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Abstract

This paper is concerned with the problem of estimating the relative
translation and orientation of an inertial measurement unit and a camera,
which are rigidly connected. The key is to realize that this problem is in
fact an instance of a standard problem within the area of system identifi-
cation, referred to as a gray-box problem. We propose a new algorithm for
estimating the relative translation and orientation, which does not require
any additional hardware, except a piece of paper with a checkerboard pat-
tern on it. The method is based on a physical model which can also be
used in solving for example sensor fusion problems. The experimental
results show that the method works well in practice, both for perspective
and spherical cameras.

1 Introduction

This paper is concerned with the problem of estimating the relative translation
and orientation between a camera and an inertial measurement unit (IMU) that
are rigidly connected. The algorithm is capable of handling both perspective
and spherical cameras. Accurate knowledge of the relative translation and orien-
tation is an important enabler for high quality sensor fusion using measurements
from both sensors.

The sensor unit used in this work is shown in Figure 1. For more informa-
tion about this particular sensor unit, see Hol [2008], Xsens Motion Technologies
[2008]. The combination of vision and inertial sensors is very suitable for a wide
range of robotics applications and a solid introduction to the technology is pro-
vided by Corke et al. [2007]. The high-dynamic motion measurements of the
IMU are used to support the vision algorithms by providing accurate predictions
where features can be expected in the upcoming frame. This facilitates develop-
ment of robust real-time pose estimation and feature detection/association algo-
rithms, which are the cornerstones in many applications, including for example
augmented reality (AR) [Bleser and Stricker, 2008, Chandaria et al., 2007] and
simultaneous localization and mapping (SLAM) [Bailey and Durrant-Whyte,
2006, Durrant-Whyte and Bailey, 2006].

The main contribution of this work is a calibration algorithm which pro-
vides high quality estimates of the relative translation and orientation between
a camera and an IMU. The proposed calibration algorithm is fast and more
importantly, it is simple to use in practice. We also provide a quality measure
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Figure 1: The sensor unit, consisting of an IMU and a camera. In this photo
a fisheye lens was attached to the camera. The camera calibration pattern is
visible in the background.

for the estimates in terms of their covariance. The derived calibration algorithm
requires accurate predictions of the sensor measurements. Hence, an additional
contribution is a dynamic model and a measurement model for a combined cam-
era and IMU sensor unit. This model can straightforwardly be used in solving
for example sensor fusion problems. Early versions of the present work have
previously been published in Hol et al. [2008a,b].

Let us now very briefly introduce the approach used in order to solve the
calibration problem at hand. In order to find the unknown translation and
orientation we will of course need data from the sensor unit. It is sufficient to
move the sensor unit over a checkerboard pattern (see Figure 1) for a couple
of seconds and record the images and the inertial data during this motion. We
will make use of a dynamic model of the motion

xt+1 = f(xt,ut,θ) +wt, (1a)

yt = h(xt,θ) + et, (1b)

where xt ∈ Rnx denotes the state, ut ∈ Rnu denotes the input signals, yt ∈ Rny

denotes the output signals, θ denotes the unknown parameters, and wt and et
denote the noise processes. Finally, the functions f( · ) and h( · ) describe the
dynamics and how the measurements are related to the states, respectively. Note
that the model depends on the parameters θ we are looking for, a fact which
will be exploited. Based on model (1) and the measured input ut and output yt
signals from the sensor unit (i.e. the inertial data and the images) we can use
the extended Kalman filter (EKF) to compute a prediction of the measurement
ŷt|t−1(θ). Finally, we can use the prediction to form an optimization problem
and solve this for the parameters that best describe the measurements recorded
during the experiment. This approach for identifying parameters in dynamic
systems is a special case of gray-box system identification [Ljung, 1999, Graebe,
1990].

Current state-of-the art when it comes to calibration of the relative trans-
lation and orientation between a camera and an IMU is provided by Lobo and
Dias [2007] and Mirzaei and Roumeliotis [2008]. The first paper presents a two
step algorithm. First, the relative orientation is determined and then the rel-
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ative position is determined using a turntable. The drawbacks of this method
are that it requires a turntable and that it is rather labor intensive. Both these
drawbacks are eliminated by the algorithm proposed in Mirzaei and Roumelio-
tis [2008] and by the algorithm introduced in this work. The solution proposed
by Mirzaei and Roumeliotis [2008] is fundamentally different to the solution
proposed in the present work. Their approach it to transform the parameter
estimation problem into a state estimation problem by augmenting the state
vector xt with the parameters θ and then estimating the augmented vector
using a Kalman filter. This is an often used approach for handling this class
of problems, see e.g., Ljung and Söderström [1983]. Furthermore, the work of
Foxlin and Naimark [2003] is worth mentioning, where a custom calibration rig
is used together with a set of artificial landmarks. A closely related topic is that
of hand-eye calibration, where the relative pose between a robot and a camera
is determined, see e.g., Tsai and Lenz [1989], Daniilidis [1999].

In Section 2 we provide a thorough problem formulation, where the neces-
sary coordinate frames are introduced and the background for the calibration
algorithm is provided. The dynamic model and the measurement models are
then introduced in Section 3. These models allow us to obtain the predictor
that is needed. The calibration algorithms are introduced in Section 4. The
practical experiments are reported in Section 5, together with the results both
for perspective and spherical cameras. Finally, the conclusions are given in
Section 6.

2 Problem formulation

In this section we will give a more formal formulation of the problem we are
solving. We start by introducing the coordinate frames that are used,

• Navigation frame (n): The camera pose is estimated with respect to
this coordinate frame, sometimes denoted as the earth or world frame.
The 3D feature positions are, without loss of generality, assumed to be
constant and known in this frame. It is fixed to the environment and can
be aligned in any direction, however, preferably it should be vertically
aligned.

• Camera frame (c): This coordinate frame is attached to the moving
camera. Its origin is located in the optical center of the camera, with the
z-axis pointing along the optical axis.

• Image frame (i): The 2D coordinate frame of the camera images. It is
located on the image plane, which is perpendicular to the optical axis.

• Body frame (b): This is the coordinate frame of the IMU and it is rigidly
connected to the c frame. All the inertial measurements are resolved in
this coordinate frame.

In the following sections, scalars are denoted with lowercase letters (u, ρ), vectors
with bold letters (b,θ), quaternions with bold letters with a ring on top (̊q, e̊),
and matrices with boldface capitals (A,R). Coordinate frames are used to
denote the frame in which a quantity is expressed as well as to denote the origin
of the frame, for instance, bn is the position of the body frame expressed in the
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navigation frame and cb is the position of the camera frame expressed in the
body frame. Furthermore, q̊bn,ϕbn,Rbn are the unit quaternion, the rotation
vector and the rotation matrix, respectively, all interchangeable and describing
the rotation from the navigation frame to the body frame, see e.g., Kuipers
[1999], Shuster [1993] for an overview of rotation parameterizations.

In Figure 2 the relationship between the coordinate frames is illustrated.
The camera and the IMU are rigidly connected, i.e., cb and ϕcb are constant.
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Figure 2: The sensor unit, shown at two time instants, t1 and t2, consists of
an IMU (b frame) and a camera (c frame). These frames are rigidly connected.
The position of the sensor unit with respect to the navigation frame (n) changes
over time as the unit is moved.

The position of the camera is in this setting defined as the position of its op-
tical center. Although this is a theoretically well defined quantity, its physical
location is rather hard to pinpoint without exact knowledge of the design of the
optical system and typically a calibration algorithm has to be used to locate it.

The goal of this work is to device an algorithm that is capable of estimating
the following parameters,

• The relative orientation of the body and the camera frames, parameterized
using a rotation vector ϕcb.

• The relative translation between these frames, parameterized as cb, i.e.,
the position of the camera frame expressed in the body frame.

In order to compute estimates of these parameters we need information about
the system, provided by input and output data. This data is denoted

Z = {u1,u2, . . . ,uM ,yL,y2L . . . ,yLN}, (2)

where ut denote the input signals and yt denote the output signals (measure-
ments). In the present work the data from the inertial sensors is modeled as
input signals and the information from the camera is modeled as measurements.
Note that the inertial sensors are typically sampled at a higher frequency than
the camera, motivating the use of multiplier L and the two different number of
samples in (2), M and N , where M = LN .

The dataset does not have to satisfy any constraints other than that is should
be informative, i.e., it should allow one to distinguish between different models
and/or parameter vectors [Ljung, 1999]. It is very hard to quantify this notion
of informativeness, but in an uninformative experiment the predicted output
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will not be sensitive to certain parameters of interest and this results in large
variances of the obtained parameter estimates. For the calibration problem
at hand, the presence of angular velocity is key. Its amplitude and duration,
however, should match the intended application.

In order to be able to use the data (2) for our purposes we need a predictor,
capable of predicting measurements. For the present problem, we can derive
such a predictor based on a dynamic model in combination with an estimator,
this is the subject of Section 3. More abstractly speaking, the predictor is a
parameterized mapping g( · ) from past input and output signals Zt−1 to the
space of the model outputs,

ŷt|t−1(θ) = g(θ,Zt−1), (3)

where Zt−1 is used to denote all the input and output signals up to time t− 1.
Here, θ denotes all the parameters to be estimated, which of course include the
relative translation cb and orientation ϕcb of the camera and the IMU.

Finally, in order to compute an estimate of the parameters θ we need a
way of determining which parameters are best at describing the data. This is
accomplished by posing and solving an optimization problem

θ̂ = arg min
θ

VN (θ,Z). (4)

Here, the cost function VN (θ,Z) is of the form

VN (θ,Z) =
1

2

N∑
t=1

‖yt − ŷt|t−1(θ)‖2Λt
, (5)

where Λt is a suitable weighting matrix. The details regarding the formulation
and solution of this optimization problem are given in Section 4. The problem
of computing estimates of θ based on the information in Z according to the
above formulation is a so-called gray-box system identification problem, see
e.g., Graebe [1990], Ljung [1999].

3 Modeling

The calibration method introduced in the previous section requires a predictor.
We aim at providing a self-contained derivation of such a predictor and start
with a rather thorough analysis of inertial and vision sensors in Section 3.1 and
Section 3.2, respectively. Together with the dynamics discussed in Section 3.3
these constitute a state-space description of the sensor unit which forms the
basis of the predictor described in detail in Section 3.4.

3.1 Inertial sensors

An inertial measurement unit consists of accelerometers and rate gyroscopes.
The gyroscopes measure angular velocity or rate-of-turn ω. The accelerometers
do not measure accelerations directly, but rather the external specific force f .
Both linear acceleration b̈ and the earth’s gravitational field g contribute to the
specific force.
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The measurements from the accelerometers and gyroscopes can be used to
compute the position and orientation of an object relative to a known starting
point using inertial navigation [Woodman, 2007, Chatfield, 1997, Titterton and
Weston, 1997]. In a strapdown configuration such as the sensor unit, the mea-
surements are resolved in the body coordinate frame, rather than in an inertial
reference frame. Hence, the orientation q̊nb can be calculated by integrating
the angular velocity ωbnb. The position bn can be obtained by double integra-

tion of the external specific force f b, which has been rotated using the known
orientation and corrected for gravity. This procedure is illustrated in Figure 3.

∫

Rotate
Subtract

gravity

∫ ∫
ωbnb q̊nb

f b fn b̈
n

ḃ
n

bn

Figure 3: Strapdown inertial navigation algorithm.

In practice, the angular velocity ωbnb and the external specific force f b are ob-
tained from the gyroscope and the accelerometer measurements. These include
bias and noise terms which cause errors in the calculated position and orien-
tation. This integration drift is inherent to all inertial navigation. Moreover,
using MEMS inertial sensors, the integration drift is relatively large. Hence, the
orientation estimate and especially the position estimate, are only accurate and
reliable for a short period of time.

Summarizing the above discussion, the gyroscope measurements are modeled
as

yω = ωbnb + δbω + ebω. (6)

Here, ωbnb is the angular velocity, body to navigation, expressed in the body co-

ordinate frame, δbω is a slowly time-varying bias term and ebω is independent and
identically distributed (i.i.d.) Gaussian noise. Furthermore, the accelerometer
measurements are modeled as

ya = f b + δba + eba = Rbn(b̈
n
− gn) + δba + eba, (7)

where f b is the external specific force expressed in the body coordinate frame,
δba is a slowly time-varying bias and eba is i.i.d. Gaussian noise. The second
expression in (7) splits the specific force into its contributions from the linear

acceleration of the sensor b̈
n

and the gravity vector gn, both expressed in the
navigation coordinate frame. These vectors have been rotated to the body
coordinate frame using the rotation matrix Rbn.

3.2 Vision

A vision sensor is a rather complex device composed of a number of sub-systems.
The optical system bundles incident rays of light and forms an analog image,
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which is digitized by the image sensor. Image processing then extracts distinct
2D features in the image and associates them to 3D points in the scene. The
correspondences obtained this way are considered as the measurements from
the vision system in this paper. The remainder of this section is devoted to
describing these vision measurements and the associated camera models.

3.2.1 Camera models

The image formation process is accomplished by two elements: the optical sys-
tem or objective and the image sensor. Models for both are briefly discussed in
this section.

One of the most commonly used projection models is the pinhole model.
According to this model the relation between an image point pia = (u, v)T of
the analog image and its corresponding scene point pc = (X,Y, Z)T is given by

λ

uv
f

 =

XY
Z

 , (8)

where λ > 0 is a scale factor and f is the focal length. In order to use this
homogeneous equation to predict pia, λ has to be eliminated. This yields the
well known equation (

u
v

)
=
f

Z

(
X
Y

)
. (9)

Although widely used in computer vision, the pinhole camera model is only
suitable for perspective objectives with limited field of view. A more generic
model also suitable for wide angle lenses and omnidirectional cameras is given
by [Scaramuzza et al., 2006]

λ

 u
v

f(ρ)

 =

XY
Z

 , (10a)

with λ > 0. The constant focal length has been replaced with an n-th order
polynomial of the radius ρ ,

√
u2 + v2,

f(ρ) ,
n∑
i=0

αiρ
i. (10b)

Note that this more general model (10) includes the pinhole model (8) as a spe-
cial case. To change from homogeneous coordinates to Euclidean coordinates,
we solve for λ using the last line in (10a). After some algebra, one obtains(

u
v

)
=
β

r

(
X
Y

)
, (11a)

where r ,
√
X2 + Y 2 and β is the positive real root of the equation

n∑
i=0

αiβ
i − Z

r
β = 0. (11b)
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Finding a closed form expression for this root can be very hard and is even
impossible when n > 4. However, numerical evaluation is straightforward.

Several applications, including camera calibration and sensor fusion, require
derivatives of (11). Of course, these can be calculated numerically. However, a
closed form expression for the derivative is given by

∂pia
∂pc

=
β

γr3

(
X
Y

)(
XZ Y Z −r2

)
+
β

r3

[
Y 2 −XY 0
−XY X2 0

]
, (12a)

with γ defined as

γ , Z − r
n∑
i=1

iαiβ
i−1. (12b)

Cameras deliver digital images with coordinates typically specified in pix-
els and indexed from the top left corner. Furthermore, there is the possibil-
ity of non-square as well as non-orthogonal pixels. These properties introduce
(non-uniform) scaling and a principal point offset and can be accounted for
by an affine transformation which transforms the analog image coordinates
pia = (u, v)T into pixel coordinates pi = (x, y)T ,(

x
y

)
=

[
sx sθ
0 sy

](
u
v

)
+

(
x0

y0

)
. (13)

Here, the transformation is composed of the pixel sizes sx, sy, the principal point
coordinates x0, y0 and a skew parameter sθ.

Equations (8)–(13) contain a number of parameters which have to be deter-
mined individually for every camera. The process of doing so is referred to as
camera calibration and is a well known problem in computer vision for which
a number of toolboxes have been developed, see e.g., [Zhang, 2000, Bouguet,
2003, Scaramuzza et al., 2006]. Typically, these require images at several angles
and distances of a known calibration object. A planar checkerboard pattern,
see Figure 1, is a frequently used calibration object because it is very simple to
produce, it can be printed with a standard printer, and has distinctive corners
which are easy to detect. Hence, without loss of generality we assume that the
camera has been calibrated.

3.2.2 Vision measurements

The camera measurements yt consist of the k = 1, . . . ,K correspondences
pit,k ↔ pnt,k between a 2D image feature pit,k and its corresponding 3D posi-
tion in the real world pnt,k. Introducing the notation P for a projection function
summarizing the models in Section 3.2.1, the correspondences are modeled as

pik,t = P(pck,t) + eik,t, pck,t = T (pnk,t), (14)

where eik,t is i.i.d. Gaussian noise. For a standard camera, the projection func-
tion P is composed of (9) and (13), whereas for a wide angle camera P is
composed of (11) and (13). Note that P operates on pck,t, whereas the corre-
spondences measurements give pnk,t. The required coordinate transformation T
will be discussed in Section 3.3.
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In general, finding the correspondences is a difficult image processing prob-
lem where two tasks have to be solved. The first task consists of detecting points
of interest or features in the image. Here, features are distinctive elements in
the camera image, for instance, corners, edges, or textured areas. Common
algorithms include the gradient based Harris detector [Harris and Stephens,
1988], the Laplace detector [Mikolajczyk et al., 2005], and the correlation based
Kanade-Lucas-Tomasi tracker [Shi and Tomasi, 1994].

Once a feature has been found, it needs to be associated to a known 3D
point in the scene in order to form a correspondence. This is the second task,
which can be solved using probabilistic methods such as RANSAC [Fischler
and Bolles, 1981]. However, it can be drastically simplified by making use of
some kind of descriptor of the feature which uniquely identifies it by providing
information of the local image such as image patches or local histograms. This
descriptor should preferably be invariant to scale changes and affine transfor-
mations. Common examples are SIFT [Lowe, 2004] and more recently SURF
[Bay et al., 2008] and FERNS [Ozuysal et al., 2007].

The measurement model (14) and hence our calibration algorithm works
with any kind of correspondences. Without loss of generality we simplify the
correspondence generation problem and work with checkerboard patterns of
known size typically used for camera calibration. In this case, obtaining the
correspondences is relatively easy due to the strong corners and simple planar
geometry. The required image processing is typically implemented in off-the-
shelf camera calibration software, e.g., Bouguet [2003], Scaramuzza et al. [2006].

3.3 Dynamics

The inertial and vision measurement models are linked by a process model,
which describes the motion of the sensor unit. Since it is hard to make informa-
tive assumptions regarding general sensor unit movement, the inertial sensors
are used as inputs ut for the process model instead of treating them as mea-
surements. Following the derivation of Hol [2008], we have

bnt+1 = bnt + T ḃ
n

t +
T 2

2
b̈
n

t , (15a)

ḃ
n

t+1 = ḃ
n

t + T b̈
n

t , (15b)

q̊bnt+1 = e−
T
2 ω

b
nb,t � q̊bnt , (15c)

where bn and ḃ
n

denote the position and velocity of the b frame resolved in
the n frame, q̊bn is a unit quaternion describing the orientation of the b frame
relative to the n frame and T denotes the sampling interval. Furthermore, �
is the quaternion multiplication and the quaternion exponential is defined as a
power series, similar to the matrix exponential,

e(0,v) ,
∞∑
n=0

(0,v)n

n!
=

(
cos ‖v‖, v

‖v‖
sin ‖v‖

)
. (16)

More details about unit quaternions and their use can be found in Kuipers
[1999]. The acceleration b̈

n

t and angular velocity ωbnb,t are calculated from the
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accelerometer signal ua,t and the gyroscope signal uω,t according to

b̈
n

t = Rnb
t ua,t + gn −Rnb

t δ
b
a −R

nb
t e

b
a,t, (17a)

ωbnb,t = uω,t − δbω − ebω,t. (17b)

The bias terms δba and δbω are slowly time-varying and typically included in the
process model (15). However, in this paper they are modeled as constants, since
a few seconds of data are typically sufficient for calibration.

The process model (15) contains the pose of the body coordinate frame
Rbn
t , b

n
t . Hence, a 3D scene point pnt,k can be expressed in camera coordinates

using the transformation

pct,k = T (pnk,t) = Rcb(Rbn
t (pnt,k − b

n
t )− cb). (18)

Here, Rcb is the rotation matrix which gives the orientation of the c frame w.r.t.
the b frame and cb is the position of the c frame w.r.t. the b frame.

3.4 The predictor

Combining (14), (15), (17) and (18) we obtain a discrete-time nonlinear state-
space model

xt+1 = f(xt,ut,θ) +wt, (19a)

yt = h(xt,θt) + et. (19b)

This model is described by the state vector xt and parameterized by the vector
θ which are defined as

xt =
(

(bn)T (ḃ
n
)T (̊qbn)T

)T
, (20)

θ =
(
(ϕcb)T (cb)T (δbω)T (δba)T (gn)T

)T
. (21)

Besides the relative pose ϕcb and cb, θ contains several parameters that we are
not directly interested in, so-called nuisance parameters, for example the gyro-
scope bias δbω and the accelerometer bias δba. Even though we are not directly
interested in these nuisance parameters, they affect the estimated camera tra-
jectory and they have to be taken into account to obtain accurate estimates of
ϕcb and cb.

For a given θ, the state-space model (19) is fully specified and can be used
in sensor fusion methods such as the EKF [Kailath et al., 2000]. In an EKF,
the state estimate x̂t|t and its covariance P t|t are recursively calculated using
the time update

x̂t|t−1 = f(x̂t−1|t−1,θ), (22a)

P t|t−1 = F tP t−1|t−1F
T
t +Qt−1, (22b)

together with the measurement update

x̂t|t = x̂t|t−1 +Kt

(
yt − h(x̂t|t−1,θ)

)
, (23a)

P t|t = P t|t−1 − P t|t−1H
T
t S
−1
t HtP t|t−1, (23b)

St = HtP t|t−1H
T
t +Rt, (23c)

Kt = P t|t−1H
T
t S
−1
t . (23d)

10



Here, F t = Dxt
f(xt,ut,θ), Ht = Dxt

h(xt,θ), Qt = Covwt and Rt = Cov et.
The different sampling rates of the inertial and the vision sensors are handled
straightforwardly. Time updates (22) are performed at the high data rate of
the IMU, whereas the measurement updates (23) are only applied when a new
image is available.

Note that as a part of its processing, the EKF computes a one-step ahead pre-
dictor by applying the measurement model h( · ) to the state prediction x̂t|t−1.
This predictor defines exactly the type of mapping we are looking for, and hence
we define the predictor introduced in (3) to be

ŷt|t−1(θ) , h(x̂t|t−1(θ),θ), (24)

where h is the measurement model and x̂t|t−1(θ) is the one-step ahead state
prediction of the EKF whose dependency on θ is here explicitly denoted.

4 Calibration algorithms

A calibration algorithm determines the model parameters θ which provide the
best match between the predicted and the observed measurements. Based on
the prediction error method, extensively used in the system identification com-
munity [Ljung, 1999], we will in Section 4.1 derive our calibration algorithm.
This algorithm relies on a reasonable initial guess of the parameters to be esti-
mated, which motivates Section 4.2, where an algorithm for finding a suitable
initial guess is provided.

4.1 Gray-box calibration

With the predictor (24) derived in the previous section we are now ready to
pose the optimization problem (4), which will allow us to find the relative pose
between the camera and the IMU. This problem is posed using the prediction
error method. The goal of this method is to find the parameter vector θ that
minimizes the prediction error

εt(θ) = yt − ŷt|t−1(θ), (25)

i.e., the difference between the one-step ahead prediction from the model ŷt|t−1(θ)
and the observed measurement yt. Note that for the used predictor (24), the
prediction errors (25) are commonly referred to as the innovations. In order to
find the parameter θ that provides the smallest (in terms of variance) prediction
error we will employ the well known quadratic cost function,

VN (θ, ε) =
1

2

N∑
t=1

εTt Λtεt, (26)

where Λt is a suitable weighting matrix. For a correctly tuned EKF, the pre-
diction errors εt are normal distributed according to

εt ∼ N (0, St) , (27)
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with St defined in (23c). Inserting (27) into (26) results in

VN (θ, ε) =
1

2

N∑
t=1

εTt S
−1
t εt =

1

2
εT ε, (28)

where the Nny-dimensional vector ε =
(
εT1 , . . . , ε

T
N

)
is constructed by stacking

the normalized innovations

εt = S
−1/2
t εt (29)

on top of each other. Here it is worth noting that in the resulting cost func-
tion (28) the prediction errors εt are weighted by their corresponding inverse
covariance. This is rather intuitive, since the covariance contains information
about the relative importance of the corresponding component εt. Finally, sub-
stituting (28) and (25) into (4), the optimization problem becomes

θ̂ = arg min
θ

1

2

N∑
t=1

(yt − ŷt|t−1(θ))TSt(θ)−1(yt − ŷt|t−1(θ)). (30)

The covariance of the obtained estimate θ̂ is given as [Ljung, 1999]

Cov θ̂ =
εT ε

Nny

(
[Dθε][Dθε]

T
)−1

, (31)

where Dθε is the Jacobian of the normalized prediction error ε with respect to
the parameters θ. Note that both the normalized prediction error ε and the
Jacobian Dθε are evaluated at the obtained estimate θ̂.

An overview of the approach is given in Figure 4. Note that all the quantities

Measurements

Inputs
EKF

Innovations

State

Minimization
VN (θ, ε)

θ
ε

Figure 4: Gray-box system identification using EKF innovations as predic-
tion errors. The parameter vector θ is adjusted to minimize the cost function
VN (θ, ε) given in (28).

in (30) are computed by processing the complete dataset with the EKF, given

an estimate θ̂. This makes it an offline calibration, which does not constrain its
applicability. The optimization problem (30) is a nonlinear least-squares prob-
lem and standard methods, such as Gauss-Newton and Levenberg-Marquardt
apply, see e.g., Nocedal and Wright [2006]. These methods only guarantee con-
vergence to a local minimum and it is a well-known fact that it can be hard
to find the global optimum of VN (θ,Z) for physically parameterized models
[Ljung, 2008]. This problem is reduced by exploiting the structure of the prob-
lem in order to derive a good initial guess for the parameters. This is the topic
of the subsequent section.
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Algorithm 1 Relative Pose Calibration

1. Place a camera calibration pattern on a horizontal, level surface, e.g., a
desk or the floor.

2. Acquire inertial measurements {ua,t}Mt=1, {uω,t}Mt=1 as well as images
{It}Nt=1.

• Rotate about all 3 axes, with sufficiently exciting angular velocities.

• Always keep the calibration pattern in view.

3. Obtain the point correspondences between the 2D feature locations pit,k
and the corresponding 3D grid coordinates pnt,k of the calibration pattern

for all images {It}Nt=1.

4. Solve the gray-box identification problem (30), starting the optimization
from θ0 = ((ϕ̂cb0 )T ,0,0,0, (gn0 )T )T . Here, gn0 = (0, 0,−g)T since the cali-
bration pattern is placed horizontally and ϕ̂cb0 can be obtained using Al-
gorithm 2.

5. Validate the calibration result by analyzing the obtained state trajectory,
normalized innovations and parameter covariance (31). If necessary, start
over from Step 2.

We now can introduce Algorithm 1, a flexible algorithm for estimating the
relative pose of the IMU and the camera. The dataset is captured without
requiring any additional hardware, except for a standard camera calibration
pattern of known size that can be produced with a standard printer. The motion
of the sensor unit can be arbitrary, provided it contains sufficient rotational
excitation. A convenient setup for the data capture is to mount the sensor unit
on a tripod and pan, tilt and roll it, but hand-held sequences can be used equally
well.

Solving (30) yields relative position and orientation, as well as nuisance
parameters such as sensor biases and gravity. The optimization is started in
θ0 = ((ϕ̂cb0 )T ,0,0,0, (gn0 )T )T . Here, gn0 = (0, 0,−g)T since the calibration
pattern is placed horizontally and ϕ̂cb0 can be obtained using Algorithm 2, which
will be described shortly. It is worth noting that the optimization problem (30)
is quite flexible and parameters can easily be removed if they are already known.

4.2 Initialization of parameter estimates

An initial estimate of the relative orientation can be obtained simply by per-
forming a standard camera calibration, similar to Lobo and Dias [2007]. Placing
the calibration pattern on a horizontal, level surface, a vertical reference can be
obtained from the extrinsic parameters. Furthermore, when holding the sensor
unit still, the accelerometers measure only gravity. From these two ingredi-
ents an initial orientation can be obtained using Theorem 1, originally by Horn
[1987]. It has been extended with expressions for the Jacobian, facilitating
computation of the covariance.
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Theorem 1 (Relative orientation). Suppose {vat }Nt=1 and {vbt}Nt=1 are measure-
ments satisfying vat = q̊ab � vbt � q̊

ba. Then the sum of the squared residuals,

V (̊qab) =

N∑
t=1

‖et‖2 =

N∑
t=1

‖vat − q̊
ab � vbt � q̊

ba‖2, (32)

is minimized by ˆ̊qab = x1, where x1 is the eigenvector corresponding to the
largest eigenvalue λ1 of the system Ax = λx with

A = −
N∑
t=1

(vat )L(vbt)R. (33)

Here, the quaternion operators · L, ·R are defined as

q̊L ,


q0 −q1 −q2 −q3

q1 q0 −q3 q2

q2 q3 q0 −q1

q3 −q2 q1 q0

 q̊R ,


q0 −q1 −q2 −q3

q1 q0 q3 −q2

q2 −q3 q0 q1

q3 q2 −q1 q0

 (34)

Furthermore, the Jacobians of ˆ̊qab with respect to the measurements are given
by

Dva
t

ˆ̊qab = −[(ˆ̊qab)T ⊗ (λ1I4 −A)†][I4 ⊗ (vbi )R][Dv vL], (35a)

Dvb
t

ˆ̊qab = −[(ˆ̊qab)T ⊗ (λ1I4 −A)†][I4 ⊗ (vat )L][Dv vR], (35b)

where ⊗ is the Kronecker product and † is the Moore-Penrose pseudo inverse.
The Jacobians Dv vL and Dv vR are defined as

Dv vL =


e̊0
R

e̊1
R

e̊2
R

e̊3
R

[ 0
I3

]
, Dv vR =


e̊0
L

e̊1
L

e̊2
L

e̊3
L

[ 0
I3

]
,

where {̊ei}4i=1 is the standard basis in R4.

Proof. See Appendix B.

The procedure to obtain an initial orientation estimate is shown in Algo-

rithm 2. Note that gn =
(
0 0 −g

)T
, since the calibration pattern is placed

horizontally.

5 Experiments and results

The sensor unit introduced in Section 1 has been equipped with both perspective
and fisheye lenses, see Figure 5. In both configurations the sensor unit has been
calibrated according to Algorithm 1, using nothing but a planar checkerboard
pattern of known size as in a standard camera calibration setup. The calibration
data was gathered according to the following protocol

1. The checkerboard pattern is placed on a horizontal, planar surface.

14



Algorithm 2 Initial Orientation

1. Place a camera calibration pattern on a horizontal, level surface, e.g., a
desk or the floor.

2. Acquire images {It}Nt=1 of the pattern while holding the sensor unit
static in various poses, simultaneously acquiring accelerometer readings
{ua,t}Nt=1.

3. Perform a camera calibration using the images {It}Nt=1 to obtain the ori-
entations {̊qcnt }Nt=1.

4. Compute an estimate ˆ̊qcb from the vectors gct = Rcn
t g

n and gbt = −ua,t
using Theorem 1.

2. The sensor unit is held stationary in 8–12 different poses, similar to what
is done during a standard camera calibration. For each pose, a single
image is captured together with 1 s of inertial measurements at 100 Hz.

3. The sensor unit is subjected to 10–20 s of rotational motion around all
three axes, while keeping the calibration pattern in view. The angular
velocity during this rotational motion should be similar to the application
being calibrated for. The inertial data is sampled at 100 Hz and the cam-
era has a frame rate of 25 Hz. Due to the limited field of view, the sensor
unit is mounted on a tripod and rotated in pan, tilt and roll direction,
when equipped with the perspective lens. For the fisheye configuration,
hand held sequences are used.

The measurements obtained in Step 2 are used in Algorithm 2 to determine
an initial orientation. The measurements from Step 3 are used in Algorithm 1
to estimate the relative translation and orientation between the camera and
the IMU. An example of a typical trajectory is given in Figure 6. To facili-
tate cross-validation, the measurements are split into an estimation part and a
validation part [Ljung, 1999], both containing similar motion. The parameters
are estimated from the estimation data and the quality of the estimates is as-
sessed using the validation data. Sample calibration datasets are included in
Extension 1.

5.1 Calibration results

A number of different sensor units and/or different lens configurations have
been calibrated using the above protocol. The resulting estimates of the relative
position and orientation of the camera and the IMU, cb and ϕcb, together with
their standard deviation calculated using (31), are listed in Table 1. Table 1
also contains reference values obtained from the technical drawing. Note that
the drawing defines the center of the CCD, not the optical center of the lens.
Hence, no height reference is available and some shifts can occur in the tangential
directions.

Table 1 shows that Algorithm 1 has been successfully applied to five different
sensor units equipped with both perspective and fisheye lenses. In order to
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(a) (b)

(c) (d)

Figure 5: Two configurations of the sensor unit. In (a) and (b) a 4 mm per-
spective lens is used and in (c) and (d) a 190◦ fisheye lens is used.

Table 1: Relative pose estimates and 99% confidence intervals for five different
sensor units and several different lens configurations.

Unit Lens ϕ̂cb (◦) ĉb (mm)

1 4 mm (-0.52, 0.43, 0.94) ± 0.04 (-17.6, -4.8, 22.1) ± 0.9
2 6 mm ( 0.23, -0.34, 0.02) ± 0.05 (-17.6, -6.2, 28.3) ± 1.4
3 6 mm (-0.53, 0.97, 0.29) ± 0.02 (-14.9, -6.7, 29.8) ± 0.5
4 6 mm (-0.02, 0.21, -0.20) ± 0.04 (-18.1, -8.7, 31.0) ± 0.9
5 6 mm (-0.27, 0.94, 0.09) ± 0.13 (-14.0, -7.0, 30.3) ± 1.3
5 Fisheye ( 0.08, 0.17, 0.06) ± 0.14 (-17.4, -4.9, 38.7) ± 0.4
Referencea ( 0, 0, 0) (-14.5, -6.5, - )

a
using the CCD position and orientation of the technical drawing.

clearly show that the obtained estimates are indeed good, further validation is
need, which will be provided below. Consistent results are obtained for multiple
trials of the same configuration, which further reinforces the robustness and
reliability of the proposed method, although the confidence measure for the
fisheye lens is found to be slightly conservative. This could be caused by the
unrealistic assumption that the correspondence noise is homogeneous over the
entire image.

In order to further validate the estimates, the normalized innovations εt,
computed according to (29), are studied. Histograms of the normalized inno-
vations (for validation data) are given in Figure 7. Figure 7a and 7c show the
effect of using wrong parameter vectors, in this case being the initial guess.
After calibration, the normalized innovations are close to white noise, as shown
in Figure 7b and 7d. This implies that the model with the estimated param-
eters and its assumptions appears to be correct, which in turn is a very good
indication that reliable estimates ϕ̂cb and ĉb have been obtained.
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Figure 6: Example trajectory of the sensor unit used for calibration. It contains
both estimation data (t < 6.8 s) and validation data (t ≥ 6.8 s), separated by
the dashed line.

The calibration results shown in Table 1 are close to the reference values,
but show individual differences between the different sensor units and lens con-
figurations. These differences are significant, which is further illustrated in
Figure 8. This figure illustrates the behavior when applying the calibration
values of one sensor unit to a second sensor unit having the same type of lens.
Notice the characteristic saw-tooth behavior present in the position plot. It is
present in all three position channels and explains the big difference between
the obtained normalized innovations and the theoretic distribution. When the
correct calibration parameters are used this saw-tooth behavior is absent, which
is illustrated in Figure 6. To summarize, the significant individual differences
once more illustrate the need for an easy-to-use calibration method, since each
sensor unit has to be individually calibrated for optimal performance.

5.2 Sensitivity analysis

The proposed calibration algorithm has been subjected to a sensitivity analysis
to determine its behavior for varying signal-to-noise conditions and for different
geometric conditions. The fisheye dataset, see Section 5 and Extension 1, has
been used as a starting point for Monte-Carlo simulations.

The signal-to-noise ratio has been modified by adding noise proportional
to its original magnitude to all measurements, i.e., the accelerometer signals,
the gyroscope signals and the feature locations. For a number of noise scalings
the calibration parameters for the modified dataset have been determined for
N = 100 noise realizations. Standard deviations, σ(x) = (tr Covx)1/2, of the
position estimate ĉb and the orientation estimate ϕ̂cb are shown in Figure 9. As
expected, the calibration accuracy degrades with increased noise levels.

The geometric conditions have been modified by scaling of the checkerboard
pattern. To this end, the feature locations in the dataset are replaced by simu-
lated ones. These have been simulated using the camera trajectory estimated as
part of the calibration procedure on the original dataset and realistic noise has
been added. For a number of scale factors the calibration parameters for the
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Figure 7: Histograms of the normalized innovations, for validation data. Both
the empirical distribution (gray bar) as well as the theoretical distribution (black
line) are shown.

modified dataset have been determined for N = 100 noise realizations. Stan-
dard deviations of the position estimate ĉb and the orientation estimate ϕ̂cb are
shown in Figure 10. It can be concluded that a larger checkerboard pattern
results in reduced variance of the calibration parameters.

6 Conclusion

In this paper we propose a new calibration method to determine the relative
position and orientation of an IMU and a camera that are rigidly connected.
The method is based on a physical model of the sensor unit which can also be
used in solving for example sensor fusion problems. Both perspective and wide
angle lenses are handled by the approach. This solves the important calibration
problem, enabling successful integration of vision and inertial sensors in many
applications. The experiments indicate that the proposed algorithm is easy to
use. Even small displacements and misalignments can be accurately calibrated
from short measurement sequences made using the standard camera calibration
setup.
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A Index to Multimedia Extensions

The multimedia extensions to this article are at: http://www.ijrr.org.

Extension Type Description

1 Data Sample calibration datasets

B Proof for Theorem 1

Analogous to the original proof by Horn [1987], the squared residuals can be
written as

‖et‖2 = ‖vat ‖2 − 2vat · (̊q
ab � vbt � q̊

ba) + ‖vbt‖2.

Minimization only affects the middle term, which can be simplified to

vat · (̊q
ab � vbt � q̊

ba) = −(vat � (̊qab � vbt � q̊
ba))0

= −(vat � q̊
ab)T (vbt � q̊

ba)c

= −(̊qab)T (vat )L(vbt)Rq̊
ab,

using the relation (å� b̊)0 = åT b̊
c

for the scalar part of quaternion multiplica-
tion. The minimization problem can now be restated as

arg min
‖̊qab‖=1

N∑
t=1

‖et‖2 = arg max
‖̊qab‖=1

(̊qab)TAq̊ab,

where A is defined in (33). Note that the matrices · L and ·R commute, i.e.,

åLb̊R = b̊RåL, since åLb̊Rx = å � x̊ � b̊ = b̊RåLx̊ for all x̊. Additionally, · L
and ·R are skew symmetric for vectors. This implies that

(vat )L(vbt)R = [−(vat )TL][−(vbt)
T
R] = [(vbt)R(vat )L]T = [(vat )L(vbt)R]T ,

from which can be concluded that A is a real symmetric matrix.
Let q̊ab = Xα with ‖α‖ = 1, where X is an orthonormal basis obtained

from the symmetric eigenvalue decomposition of A = XΣXT . Then,

(̊qab)TAq̊ab = αTXTXΣXTXα =

4∑
i=1

α2
iλi ≤ λ1,

where λ1 is the largest eigenvalue. Equality is obtained for α = (1, 0, 0, 0)T ,

that is, ˆ̊qab = x1.
Extending Horn [1987], the sensitivity of the solution can be determined

based on an analysis of the real symmetric eigenvalue equation, Ax = λx. The
Jacobian of the eigenvector x(A) is given by

DA x = xT ⊗ (λ1I4 −A)†
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as derived by Magnus and Neudecker [1999]. Furthermore, writingAt = −RtLt =
−LtRt one can show

dAt(Lt) = −Rt(dLt) ⇔ DLt
At = −I4 ⊗Rt

dAt(Rt) = −Lt(dRt) ⇔ DRt
At = −I4 ⊗Lt

Straightforward application of the chain rule results in

Dva
t

ˆ̊qab = [DA x][DLt A][Dva
t
Lt], Dvb

t

ˆ̊qab = [DA x][DRt A][Dvb
t
Rt].

Evaluating this expression gives (35).

References

T. Bailey and H. Durrant-Whyte. Simultaneous localization and mapping
(SLAM): Part II. IEEE Robotics & Automation Magazine, 13(3):108–117,
Sept. 2006.

H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool. Speeded-up robust features
(SURF). Journal of Computer Vision and Image Understanding, pages 346–
359, June 2008. doi: 10.1016/j.cviu.2007.09.014.

G. Bleser and D. Stricker. Advanced tracking through efficient image pro-
cessing and visual-inertial sensor fusion. In Proceedings of IEEE Vir-
tual Reality Conference, pages 137–144, Reno, NE, USA, Mar. 2008. doi:
10.1109/VR.2008.4480765.

J.-Y. Bouguet. Camera calibration toolbox for matlab, 2003. URL http://www.

vision.caltech.edu/bouguetj/calib_doc/. Accessed April 2nd, 2008.

J. Chandaria, G. A. Thomas, and D. Stricker. The MATRIS project: real-time
markerless camera tracking for augmented reality and broadcast applications.
Journal of Real-Time Image Processing, 2(2):69–79, Nov. 2007. doi: 10.1007/
s11554-007-0043-z.

A. Chatfield. Fundamentals of High Accuracy Inertial Navigation, volume 174.
American Institute of Aeronautics and Astronautics, USA, 3rd edition, 1997.
ISBN 1563472430.

P. Corke, J. Lobo, and J. Dias. An introduction to inertial and visual sensing.
International Journal of Robotics Research, 26(6):519–535, 2007. doi: 10.
1177/0278364907079279.

K. Daniilidis. Hand-eye calibration using dual quaternions. International Jour-
nal of Robotics Research, 18(3):286–298, Mar. 1999. ISSN 0278-3649.

H. Durrant-Whyte and T. Bailey. Simultaneous localization and mapping
(SLAM): Part I. IEEE Robotics & Automation Magazine, 13(2):99–110, June
2006. doi: 10.1109/MRA.2006.1638022.

M. A. Fischler and R. C. Bolles. Random sample consensus: a paradigm for
model fitting with applications to image analysis and automated cartography.
Communications of the ACM, 24(6):381–395, 1981. doi: 10.1145/358669.
358692.

22



E. Foxlin and L. Naimark. Miniaturization, calibration & accuracy evaluation
of a hybrid self-tracker. In Proceedings of 2nd International Symposium on
Mixed and Augmented Reality, pages 151– 160, Tokyo, Japan, Oct. 2003.

S. Graebe. Theory and Implementation of Gray Box Identification. PhD thesis,
Royal Institute of Technology, Stockholm, Sweden, June 1990.

C. Harris and M. Stephens. A combined corner and edge detector. In Proceedings
of the 4th Alvey Vision Conference, pages 147–151, Manchester, UK, 1988.

J. D. Hol. Pose Estimation and Calibration Algorithms for Vision and Inertial
Sensors. Licentiate thesis no 1379, Department of Electrical Engineering,
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