ∼ N (0, 1), the initial state
x0 ∼ N (0, 5) and γt = 10−4. In the experiment we
used 250 time instants and 500 experiments, all
using the same measurement sequence. We used
the particle �lter given in Algorithm 1 modi�ed
according to (13) in order to compute an ap-
proximation of the estimate x̂t = E(xt|y1:t). In
accordance with both Theorem 1 and intuition the
quality of the estimate improves with the num-
ber of particles used in the approximation. The
purpose of the present experiment is to illustrate
that the algorithm modi�cation (13) is only active
when a small amount of particles is used. That
this is indeed the case is evident from Figure 1,
where the average number of interventions due to
violations of (13) are given as a function of the
number of particles used in the �lter.
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Fig. 1. Illustration of the impact of the algorithm
modi�cation (13). The �gure shows the num-
ber of times (13) was violated as a function
of the number of particles used. Note that it
is the average result from 500 experiments.

5. CONCLUDING COMMENTS

In this contribution we have focused on properties
of the optimal state estimate x̂t and its relation
to the particle �lter estimate x̂N

t . Clearly this



really concerns properties of the posterior den-
sity p(xt|y1:t) and the empirical density of the
particles, pN (xt|y1:t). The proof deals with the
closeness of these densities. It is clear that more
general statements concerning these densities can
be made from the building blocks of the proof, like
convergence and closeness on general functions of
this density, like∫

φ(xt)p(xt|y1:t)dxt. (18)

We refer to (Hu et al. 2007) for more general
statements and discussion of this kind.

The basic contribution of this paper has been
the extension of such convergence results to un-
bounded functions φ, which has allowed state-
ments on the �lter estimate (conditional expec-
tation) itself. We have had to introduce a slight
modi�cation of the particle �lter (eqn. (13)) in
order to complete the proof. It is an interesting
question to study if the modi�cation is in fact
necessary, and leads also to improved behaviour
in practise. The simulation study showed that the
e�ect of the modi�cation decreases with increased
number of particles.
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Appendix A. PROOF OF THEOREM 1

We will �rst establish a general result (Proposi-
tion 1) for a more general algorithm, including
the one proposed in Section 2, for the proof of
Theorem 1. Let (Ω,F , P ) be a probability space
on which the nx-dimensional state of system de-
scribed by the Markov process X = {Xt, t =
0, 1, . . .} with transition kernel density K(xt|xt−1)
and the ny-dimensional observation described by
Y = {Yt, t = 1, 2, . . .} with observation density
ρ(yt|xt). Obviously, for the system (2) we have

K(xt|xt−1) = pv(xt − f(xt−1), t),
ρ(yt|xt) = pe(yt − h(xt), t).

For convenience, let us write the traditional form
of the particle �lter algorithm in a somewhat more
abstract way,

Algorithm 2. Abstract particle �lter
(1) xi

0 ∼ π0(dx0), i = 1, . . . , N .

(2) x̃i
t ∼

∑N
j=1 αi

jK(dxt|xj
t−1), i = 1, . . . , N .

(3) π̃N
t|t(dxt) =

∑N
i=1 wi

tδ(x̃
i
t − dxt),

wi
t = ρ(yt|x̃i

t)∑N

i=1
ρ(yt|x̃i

t)
.

(4) xi
t ∼ π̃N

t|t(dxt), i = 1, . . . , N .

πN
t|t(dxt) = 1

N

∑N
i=1 δ(xi

t − dxt).

Denote

πN
t|t(dxt) =

1
N

N∑
i=1

δ(xi
t − dxt).

For convenience, let us introduce some more no-
tations. Given a measure ν, a function φ, denote

(ν, φ) ∆=
∫

φ(x)ν(dx).

Hence, E(φ(xt)|y1:t) = (πt|t, φ).

Remark 1. When αi
j = 1 for j = i, and αi

j = 0 for
j 6= i, Algorithm 2 is reduced to the traditional
Algorithm 1, as introduced in Section 2, see e.g.,
(Gordon et al. 1993, Doucet et al. 2000, Schön
2006). When αi

j = 1/N for all i and j, it turns
out to be a convenient form for theoretical treat-
ment, as introduced by nearly all authors dealing
with theoretical analysis, for example (Crisan and
Doucet 2002, Del Moral 1996, Del Moral and Mi-
clo 2000, Del Moral 2004). A property is followed
by the selection of αi

j :

1
N

N∑
i=1

N∑
j=1

αi
jK(dxt|xj

t−1) = (πN
t−1|t−1,K).

(A.1)

The convergence results are all given for a �xed
observation record, which means E(·) = E(·|y1:t).
We need the following conditions to establish the
general result.

H1. (πs|s−1, ρ) > 0, ρ(ys|xs) < ∞; K(xs|xs−1) <
∞ for given y1:s, s = 1, 2, . . . , t.

H2. The function φ : Rnx → R satisfy

sup
xs

|φ(xs)|4ρ(ys|xs) < ∞

for given y1:s, s = 1, . . . , t.

Remark 2. In view of (7a), clearly, (πs|s−1, ρ) > 0
in H1 is a basic requirement of Bayesian philoso-
phy, under which the optimal �lter E(φ(xt)|y1:t)
will exist.

Remark 3. From the conditions (πs|s−1, ρ) > 0
and |φ(xs)|4ρ(ys|xs) < ∞, we have

(πs|s, |φ|4) =
(πs|s−1, ρ|φ|4)

(πs|s−1, ρ)
< ∞.

Let us denote the set of functions φ : Rnx → R
satisfying H2 by L4

t (ρ).

Proposition 1. If H1 and H2 hold, then for any
φ ∈ L4

t (ρ), there exists a constant Ct|t, indepen-
dent of N , such that

E
∣∣∣(πN

t|t, φ)− (πt|t, φ)
∣∣∣4 ≤ Ct|t

‖φ‖4t,4
N2

, (A.2)

where

‖φ‖t,4
∆= max

{
1, (πs|s, |φ|4)1/4, s = 0, 1, . . . , t

}
and πN

s|s is generated by the modi�ed version of

particle �lter algorithm.

By Borel-Cantelli Lemma, we have the following
corollary.

Corollary 1. If H1 and H2 hold, then for any
φ ∈ L4

t (ρ), limN→∞(πN
t|t, φ) = (πt|t, φ) almost

surely.



Proposition 2. If the joint pdf of ys, s = 1, . . . , t
exist, (πs|s−1, ρ) > 0, s = 1, . . . , t hold for almost

all observation record {ys}t
s=1, i.e., the exception

is with probability 0.

For the proof of Proposition 1 we refer to (Hu et
al. 2007).

Based on Propositions 1 and 2 and Corollary 1,
Theorem 1 follows directly. We prove Proposi-
tion 1 in the following.

Before proving Proposition 1, we list some simple
lemmas which we need in the proof of Proposi-
tion 1. It is worth noticing that Lemmas 1 and 4
still holds for the case of conditional indepen-
dence, which is actually used in the proof of
Proposition 1.

Lemma 1. Let {ξi, i = 1, . . . , n} be independent
random variables such that Eξi = 0, Eξ4

i < ∞.
Then

E

∣∣∣∣∣
n∑

i=1

ξi

∣∣∣∣∣
4

≤
n∑

i=1

Eξ4
i +

(
n∑

i=1

Eξ2
i

)2

. (A.3)

Lemma 2. If E|ξ|p < ∞, then E|ξ − Eξ|p ≤
2pE|ξ|p, for any p ≥ 1.

Lemma 3. If 1 ≤ r1 ≤ r2 and E|ξ|r2 < ∞, then

E1/r1 |ξ|r1 ≤ E1/r2 |ξ|r2 .

Based on Lemmas 1 and 3, we have

Lemma 4. Let {ξi, i = 1, . . . , n} be independent
random variables such that Eξi = 0, E|ξi|4 < ∞.
Then

E

∣∣∣∣∣ 1n
n∑

i=1

ξi

∣∣∣∣∣
4

≤ 2 max1≤i≤n Eξ4
i

n2
. (A.4)

Denote ‖ρ(x)‖ = max{1, sup |ρ(x)|}. Then ‖ρφ‖0,4 ≤
‖ρ‖ · ‖φ‖0,4.

Proof of Proposition 1. The proof is carried
out using mathematical induction.

(1). Let {xi
0}N

i=1 be independent random variables
with the same distribution π0(dx0). Then, with
the use of Lemmas 4 and 2, it is clear that

E
∣∣(πN

0 , φ)− (π0, φ)
∣∣4 ≤ 2

N2
E|φ(xi

0)− E[φ(xi
0)]|4

≤ 32
N2

‖φ‖40,4
∆= C0|0

‖φ‖40,4

N2
. (A.5)

Clearly,

E
∣∣(πN

0 , |φ|4)
∣∣ ≤ 3E|φ(xi

0)|4
∆= M0|0‖φ‖40,4. (A.6)

(2). Based on (A.5) and (A.6), we assume that for
t− 1 and ∀φ ∈ L4

t (ρ)

E
∣∣∣(πN

t−1|t−1, φ)− (πt−1|t−1, φ)
∣∣∣4 ≤ Ct−1|t−1‖φ‖4t−1,4

N2

(A.7)

and

E
∣∣∣(πN

t−1|t−1, |φ|
4)
∣∣∣ ≤ Mt−1|t−1‖φ‖4t−1,4 (A.8)

holds, where Ct−1|t−1 > 0 and Mt−1|t−1 >

0. We analyse E
∣∣∣(π̃N

t|t−1, φ)− (πt|t−1, φ)
∣∣∣4 and

E
∣∣∣(π̃N

t|t−1, |φ|
4)
∣∣∣ in this step.

Notice that

(π̃N
t|t−1, φ)− (πt|t−1, φ) = Π1 + Π2,

where

Π1
∆=

[
(π̃N

t|t−1, φ)− 1
N

N∑
i=1

(πN,αi

t−1|t−1,Kφ)

]
,

Π2
∆=

[
1
N

N∑
i=1

(πN,αi

t−1|t−1,Kφ)− (πt|t−1, φ)

]
and πN,αi

t−1|t−1 =
∑N

j=1 αi
jδ(x

j
t−1 − dxt−1). Let us

now investigate Π1 and Π2.

Let Ft−1 denote the σ-algebra generated by
{xi

t−1}N
i=1. From the generation of x̃i

t, we have

Π1 =
1
N

N∑
i=1

(φ(x̃i
t−1)− E[φ(x̃i

t−1)|Ft−1]).

Thus, by Lemmas 1, 2, 3, (A.1) and (A.8),

E|Π1|4 ≤ 25
‖K‖4Mt−1|t−1‖φ‖4t−1,4

N2
. (A.9)

Furthermore, by (A.1) and (A.7),

E|Π2|4 ≤
Ct−1|t−1‖K‖4‖φ‖4t−1,4

N2
. (A.10)

Then, using Minkowski's inequality, (A.1), (A.9),
and (A.10), we have

E1/4
∣∣∣(π̃N

t|t−1, φ)− (πt|t−1, φ)
∣∣∣4

≤ E1/4|Π1|4 + E1/4|Π2|4

≤ ‖K‖
(
[25Mt−1|t−1]1/4 + C

1/4
t−1|t−1

) ‖φ‖t−1,4

N1/2

∆= C̃
1/4
t|t−1

‖φ‖t−1,4

N1/2
.

That is

E
∣∣∣(π̃N

t|t−1, φ)− (πt|t−1, φ)
∣∣∣4 ≤ C̃t|t−1

‖φ‖4t−1,4

N2
.

(A.11)

By Lemma 2, (A.8) and the use of a separation,
similar to the one employed above, we have

E
∣∣∣(π̃N

t|t−1, |φ|
4)− (πt|t−1, |φ|4)

∣∣∣
≤ ‖K‖4(3Mt−1|t−1 + 1)‖φ‖4t−1,4

∆= M̃t|t−1‖φ‖4t−1,4.
(A.12)

(3). In this step we analyse E
∣∣∣(π̃N

t|t, φ)− (πt|t, φ)
∣∣∣4

and E(π̃N
t|t, |φ|

4) based on (A.11) and (A.12).

Clearly,

(π̃N
t|t, φ)− (πt|t, φ) = Π̃1 + Π̃2,

where

Π̃1
∆=

(π̃N
t|t−1, ρφ)

(π̃N
t|t−1, ρ)

−
(π̃N

t|t−1, ρφ)

(πt|t−1, ρ)
,



Π̃2
∆=

(π̃N
t|t−1, ρφ)

(πt|t−1, ρ)
−

(πt|t−1, ρφ)
(πt|t−1, ρ)

.

By condition H1 and the modi�ed version of the
algorithm we have,

|Π̃1| =

∣∣∣∣∣ (π̃
N
t|t−1, ρφ)

(π̃N
t|t−1, ρ)

·
[(πt|t−1, ρ)− (π̃N

t|t−1, ρ)]

(πt|t−1, ρ)

∣∣∣∣∣
≤ ‖ρφ‖

γt(πt|t−1, ρ)

∣∣∣(πt|t−1, ρ)− (π̃N
t|t−1, ρ)

∣∣∣ .
Thus, by Minkowski's inequality and (A.11),

E1/4
∣∣∣(π̃N

t|t, φ)− (πt|t, φ)
∣∣∣4

≤ E1/4|Π̃1|4 + E1/4|Π̃1|4

≤
C̃

1/4
t|t−1‖ρ‖ (‖ρφ‖+ γt)

γt(πt|t−1, ρ)
· ‖φ‖t−1,4

N1/2

∆= C̃
1/4
t|t

‖φ‖t−1,4

N1/2
,

which implies

E
∣∣∣(π̃N

t|t, φ)− (πt|t, φ)
∣∣∣4 ≤ C̃t|t

‖φ‖4t−1,4

N2
. (A.13)

Using a separation similar to the one previously
used, by (A.12), and observing that ‖φ‖s,4 ≥ 1 is
increasing with respect to s, we have

E
∣∣∣(π̃N

t|t, |φ|
4)
∣∣∣

≤ 3 max

{
‖ρφ4‖ · 2‖ρ‖
γt(πt|t−1, ρ)

,
M̃t|t−1‖ρ‖
(πt|t−1, ρ)

, 1

}
· ‖φ‖4t,4

∆= M̃t|t‖φ‖4t,4. (A.14)

(4). Finally, we analyse E
∣∣∣(πN

t|t, φ)− (πt|t, φ)
∣∣∣4

and E(πN
t|t, |φ|

4) based on (A.13) and (A.14).

Obviously

(πN
t|t, φ)− (πt|t, φ) = Π̄1 + Π̄2,

where

Π̄1
∆= (πN

t|t, φ)− (π̃N
t|t, φ), Π̄2

∆= (π̃N
t|t, φ)− (πt|t, φ).

Let Gt denote the σ-algebra generated by {x̃i
t}N

i=1.
From the generation of xi

t, we have,

E(φ(xi
t)|Gt) = (π̃N

t|t, φ),

and then

Π̄1 =
1
N

N∑
i=1

(φ(xi
t)− E(φ(xi

t)|Gt)).

Then, by Lemmas 2, 4, and (A.14),

E|Π̄1|4 ≤ 25M̃t|t
‖φ‖4t,4
N2

. (A.15)

Then by Minkowski's inequality, (A.13) and (A.15)

E1/4
∣∣∣(πN

t|t, φ)− (πt|t, φ)
∣∣∣4

≤ E1/4|Π̄1|4 + E1/4|Π̄2|4

≤
(
[25M̃t|t]1/4 + C̃

1/4
t|t

) ‖φ‖t,4

N1/2

∆= C
1/4
t|t

‖φ‖t,4

N1/2
.

That is

E
∣∣∣(πN

t|t, φ)− (πt|t, φ)
∣∣∣4 ≤ Ct|t

‖φ‖4t,4
N2

. (A.16)

Using a similar separation mentioned above,
by (A.14),

E
∣∣∣(πN

t|t, |φ|
4)
∣∣∣ ≤ (3M̃t|t + 2)‖φ‖4t,4

∆= Mt|t‖φ‖4t,4.
(A.17)

Therefore, the proof of Proposition 1 is completed,
since (A.7) and (A.8) are successfully replaced
by (A.16) and (A.17).
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