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Abstract The problem of estimating and predicting po-
sition and orientation (pose) of a camera is approached
by fusing measurements from inertial sensors (accelero-
meters and rate gyroscopes) and vision. The sensor fu-
sion approach described in this contribution is based on
non-linear filtering of these complementary sensors. This
way, accurate and robust pose estimates are available for
the primary purpose of augmented reality applications,
but with the secondary effect of reducing computation
time and improving the performance in vision process-
ing.

A real-time implementation of a multi-rate extended
Kalman filter is described, using a dynamic model with
22 states, where 100 Hz inertial measurements and 12.5 Hz
correspondences from vision are processed. An example
where an industrial robot is used to move the sensor
unit is presented. The advantage with this configuration
is that it provides ground truth for the pose, allowing for
objective performance evaluation. The results show that
we obtain an absolute accuracy of 2 cm in position and
1◦ in orientation.

1 Introduction

This paper deals with estimating the position and ori-
entation (pose) of a camera in real-time, using measure-
ments from inertial sensors (accelerometers and rate gy-
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roscopes) and a camera. A system has been developed
to solve this problem in unprepared environments, as-
suming that a map or scene model is available. For a
more detailed description of the overall system and the
construction of scene models we refer to Stricker and
Thomas (2007) and Koeser et al (2007), respectively. In
this paper, the sensor fusion part of the system is de-
scribed, which is based upon a rather general framework
for nonlinear state estimation available from the statis-
tical signal processing community.

This problem can under ideal conditions be solved
using only a camera. Hence, it might seem superfluous to
introduce inertial sensors. However, the most important
reasons justifying an inertial measurement unit (IMU)
are:

– Producing more robust estimates. Any single camera
system will experience problems during periods with
uninformative or no vision data. This will occur, typ-
ically due to occlusion or fast motion. An IMU will
help to bridge such gaps, which will be illustrated in
the present paper.

– Reducing computational demands for image process-
ing. Accurate short time pose estimates are available
using the information from the IMU, reducing the
need for fast vision updates.

The combination of vision and inertial sensors has been
used previously in literature. Corke et al (2007) give an
introduction to this field and its applications. Reported
systems apply various methods: inertial measurements
are used as backup (Aron et al 2007), for short time pose
prediction (Klein and Drummond 2004), or depth map
alignment (Lobo and Dias 2004). Alternatively, vision
and inertial subsystems are loosely coupled, using visual
pose measurements (Ribo et al 2004; Chroust and Vincze
2004; Armesto et al 2007). Vision relies on either specific
targets, line contours or natural landmarks. Calibration
of the sensors is discussed in e.g., (Lobo and Dias 2007).
Furthermore, the problem is closely related to the prob-
lem of simultaneous localization and mapping (SLAM)
(Durrant-Whyte and Bailey 2006; Thrun et al 2005),
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where camera tracking and scene model construction are
performed simultaneously. Single camera SLAM is dis-
cussed in Davison (2003); Davison et al (2007). In that
context so called fast localization algorithms (Williams
et al 2007) are investigated as alternatives to inertial
support (Pinies et al 2007; Gemeiner et al 2007).

In our approach, real-time camera pose estimation is
achieved by fusing inertial and vision measurements us-
ing the framework of nonlinear state estimation, covering
methods such as the Extended Kalman Filter (EKF), the
Unscented Kalman Filters (UKF) and the particle fil-
ter (PF). This results in a tightly coupled system, natu-
rally supporting multi-rate signals. The vision measure-
ments are based on natural landmarks, which are de-
tected guided by pose predictions. The measurements
from the sensors are used directly rather than being pro-
cessed to a vision based pose or an inertial based pose.
The components of the system are well known. However,
we believe that the way in which these components are
assembled is novel and we show that the resulting system
provides accurate and robust pose estimates.

The sensors generating the measurements yt are de-
scribed in Section 2. In Section 3, the framework for state
estimation in nonlinear dynamic systems is introduced in
more detail and used to solve the sensor fusion problem
we are faced with in the present application. In imple-
menting this, there are several practical issues that have
to be solved. The overall performance of the system heav-
ily relies on successful solutions to these matters, which
is explained in Section 4. The performance of the im-
plementation is evaluated in Section 5, and finally, the
paper is concluded in Section 6.

2 Sensors

An IMU and a digital video camera are combined to
provide measurements to the sensor fusion module, de-
scribed in this paper. Both sensors are relatively small
and unobtrusive and they can be conveniently integrated
into a single sensor unit. An example of a prototype is
shown in Figure 1. An on board digital signal proces-
sor containing calibration parameters is used to calibrate
and synchronize data from the different components.

Before discussing the inertial and vision sensors in the
subsequent sections, the required coordinate systems are
introduced.

2.1 Coordinate systems

When working with a sensor unit containing a camera
and an IMU several coordinate systems have to be intro-
duced:

– Earth (e): The camera pose is estimated with re-
spect to this coordinate system. It is fixed to earth

Fig. 1 A prototype of the MATRIS project, integrating a
camera and an IMU in a single housing. It provides a hard-
ware synchronized stream of video and inertial data.

and the features of the scene are modelled in this co-
ordinate system. It can be aligned in any way, how-
ever, preferably it should be vertically aligned.

– Camera (c): The coordinate system attached to the
moving camera. Its origin is located in the optical
center of the camera, with the z-axis pointing along
the optical axis. The camera, a projective device, ac-
quires its images in the image plane (i). This plane
is perpendicular to the optical axis and is located at
an offset (focal length) from the optical center of the
camera.

– Body (b): This is the coordinate system of the IMU.
Even though the camera and the IMU are rigidly at-
tached to each other and contained within a single
package, the body coordinate system does not coin-
cide with the camera coordinate system. They are
separated by a constant translation and rotation.

These coordinate systems are used to denote geometric
quantities, for instance, ce is the position of the cam-
era coordinate system expressed in the earth system and
Rcb is the rotation matrix from the body system to the
camera system.

2.2 Inertial sensors

The sensor unit contains an IMU with three perpendicu-
larly mounted 1200 degree/s ADXLXRS300 angular ve-
locity sensors and two 5g 2D ADXL22293 accelerome-
ters, which are mounted such that three of the sensitive
axes are perpendicular to each other. MEMS rate gyro-
scopes are chosen because of their dramatically reduced
size and low cost as compared to alternatives such as
fiber optic angular velocity sensors.

The signals from the inertial components are syn-
chronously measured at 100 Hz using a 16 bit A/D con-
verter. A temperature sensor is added to compensate
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for the temperature dependency of the different sensing
components.

The assembly containing the gyroscopes and accele-
rometers has been subjected to a calibration procedure
to calibrate for the exact physical alignment of each com-
ponent, the gains, the offsets and the temperature rela-
tions of the gains and offsets. With these a 3D angular
velocity vector and a 3D accelerometer vector, both re-
solved in the body coordinate system, are computed us-
ing an on board processor. See e.g., Titterton and Weston
(1997); Chatfield (1997) for suitable background material
on inertial sensors and the associated signal processing.

The calibrated gyroscope signal yω,t contains mea-
surements of the angular velocity ωb

eb,t from body to
earth (eb) expressed in the body coordinate system (b):

yω,t = ωb
eb,t + δb

ω,t + eb
ω,t. (1)

Even though the gyroscope signal is corrected for tem-
perature effects, some low-frequency offset fluctuations
δω,t remain, partly due to the unmodeled acceleration
dependency. The remaining error eb

ω,t is assumed to be
zero mean white noise. The measurements are not accu-
rate enough to pick up the rotation of the earth. This
implies that the earth coordinate system can be consid-
ered to be an inertial frame.

A change in orientation can be obtained by proper
integration of the gyroscope signal. This orientation can
be obtained even during fast and abrupt movements, not
relying on any infrastructure other than the gyroscope
itself. However, the accuracy in orientation will deterio-
rate for periods longer than a few seconds.

The calibrated accelerometer signal ya,t contains mea-
surements of the combination of the body acceleration
vector b̈t and the gravity vector g, both expressed in the
body coordinate system:

ya,t = b̈
b

t − gb + δb
a,t + eb

a,t. (2)

Even though the accelerometer measurement is corrected
for temperature effects a small low-frequency offset δa,t

remains. The error eb
a,t is assumed to be zero mean white

noise.
Gravity is a constant vector in the earth coordinate

system. However, expressed in body coordinates grav-
ity depends on the orientation of the sensor unit. This
means that once the orientation is known, the accelerom-
eter signal can be used to estimate the acceleration, or
alternatively, once the acceleration is known, the direc-
tion of the vertical can be estimated.

Accelerations can be integrated twice to obtain a
change in position. This can be done during fast and
abrupt motions as long as an accurate orientation esti-
mate is available, for instance from the gyroscopes. How-
ever, the accuracy of the position change will deteriorate
quickly as a result of the double integration and the sen-
sitivity with respect to orientation errors.

2.3 Monocular vision

Apart from the inertial sensors, the sensor unit is equipped
with a ptGrey DragonFly CCD camera with a perspec-
tive lens with a focal length of 3.2 mm. Color images
with a resolution of 320x240 pixels at a frame rate of
12.5 Hz are streamed to a PC using a firewire connec-
tion. The camera is triggered by the IMU clock allowing
for synchronized measurements.

This setup is one realization of monocular vision:
cameras can vary in sensor type, resolution, frame rate
and various lens types can be used, ranging from per-
spective to fish-eye. However, they remain projective de-
vices, that is, they are bearings only sensors which do
not provide distance directly.

Extracting camera position and orientation from im-
ages is a known and well studied problem in computer
vision (Ma et al 2006; Hartley and Zisserman 2004). The
key ingredient is to find correspondences, relations be-
tween a feature found in the image which corresponds
to an element in the scene model. All these are rather
abstract concepts, which do have numerous implementa-
tions, ranging from Harris detectors (Harris and Stephens
1988) and point clouds models to patches and textured
free-form surfaces models (Koeser et al 2007). The cor-
respondences are the pieces of information which can be
extracted from an image and they will be considered to
be the vision measurements in this article.

Point correspondences zc ↔ zi are the relation be-
tween 3D points zc and 2D image points zi. For a per-
spective lens and a pinhole camera the correspondence
relation is

zi =
(

fzc
x/zc

z

fzc
y/zc

z

)
+ ei, (3a)

or equivalently,

0 ≈
(
−fI2 zi

t

)
zc

t =
(
−fI2 zi

t

)
Rce

t (ze − ce
t ), (3b)

where f is the focal length and I2 the 2× 2 identity ma-
trix. The error ei

t is assumed to be a zero mean white
noise. Here it is worth noting that this assumption is not
that realistic, due to outliers, quantization effects etc.
From (3b) it can be seen that the camera pose depends
on the rotation matrix Rce and the position ce. Hence,
given sufficient correspondences and a calibrated cam-
era the camera pose can be solved for. Similar relations
can be derived for e.g., line correspondences which also
provide information about the camera pose and optical
velocity fields which provide information about the cam-
era velocity (Corke et al 2007).

Correspondences are bearings only measurements and
as such they provide information about absolute position
and orientation with respect to the earth coordinate sys-
tem. Note that everything is determined up to a scale
ambiguity; viewing a twice as large scene from double
distance will yield an identical image. However, these vi-
sion measurements are available at a relatively low rate
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due to the trade off between exposure time and accuracy
(pixel noise and motion blur) which is an important limit
for small aperture cameras. Furthermore, processing ca-
pacity might constrain the frame rate. Hence, the ob-
served image can change drastically from frame to frame,
which occurs already with normal human motion. This
is the main cause for the limited robustness inherent in
single camera systems.

The computer vision implementation used in the pre-
sent implementation is based on a sum of absolute differ-
ence (SAD) block matcher in combination with a planar
patch or free-form surface model of the scene. More de-
tails can be found in Stricker and Thomas (2007); Koeser
et al (2007); Skoglund and Felsberg (2007). Both pixel
data and 3D positions are stored for each feature. An
example of a scene model is shown in Figure 2. While

Fig. 2 An example of a scene model consisting of planar
patches (lower right) and the actual scene that is modelled
(upper left).

tracking, search templates are generated by warping the
patches in the model according to homographies cal-
culated from the latest prediction of the camera pose.
These templates are then matched with the current cal-
ibrated camera image using the block matcher. In this
way correspondences are generated.

3 Sensor fusion

The inertial and vision sensors contained in the sensor
unit have complementary properties. Vision in combina-
tion with the map gives accurate absolute pose infor-
mation at a low rate, but experiences problems during
moderately fast motions. The IMU provides high rate
relative pose information regardless of the motion speed,
but becomes inaccurate after a short period of time. By
fusing information from both sources it is possible to ob-
tain robust camera pose estimates.

Combing inertial and vision sensors is possible in sev-
eral ways. For instance, vision based methods might be
extended by using pose predictions from the IMU. These
pose predictions can be used to determine where in the
image the features are to be expected. Once detected,

the features can be used to calculate the pose and this
pose is then used as a starting point for the next pose
prediction by the IMU. Alternatively, the IMU can be
considered to be the main sensor, which is quite com-
mon in the navigation industry. In that case, vision can
be used for error correction, similar to how radio bea-
cons or the global positioning system (GPS) are used to
correct the drift in an inertial navigation system (INS).

Although the sensors have different properties, it is
from a signal processing perspective not relevant to as-
sign a ‘main’ sensor and an ‘aiding’ sensor. Both vision
and inertial sensors are equivalent in the sense that they
both provide information about the quantity of interest,
the camera pose in this application. The objective is to
extract as much information as possible from the mea-
surements. More specifically, this amounts to finding the
best possible estimate of the filtering probability density
function (pdf) p(xt|y1:t), where y1:t , {y1, . . . , yt}. The
topic of this section is to provide a solid framework for
computing approximations of this type. First, a rather
general introduction to this framework is given in Sec-
tion 3.1. The rest of this section is devoted to explaining
how this framework can be applied to handle the present
application. The models are introduced in Section 3.2
and the fusion algorithm is discussed in Section 3.3.

3.1 Theoretical framework

The objective in sensor fusion is to recursively in time
estimate the state in the dynamic model,

xt+1 = ft(xt, ut, vt), (4a)
yt = ht(xt, ut, et), (4b)

where xt ∈ Rnx denotes the state, yt ∈ Rny denote the
measurements from a set of sensors, vt and et denote
the stochastic process and measurement noise, respec-
tively. The process model equations, describing the evo-
lution of the states (pose etc.) over time are denoted by
f : Rnx ×Rnv ×Rnu → Rnx . Furthermore, the measure-
ment model is given by h : Rnx × Rnu × Rne → Rny ,
describing how the measurements from the IMU and the
camera relate to the state. The goal is to infer all the
information from the measurements yt onto the state xt.
The way of doing this is to compute the filtering pdf
p(xt|y1:t). The filtering pdf contains everything there is
to know about the state at time t, given the information
in all the past measurements y1:t. Once an approximation
of p(xt|y1:t) is available it can be used to form many dif-
ferent (point) estimates, including maximum likelihood
estimates, confidence intervals and the most common
conditional expectation estimate

x̂t = E(xt|y1:t). (5)

The key element in solving the nonlinear state esti-
mation problem in real-time is the propagation of p(xt|y1:t)
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over time. It is well known (see e.g., Jazwinski 1970) that
a recursive solution can be obtained by applying Bayes’
theorem, introducing model (4) in the iterations,

p(xt|y1:t) =
p(yt|xt)p(xt|y1:t−1)∫
p(yt|xt)p(xt|y1:t−1)dxt

, (6a)

p(xt+1|y1:t) =
∫

p(xt+1|xt)p(xt|y1:t)dxt. (6b)

Hence, the quality of the solution is inherently coupled to
the models and hence good models are imperative. It is
worth noticing that (6a) and (6b) are often referred to as
measurement update and time update, respectively. The
sensor fusion problem has now been reduced to prop-
agating (6) over time as new measurements arrive. The
problem is that the multidimensional integrals present in
(6) lack analytical solutions in all but a few special cases.
The most common special case is when (4) is restricted to
be a linear dynamic system, subject to additive Gaussian
noise. Then all the involved densities will be Gaussian,
implying that it is sufficient to propagate the mean and
covariance. The recursions updating these are of course
given by the Kalman filter (Kalman 1960).

However, in most cases there does not exist a closed
form solution for (6), forcing the use of approximations
of some sort. The literature is full of different ideas on
how to perform these approximations. The most com-
mon being the EKF (Smith et al 1962; Schmidt 1966)
where the model is linearized and the standard Kalman
filter equations are used for this linearized model. A
conceptually more appealing approximation is provided
by the PF (Gordon et al 1993; Isard and Blake 1998;
Kitagawa 1996) which retains the model and approxi-
mates (6). Other popular approximations for the nonlin-
ear state estimation problem are provided for example
by the UKF (Julier and Uhlmann 2004) and the point-
mass filter (Bucy and Senne 1971; Bergman 1999). For a
more complete account of the nonlinear state estimation
problem, see e.g., Schön (2006).

3.2 Models

The probability density functions p(xt+1|xt) and p(yt|xt)
are the key elements in the filter iterations (6). They are
usually implicitly specified by the process model (4a)
and the measurement model (4b). For most applications
the model formulation given in (4) is too general. It is
often sufficient to assume that the noise enters additively,
according to

xt+1 = ft(xt) + vt, (7a)
yt = ht(xt) + et. (7b)

The fact that the noise is additive in (7) allows for ex-
plicit expressions for p(xt+1|xt) and p(yt|xt), according

to

p(xt+1|xt) = pvt(xt+1 − ft(xt)), (8a)
p(yt|xt) = pet(yt − ht(xt)), (8b)

where pvt( · ) and pet( · ) denote the pdf’s for the noise
vt and et, respectively. Note that the input signal ut

has been dispensed with, since it does not exist in the
present application. The rest of this section will discuss
the model used in the current application.

First of all, the state vector has to include the posi-
tion and the orientation, since they are the quantities of
interest. However, in order to be able to use the IMU and
provide predictions the state vector should also include
their time derivatives, as well as sensor biases. The state
vector is chosen to be

xt =
(
be

t ḃ
e

t b̈
e

t qbe
t ωb

eb,t δb
ω,t δb

a,t

)T

. (9)

That is, the state vector consists of position of the IMU
(the body coordinate system) expressed in the earth sys-
tem be, its velocity ḃ

e
and acceleration b̈

e
, the orienta-

tion of the body with respect to the earth system qbe, its
angular velocity ωb

eb, the gyroscope bias δb
ω and the ac-

celerometer bias δb
a. All quantities are three dimensional

vectors, except for the orientation which is described us-
ing a four dimensional unit quaternion qbe, resulting in a
total state dimension of 22. Parameterization of a three
dimensional orientation is in fact rather involved, see
e.g., Shuster (1993) for a good account of several of the
existing alternatives. The reason for using unit quater-
nions is that they offer a nonsingular parameterization
with a rather simple dynamics. Using (9) as state vector,
the process model is given by

be
t+1 = be

t + T ḃ
e

t + T 2

2 b̈
e

t , (10a)

ḃ
e

t+1 = ḃ
e

t + T b̈
e

t , (10b)

b̈
e

t+1 = b̈
e

t + ve
b̈,t

, (10c)

qbe
t+1 = exp(−T

2 ωb
eb,t)� qbe

t , (10d)

ωb
eb,t+1 = ωb

eb,t + vb
ω,t, (10e)

δb
ω,t+1 = δb

ω,t + vb
δω,t, (10f)

δb
a,t+1 = δb

a,t + vb
δa,t, (10g)

where the quaternion multiplication and exponential are
defined according to(

p0

p

)
�

(
q0

q

)
,

(
p0q0 − p · q

p0q + q0p + p× q

)
, (11a)

exp(v) ,

(
cos ‖v‖

v
‖v‖ sin ‖v‖

)
. (11b)

A standard constant acceleration model (10a)– (10c) has
been used to model the position, velocity and accelera-
tion. Furthermore, the quaternion dynamics is standard,
see e.g., Shuster (1993). Finally, the angular velocity and
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the bias terms are simply modeled as random walks, since
there is no systematic knowledge available about these
terms.

There is more than one sensor type available, imply-
ing that several measurement models are required. They
have already been introduced in Section 2, but for con-
venience they are all collected here,

ya,t = Rbe
t (b̈

e

t − ge) + δb
a,t + eb

a,t, (12a)

yω,t = ωb
eb,t + δb

ω,t + eb
ω,t, (12b)

yc,t =
(
−fI2 zi

t

)
Rcb(Rbe

t (ze
t − be

t )− cb
t) + ec,t. (12c)

Note that the rotation matrix Rbe
t is constructed from

qbe
t (Kuipers 1999). The transformation from body to

camera coordinate system is included in (12c), compared
to (3b).

3.3 Fusion Algorithm

The nonlinear estimation framework discussed in Sec-
tion 3.1 suggests Algorithm 1 to fuse the multi-rate in-
formation from the inertial and vision sensors. The al-

Algorithm 1 Recursive camera pose calculation
1. Perform an initialization and set initial state estimate and

covariance.

x0 ∼ p(xo)

2. Time update. Calculate p(xt|y1:t−1) by propagating
p(xt−1|y1:t−1) through the process model (10).

3. Accelerometer and gyroscope measurement update using
model (12a) and (12b).

xt ∼ p(xt|y1:t)

4. If there is a new image from the camera,
(a) Predict feature positions from the scene model using

x̂t = E(xt|y1:t).
(b) Detect the features in the image.
(c) Measurement update with the found point correspon-

dences using model (12c).

xt ∼ p(xt|y1:t)

5. Set t := t + 1 and iterate from step 2.

gorithm uses the models (10) and (12) to perform the
time and measurement update steps given in (6). Note
that Algorithm 1 is generic in the sense that we have not
specified which state estimation algorithm is used. Our
implementation, which runs in real-time with 100 Hz in-
ertial measurements and frame rates up to 25 Hz, uses
the EKF to compute the estimates, implying that all
involved pdf’s are approximated by Gaussian densities.
An UKF implementation was found to give similar ac-
curacy at the cost of a higher computational burden

(Pieper 2007). This confirms the results from Armesto
et al (2007).

When the sensor unit is static during initialization,
the IMU provides partial or full (using magnetometers)
orientation estimates. This information can be used to
constrain the search space when initializing from vision.

The high frequency inertial measurement updates in
Algorithm 1 provide a rather accurate state estimate
when a new image is acquired. This implies that the
feature positions can be predicted with an improved ac-
curacy, which in turn makes it possible to use a guided
search in the image using reduced search regions. The al-
gorithm can calculate the expected covariance of a mea-
surement. This can be the basis for a temporal outlier re-
moval as a complement to the spatial outlier removal pro-
vided by RANSAC methods (Fischler and Bolles 1981).
Alternatively it can be used to predict the amount of new
information that a certain feature can contribute, which
might be useful for task scheduling when the computa-
tional resources are limited (Davison 2005).

The camera pose is estimated implicitly by Algo-
rithm 1 rather than trying to determine it explicitly by
inverting the measurement equations. Hence, when suf-
ficient motion is present, the system is able to continue
tracking with a very low number of features and maintain
full observability using temporal triangulation.

The information from the IMU makes Algorithm 1
robust for temporary absence of vision. Without vision
measurements the estimates will eventually drift away.
However, short periods without vision, for instance, due
to motion blur, obstruction of the camera or an unmod-
eled scene, can be handled without problems.

Finally, Algorithm 1 is rather flexible. It can be rather
straightforwardly extended to include other information
sources. For instance, a GPS might be added to aid with
outdoor applications.

4 Implementation considerations

When implementing Algorithm 1, several practical is-
sues have to be solved. These turn out to be critical for
a successful system, motivating their treatment in this
section.

4.1 Metric scale

As mentioned in Section 2.3, vision-only methods suffer
from a scale ambiguity, since projections, unit-less mea-
surements, are used. Once the scale of the scene model
is defined, camera pose can be determined explicitly us-
ing three or more correspondences in combination with
a calibrated camera. However, changing the scale of a
scene model will give scaled, but indistinguishable poses.
Hence, for vision-only applications scene models can have
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an arbitrary scale; a standard choice is to define the unit
length to be the distance between the first two cameras.

For the inertial-vision combination, the scale is rel-
evant. Sensor fusion utilizes position information both
from the camera and the IMU, which implies that these
quantities must have identical units. Scale is also impor-
tant when assumptions are made about the motions of
the camera, for instance the type and parameters of a
motion model (Davison et al 2007).

Introducing a metric scale into the scene model solves
this issue. An existing scene model with arbitrary scale
can be converted by comparing it with a Computer Aided
Design (CAD) model or measuring an object with known
dimension. An interesting solution might be to include
metric information, for instance using accelerometers, in
the algorithms for building the scene models. However,
this is still an open question.

4.2 Vertical alignment

Accelerometers cannot distinguish accelerations of the
body from gravity, as previously discussed in Section 2.2.
To separate the contributions in the measurement, the
gravity vector can be rotated from the earth coordinate
system to the body frame and then subtracted. Hence,
the scene model should be vertically aligned, or equiva-
lently the gravity vector should be known in the scene
model. Typically, this is not the case.

The performance of the system is extremely sensitive
to this alignment, since gravity is typically an order of
magnitude larger than normal body accelerations. For
example, a misalignment of 1◦ introduces an artificial
acceleration of 0.17 m/s2 which gives rise to a system-
atic position drift of 8.5 cm when integrated over 1 s.
Hence, even for small errors a systematic drift is intro-
duced which causes the system to lose track without con-
tinuous corrections from correspondences. In this case
the drift followed by a correction gives rise to a sawtooth
pattern in the estimates, which deteriorates performance
and will be visible as ‘jitter’.

The gravity vector can be determined by averaging
the accelerometer readings over some time, while the
camera is stationary in a known pose. However, a prefer-
able method is to record accelerometer measurements
while scanning the scene and include this data in the
model building procedure to align the scene model ver-
tically.

4.3 Sensor pose calibration

The camera and the IMU both deliver measurements
which are resolved in the camera and the body coor-
dinate system, respectively. Typically, these do not co-
incide, since the sensors are physically translated and

rotated with respect to each other. This rigid transfor-
mation should be taken into account while fusing the
measurements.

The problem of determining the relative position and
orientation is a well studied problem in robotics where
it is known as hand-eye calibration, see e.g., Strobl and
Hirzinger (2006) for an introduction to this topic. How-
ever, most methods do not apply directly since the IMU
does not provide an absolute position reference. Abso-
lute orientation information is available since the acce-
lerometers measure only gravity when the sensor unit is
stationary.

The orientation part of the calibration is determined
using a slight modification of standard camera calibra-
tion procedures (Zhang 2000), where the calibration pat-
tern is placed on a horizontal surface and accelerometer
readings are taken in the various camera poses. The cam-
era poses are determined in the camera calibration pro-
cedure, from which the vertical directions in the camera
frame can be determined. The combination of these and
the vertical directions in the body frame measured by the
accelerometers allows for calculation of the rotation be-
tween the frames (Horn 1987; Lobo and Dias 2007). This
method requires accurate positioning of the calibration
pattern. As floors and desks in buildings are in practice
better horizontally aligned than the walls are vertically
aligned, it is recommended to use horizontal surfaces.

The translational part of the calibration is harder to
estimate and a solid calibration method which does not
require special hardware is an open issue. The transla-
tion should also be available from technical drawings of
the sensor unit and a rough guess using a ruler gives a
quite decent result in practice. However, with increasing
angular velocity this parameter becomes more dominant
and an accurate calibration is necessary.

4.4 Time synchronization

It is very important to know exactly when the different
measurements are taken. Multiple sensors usually have
multiple clocks and these have to be synchronized. This
can be achieved for instance by starting them simulta-
neously. However, clocks tend to diverge after a while,
which will introduce problems during long term oper-
ation. Hardware synchronization, i.e., one central clock
is used to trigger the other sensors, solves this problem
and this procedure has been applied in the sensor unit
described in Section 2.

4.5 Filter tuning

The process and measurement models described in Sec-
tion 3 have a number of stochastic components which are
used to tune the filter. The settings used in the present
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setup are given in Table 1. The measurement noise typ-
ically depends on the sensors and should be experimen-
tally determined. For the accelerometers and gyroscopes
a measurement of a few seconds with a static pose was
recorded to calculate an accurate noise covariance. Al-
ternatively, the specification by the manufacturer can be
used.

The noise acting on the vision measurements is harder
to determine. The algorithms return a point estimate for
the obtained matches, but typically there is no stochas-
tic information available. The accuracy for each match is
highly individual and can vary a lot depending on e.g.,
lighting conditions, local texture, viewing angle, distance
and motion blur. These individual characteristics cannot
be captured by a common noise setting. Hence, it would
be beneficial to include accuracy estimation in the im-
age processing algorithms. Although attempts are being
made to solve this open issue, see e.g., Skoglund and
Felsberg (2007), the current implementation uses a pre-
defined noise covariance.

The process model currently used is a random walk
in acceleration and angular velocity. This model is not
so informative but is very general and is useful for track-
ing uncontrolled motions such as those generated by a
human. The motion model is to be considered as a sepa-
rate source of information, apart from the sensors. Hence,
when more information is available in a certain applica-
tion, for instance in the form of control signals, these
should be included in the model to improve the filter
performance. The covariances in the process model can
be seen as tuning knobs, controlling the relative impor-
tance of the measurements and the process model and as
such they are important parameters for stable tracking.

Valid models and parameters are imperative to ob-
tain good estimates. The innovations, defined as the dif-
ference between a measurement and its expected value,

et = yt − ŷt, (13)

can be used to asses whether the models are correctly
tuned. Under the model assumptions, the innovations
should be normally distributed and the squared normal-
ized innovations eT

t S−1
t et, where St is the predicted co-

variance of the measurement, should have a χ2 distribu-
tion. It is highly recommendable to monitor these per-
formance indicators, especially during testing, but also
during normal operation.

5 Experiments

This section is concerned with an experiment where Al-
gorithm 1 with an EKF is used to fuse the measurements
from the sensor unit in order to compute estimates of
its position and orientation. The experimental setup is
discussed in Section 5.1 and the performance of the pro-
posed inertial-vision combination provided by the sensor
unit is assessed in Section 5.2.

5.1 Setup

The sensor unit is mounted onto a high precision 6 de-
grees of freedom (DoF) ABB IRB1440 industrial robot,
see Figure 3. The reason for this is that the robot will

Fig. 3 The camera and the IMU are mounted onto an in-
dustrial robot. The background shows the scene that has been
used in the experiments.

allow us to make repeatable 6 DoF motions and it will
provide the true position and orientation. The robot has
an absolute accuracy of 2 mm and a repeatability of
0.2 mm. This enables systematic and rather objective
performance evaluation of various algorithms, based on
absolute pose errors instead of the commonly used fea-
ture reprojection errors. The sensor unit provides 100 Hz
inertial measurements synchronized with 12.5 Hz images.
The complete specification is listed in Table 1. The scene

Table 1 Specifications for the sensor unit and the parame-
ter values used for in the filter tuning. Note that the noise
parameters specify the standard deviation.

IMU
gyroscope range ±20.9 rad/s
gyroscope bandwidth 40 Hz
accelerometer range ±17 m/s2

accelerometer bandwidth 30 Hz
sample rate 100 Hz

Camera
selected resolution 320× 240 pixel
pixel size 7.4× 7.4 µm/pixel
focal length 3.2 mm
sample rate 12.5 Hz

Filter settings
gyroscope measurement noise 0.01 rad/s
accelerometer measurement noise 0.13 m/s2

2D feature measurement noise 0.1 pixel
3D feature measurement noise 1 mm
angular velocity process noise 0.03 rad/s
acceleration process noise 0.1 m/s2

gyroscope bias process noise 0.5 mrad/s
accelerometer bias process noise 0.5 mm/s2
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used for the experiments consists of two orthogonal pla-
nar surfaces as shown in Figure 3. Because of the simple
geometry, the scene model could be constructed from a
textured CAD model. Its coordinate system is such that
the x-axis points upward and that the y and z-axis span
the horizontal plane. Although the scene was carefully
positioned, it had to be calibrated w.r.t. gravity as de-
scribed in Section 4.2. It should be emphasized that the
scene has been kept simple for experimentation purposes
only. The system itself can handle very general scenes
and these are modeled using the methods described in
Koeser et al (2007).

With the setup several trajectories have been tested.
In this paper, an eight-shaped trajectory, shown in Fig-
ure 4, will be discussed in detail. The sensor unit tra-
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Fig. 4 The eight-shaped trajectory undertaken by the sensor
unit. The gray shaded parts mark the interval where vision
is deactivated. The circle indicates the origin of the scene
model.

verses this 2.6 m eight-shaped trajectory in 5.4 s, keep-
ing the scene in view at all times. The motion contains
accelerations up to 4 m/s2 and angular velocities up to
1 rad/s. Hence, the motion is quite aggressive and all six
degrees of freedom are exited. As the displacement be-
tween images is limited to 15 pixels it is still possible to
use vision-only tracking, which allows for a comparison
between tracking with and without an IMU.

The experiment starts with a synchronization mo-
tion, which is used to synchronize the ground truth data
from the industrial robot with the estimates from the
system. Time synchronization is relevant, since a small
time offset between the signals will result in a signifi-
cant error. After the synchronization, the eight-shaped
trajectory (see Figure 4) is repeated several times, utiliz-
ing the accurate and repeatable motion provided by the
industrial robot.

5.2 Results

The experimental setup described in the previous sec-
tion is used to study several aspects of the combination
of vision and inertial sensors. The quality of the camera
pose estimates is investigated by comparing them to the
ground truth data. Furthermore, the increased robust-
ness of the system is illustrated by disabling the camera
for 1 s during the second pass of the eight-shaped tra-
jectory. Additionally, the feature predictions are shown
to benefit from the inertial measurements. The findings
will be discussed in the following paragraphs.

By comparing the estimates from the filter to the
ground truth the tracking errors are determined. Exam-
ples of position and orientation errors (z, roll) are shown
in Figure 5. The other positions (x, y) and orientations

∆
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Fig. 5 Tracking error during multiple passes of the eight-
shaped trajectory. The black line shows the position (z) and
orientation (roll) errors, as well as the number of correspon-
dences that were used. The gray band illustrates the 99%
confidence intervals. Note that vision is deactivated from 9.7 s
to 10.7 s. The vertical dotted lines mark the repetition of the
motion.

(yaw, pitch) exhibit similar behavior. The absolute ac-
curacy (with vision available) is below 2 cm for position
and below 1◦ for orientation. These values turn out to be
typical for the performance of the system in the setup de-
scribed above. Furthermore, the accuracy of the IMU is
not affected by the speed of motion, resulting in a track-
ing accuracy which is rather independent of velocity, as
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illustrated by Figure 6 which shows the tracking error of
the eight-shaped trajectory executed at various speeds.
Other experiments, not described here, show similar per-
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Fig. 6 Tracking error for several experiments executing the
eight-shaped trajectory at different speeds.

formance for various trajectories.
A proper treatment of the implementation considera-

tions as discussed in Section 4 is necessary in order to ob-
tain good performance. Still, calibration errors and slight
misalignments as well as scene model errors and other
unmodeled effects are causes for non-white noise, which
can deteriorate the performance. However, with the as-
sumptions and models used, the system is shown to esti-
mate the camera pose quite accurately using rather low-
rate vision measurements. The estimated camera poses
result in good and stable augmentation.

The system tracks the camera during the entire ex-
periment, including the period where vision is deacti-
vated. The motion during this period, indicated using
gray segments in Figure 4, is actually quite significant.
Vision-only tracking has no chance of dealing with such
a gap and loses track. Indeed, such an extensive period
where vision is deactivated is a little artificial. However,
vision might be unavailable or corrupted, due to fast ro-
tations, high velocity, motion blur, or simply too few vis-
ible features. These difficult, but commonly occurring,
situations can be dealt with by using an IMU as well,
clearly illustrating the benefits of having an IMU in the
system. In this way, robust real-time tracking in realistic
environments is made possible.

The measurements from the IMU will also result in
better predictions of the feature positions in the acquired
image. This effect is clearly illustrated in Figure 7, which
provides a histogram of the feature prediction errors. The
figure shows that the feature prediction errors are smaller
and more concentrated in case the IMU measurement
updates are used. This improvement is most significant
when the camera is moving fast or at lower frame rates.
At lower speeds, the vision based feature predictions will
improve and the histograms will become more similar.

The improved feature predictions facilitate the use of
smaller search regions to find the features. This implies
that using an IMU more features can be detected, given
a certain processing power. On the other hand, the im-
proved feature predictions indicate that the IMU handles
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Fig. 7 Histogram of the prediction errors for the feature po-
sitions. The feature predictions are calculated using the latest
vision pose and the most recent inertial pose, respectively.

the fast motion and that the absolution pose information
which vision provides is required at a reduced rate.

6 Conclusion

Based on a framework for nonlinear state estimation, a
system has been developed to obtain real-time camera
pose estimates by fusing 100 Hz inertial measurements
and 12.5 Hz vision measurements using an EKF. Exper-
iments where an industrial robot is used to move the
sensor unit show that this setup is able to track the cam-
era pose with an absolute accuracy of 2 cm and 1◦. The
addition of an IMU yields a robust system which can
handle periods with uninformative or no vision data and
it reduces the need for high frequency vision updates.

Acknowledgements This work has been performed within
the MATRIS consortium, which is a sixth framework research
program within the European Union (EU), contract number:
IST-002013.

References

Armesto L, Tornero J, Vincze M (2007) Fast ego-motion es-
timation with multi-rate fusion of inertial and vision. In-
ternational Journal of Robotics Research 26(6):577–589,
DOI 10.1177/0278364907079283

Aron M, Simon G, Berger MO (2007) Use of inertial sen-
sors to support video tracking. Computer Animation and
Virtual Worlds 18(1):57–68

Bergman N (1999) Recursive Bayesian estimation: Navi-
gation and tracking applications. Dissertations no 579,
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