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Abstract The performance of all navigation and tracking algorithms for
road-bound vehicles can be improved by utilizing the trajectory constraint
imposed from the road network. We refer to this approach as road-assisted
navigation and tracking. Further, we refer to the process of incorporating the
road constraint into the standard filter algorithms by dynamic map match-
ing. Basically, dynamic map matching can be done in three different ways:
(1) as a virtual measurement, (2) as a state noise constraint, or (3) as a man-
ifold estimation problem where the state space is reduced. Besides this basic
choice of approach, we survey the field from various perspectives: which filter
that is applied, which dynamic model that is used to describe the motion of
the vehicle, and which sensors that are used and their corresponding sensor
models. Various applications using real data are presented as illustrations.
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1 Introduction

There is a variety of localization, navigation and tracking applications that
can be improved by restricting the location to be on roads marked on an avail-
able map. Essentially, the different applications are distinguished by what
sensor combination that is used, and if the computations are done in the
vehicle (navigation) or in the infrastructure (tracking). They all have in com-
mon that the on-road assumption greatly improves the accuracy, and that
even quite poor signal to noise ratio of the sensors is sufficient to get a fairly
good navigation performance.

The classical method to improve localization performance is map match-
ing. Here, the position estimate computed from the sensors is mapped to the
closest point in the road network. This is an appropriate method for pre-
sentation purposes, but it suffers from two problems. The first one is that it
does not take the topography of the map into account, which implies that the
localization can jump from one road to another due to quantization effects.
The second one is that the motion dynamics of the vehicle is not combined
with the map information in an optimal way. The purpose of this chapter is to
survey different methods to what we will refer to as dynamic map matching.

Dynamic map matching combines a motion model, sensor models and
the road network model in a nonlinear filter, taking uncertainties in all
these three kind of models into account.

The problem boils down to fitting a distorted and noisy trajectory to
the road network. Fig. 1 illustrates the principle and the basic problems
considered one by one. In reality, several of these effects are combined. A
typical example is navigation based on odometry, where the wheel speeds
are integrated into a trajectory. The unknown absolute radius of the wheels
implies a scaling error as in Fig. 1(c), the relative radii difference gives a bias
in the yaw rate corresponding to Fig. 1(d), and the absolute course is not
observed as illustrated in Fig. 1(b). Furthermore, the computed trajectory is
uncertain due to noisy wheel speed measurements.

A generic nonlinear filter for navigation consists of the following main
steps:

• Time update or prediction: Use a motion model to predict where the
vehicle will be when the next measurement arrives.

• Measurement update or correction: Use the current measurement and
a sensor model to update the information about the current location.
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Fig. 1: The key idea in dynamic map matching is to fit an observed trajectory
to the road network. (a) Undistorted trajectory. (b) Undistorted trajectory
with random rotation. (c) Trajectory based on biased speed. (d) Trajectory
based on biased yaw rate. (e) Trajectory with random noise.

In a Bayesian framework, the information is represented by the posterior
distribution given all available measurements. The process of computing
the Bayesian posterior distribution is called filtering.

Fig. 2 illustrates how a standard map can be converted to a likelihood
function for the position. Positions on roads get the highest likelihood, and
the likelihood quickly decays as the distance to the closest road increases.
A small offset can be added to the likelihood function to allow for off-road
driving, for instance on un-mapped roads and parking areas.

There are three main principles for incorporating the on-road con-
straint:

1. As a virtual measurement using a road-tailored likelihood function,
see Fig. 2(d), where predicted positions outside the road network are
considered unlikely.
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(a) Original map (b) Binary map

(c) Filtered binary map (d) On-road likelihood function

Fig. 2: (a) Original map. (b) Binary map, where the black areas corresponding
to streets are mapped to one, and all other pixels are set to zero (white
color). (c) The local maxima over a 4× 4 region is computed to remove text
information. (d) The resulting map is low-pass filtered to allow for small
deviations from the road boarders, which yields a smooth likelihood function
for on-road vehicles. See Listings 1 for complete Matlab code.

2. As a state noise constraint in the prediction step, so the predicted
position is mostly on a road. Here, the likelihood in Fig. 2(d) is
instrumental.

3. As manifold filtering, where the location is represented as the position
along a road segment. This uses the topography of the map in a
natural way.

As indicated explicitly in the first two cases, it is in practice necessary
to allow the vehicle to temporary leave the road network to allow for off-
road driving and un-mapped roads such as in parking areas and houses. This
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can be solved by having two modes in the filter, one on-road mode and one
off-road mode, respectively.

There are two classes of problems with different support sensor options:

Navigation as driver information or for driver assistance systems as a
GPS backup/support. Support sensors include wheel speed, inertial
sensors and visual odometry using visual landmarks.
Tracking for surveillance or traffic monitoring. Support sensors in-
clude imagery sensors, radar, and sensor networks with microphones,
geophones or magnetometers.

Tracking and navigation are in some sense dual problems, and the dif-
ference disappears in a cooperative setting where all equipment exchange
information. Localization in cellular systems is one example, where network-
centric (tracking) and user-centric (navigation) solutions exist, which are
more or less similar. The main difference lies in where the algorithm is im-
plemented, the algorithm itself can be the same. Here, we define tracking
as all approaches that require infrastructure with communication ability (to
exclude visual markers and passive radio beacons). In the sequel, we often
use the term navigation for both classes of problems.

The outline is as follows. Section 2 surveys the different nonlinear filters
that have been used for road-assisted navigation and tracking, with some
illustrations from applications to illustrate the different concepts. Section 3
presents three fundamental and basic motion models, and provides concrete
code. Section 4 discusses the data format used in the map, and explains the
mathematical map matching operation. Section 5 summarizes some naviga-
tion applications while Section 6 overviews some tracking applications from
our earlier research publications.

2 State Estimation and Representation

2.1 Nonlinear Filtering

We consider a general nonlinear motion model for the road-bound target with
state xk, position dependent measurement yk, input signal uk, process noise
wk, and measurement noise ek:

xk+1 = f(xk, uk, vk), (1a)

yk = h(xk, uk, ek). (1b)



8 Contents

The state includes at least position (Xk, Yk) and heading (or course) ψk, and
possibly derivatives of these and further parameters and states relevant in
describing the motion.

Nonlinear filtering is the branch of statistical signal processing concerned
with recursively estimating the state xk in (1) based on the measurements up
to time k, y1:k , {y1, . . . , yk} from sample 1 to k. The most general problem
it solves is to compute the Bayesian conditional posterior density p(xk|y1:k).

There are several algorithms and representations for computing the pos-
terior density:

• Kalman filter variants: the state is represented with a Gaussian dis-
tribution.

• Kalman filter banks based on multiple model approaches: the state is
represented with a mixture of Gaussian distributions, each Gaussian
mode having associated weights.

• Point mass and particle filters: the state is represented with a set of
grid points or samples with an associated weight.

• Marginalized, or Rao-Blackwellized, particle filters: the state is rep-
resented with a number of trajectories over the road network, each
one having an associated weight and Gaussian distribution for the
other state variables than position.

• Finite state space models: the trajectory is represented by discrete
probabilities for each combination of possible turns in the road net-
work junctions.

These different filters are briefly introduced below.

2.1.1 Kalman Filter Variants

The Kalman filter (KF) [22] solves the filtering problem in case the model
(1) is linear and Gaussian. The solution involves propagating the mean x̂k|k
and the covariance Pk|k for the posterior Gaussian distribution

p(xk|y1:k) = N
(
xk; x̂k|k, Pk|k

)
. (2)

The extended Kalman filter (EKF) [34] and the unscented Kalman filter
(UKF) [21] approximate the posterior at each step with a Gaussian density
according to (2).

The road constraints imply a kind of information that normally leads to
a multi-modal posterior density (the target can be on either this road, or
that road, etc). The approximation in using (2) inevitably destroys this in-
formation. A completely different approach to nonlinear filtering is based on
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approximating the posterior p(xk|y1:k) numerically. One straightforward ex-
tension is to assign one KF to each hypothesis in a multiple model (MM)
framework, which leads to a Kalman filter bank (KFB) technique with a
Gaussian mixture posterior approximation [39],

p(xk|y1:k) ≈
N∑
i=1

wikN
(
xk; x̂ik|k, P

i
k|k
)
. (3)

The mixture probabilities wik are all positive and sum to one. Each Gaus-
sian distribution can be interpreted as a conditional distribution given one
specific hypothesis about how the driven path matches the road map topog-
raphy, where the observed sequence of turns fit the map in different ways.
The Manhattan problem is used to illustrate the combinatoric explosion of
hypotheses that are possible in a regular road pattern. There are two con-
ceptually different ways to limit the number of hypotheses: pruning where
unlikely hypotheses are thrown away, and merging where similar hypothe-
ses which end up at the same position are merged into one. The interacting
multiple model (IMM) [2] algorithm is a popular choice for the latter ap-
proach. Since the number of modes varies depending on excitation, compare
with Fig. 9, the concept of variable structure (VS) has been adopted in the
literature, see for instance [27].

2.1.2 Point Mass and Particle Filter Variants

The class of point mass filters (PMF) [25] represents the state space using a
regular grid of size N , where the grid points and the related weights (xi, wik)
are used as a representation of the posterior. Different basis functions have
been suggested, the simplest one being an impulse at each grid, when the
posterior approximation can be written

p(xk|y1:k) ≈
N∑
i=1

wikδ(xk − xik), (4)

where δ(x) denotes the Dirac-delta function. The particle filter (PF) [13]
is the state of the art numerical solution today. It uses a stochastic grid
{wik, xik}Ni=1 that automatically changes at each iteration. Another difference
is that it in its standard form approximates the trajectory x1:k. Otherwise,
the representation of the posterior approximation is very similar to (4),

p(x1:k|y1:k) ≈
N∑
i=1

wikδ(x1:k − xi1:k). (5)



10 Contents

One should here note that in many navigation applications the sensor model
is only a function of position. With an assumption of additive noise, the
sensor model in (1b) can in such cases be written

yk = h(Xk, Yk) + ek. (6)

If the state xk only includes position and velocity xk = (Xk, Yk, Ẋk, Ẏk)T ,
which is the simplest possible standard model in target tracking, then the
marginalized particle filter (MPF, also known as RBPF, the Rao-Blackwellized
PF) applies. The basic idea in the MPF is to utilize the structure in the model,
so the Kalman filter can be applied to a part of the state vector (the veloc-
ity Vk = (Ẋk, Ẏk)T in this case) in an optimal way. The resulting posterior
approximation is then

p(x1:k|y1:k) ≈
N∑
i=1

wikδ(X1:k −Xi
1:k)δ(Y1:k − Y i1:k)N

(
Vk; V̂ ik|k, P

i
k|k
)
. (7)

This means that each particle represents a trajectory in the map, which has
an associated Gaussian distributed velocity vector attached to it. The MPF
can be applied to many other cases where the motion model contains more
states than just position and heading. One of our key messages is that the
MPF is well suited for road-assisted navigation and tracking.

2.1.3 Finite State Space Models

All approaches so far have assumed a continuous state space based on the
2D position. A completely different approach is based on a discrete state rep-
resenting road segments defined by its junctions with other road segments.
Let m denote a certain road segment (possibly one-way to indicate the di-
rection of travel). Its end is connected to a number of other road segments
n1, n2, . . . , nm. Let the transition probabilities from road m to another road
n be defined as

Prob(n|m) =

{
πnm n = n1, n2, . . . , nm,

0 otherwise.
(8)

Then the complete road topology and prior knowledge of driving behav-
ior, is summarized in the matrix Π with elements πnm. The discrete hidden
Markov model (HMM) theory provides the optimal filter for estimating the
road segment sequence. The basic sampling rate depends on an event process,
triggered by an external detection mechanism for indicating when a junction
is reached. The estimated sequence in the original sampling rate indexed by
k can be obtained by repeating the road segment between the junctions,



Contents 11

p(m1:k|y1:k) =

N∑
i=1

wikδ(m1:k −mi
1:k). (9)

In this case, δ is the discrete pulse function.
Assume that the length of road segment i is Li, and let lik ∈ [0, Li] be

the driven distance at this road segment. Then, we can form a joint state
vector xk with the continuous state lik, and possibly one or more derivatives
of position, for each discrete mode. The two problems can be combined, and
the resulting mixture of discrete and continuous states can be expressed as

p(m1:k, x1:k|y1:k) =

N∑
i=1

wikδ(m1:k −mi
1:k)N

(
xk; x̂ik|k, P

i
k|k
)
. (10)

This can be seen as a version of the MPF, where the continuous state can be
filtered analytically conditioned on a given sequence of discrete states. The
resulting algorithm has a low-dimensional conditional state vector (motion
on a manifold), and utilizes the map information in the most accurate way.

2.2 Introductory Illustrations

The Gaussian distribution is in many ways the most convenient representa-
tion in a range of applications, but as already mentioned a single Gaussian
distribution has certain shortcomings for road-assisted navigation. We will
here provide a couple of illustrations of posterior distributions, also showing
the main principle in road-assisted navigation.

Consider the situation in Fig. 3, where a four-way intersection is ap-
proached. Suppose that the navigation algorithm has found the correct road
segment and direction of travel, but that the information on the driven dis-
tance on this segment is uncertain. Then, we get the situation depicted in
Fig. 3(a). Suppose now that the sensors detect a right turn. The posterior
distribution in Fig. 3(b) is then quite informative about the position. This
illustrates the information richness in the road map. Here, the Gaussian dis-
tribution is a feasible description of both the prior distribution after the
prediction step and the posterior after a measurement update from an infor-
mative measurement.

The case in Fig. 3 assumed prior knowledge about the starting position or
the direction of the vehicle. Suppose the prior distribution after the prediction
step is instead rather uninformative. This is in Fig. 4(a) represented with
two Gaussian distributions. Suppose now again that the sensors detect a
right turn. Then, the posterior distribution will have four peaks, each one
can be represented with a Gaussian distribution as shown in Fig. 4(b). If the
intersections are regularly spaced (the “Manhattan problem”), it can be hard
to resolve such ambiguities.
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(a) PDF before turn. (b) PDF after right turn.

Fig. 3: (a) The prior of the position close to a four-way intersection when
the road segment of the vehicle is known, but its position along the segment
is uncertain, can be modeled with a Gaussian distribution. (b) A few me-
ters after a sensed right hand turn, the posterior distribution becomes very
informative. Picture from [40].

Fig. 4: A non-informative prior of the position close to a four-way intersection
can be modeled using a Gaussian mixture with two modes, both centered at
the intersection, and each one with a large eigenvalue spread in its covariance
matrix along and transversal the road direction. A few meters after a sensed
right hand turn, there are four different possibilities, leading to a Gaussian
mixture with four modes. Picture from [40].

In manifold filtering, the posterior distribution is constrained to the road-
network while the filter is operating in the on-road mode. A snapshot illustra-
tion is given in Fig. 5, where a Gaussian mixture summarizes the information
from a sensor network.

Even though (mixtures of) Gaussian distributions are feasible representa-
tions of the posterior distribution, a sample based approximative represen-
tation is in many cases even more useful. Fig. 6 illustrates the key idea: to
replace a parametric distribution with samples, or particles.
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Fig. 5: A Gaussian mixture distribution for modeling the posterior along
a road segment, which is marked with a solid line. A microphone network
provides the measurements, and each sensor is marked with a cross.

3 Basic Motion Models

We here describe three specific and simple two-dimensional motion models
that are typical for the road-assisted applications.

3.1 Dead-Reckoning Model

A very instructive and also quite useful motion model is based on a state
vector consisting of position (X,Y ) and course (yaw angle) ψ. This assumes
that there are measurements of yaw rate (derivative of course) ψ̇ and speed
ϑ on-board the platform, in which case the principle of dead-reckoning can
be applied.

The dead-reckoning model can be formulated in continuous time using the
following equations:
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Fig. 6: A bi-modal Gaussian distribution can as any other distribution be
approximated by a set of random samples. This is the idea of the particle
filter, and the particle representation of the posterior distribution.

x(t) =

X(t)
Y (t)
ψ(t)

 , ẋ(t) =

ϑ(t) cos(ψ(t))
ϑ(t) sin(ψ(t))

ψ̇(t)

 (11)

A discrete time model for the nonlinear dynamics is given by

X(t+ T ) = X(t) +
2ϑ(t)

ψ̇(t)
sin(

ψ̇(t)T

2
) cos(ψ(t) +

ψ̇(t)T

2
)

≈ X(t) + ϑ(t)T cos(ψ(t)), (12a)

Y (t+ T ) = Y (t) +
2ϑ(t)

ψ̇(t)
sin(

ψ̇(t)T

2
) sin(ψ(t) +

ψ̇(t)T

2
)

≈ Y (t) + ϑ(t)T sin(ψ(t)), (12b)

ψ(t+ T ) = ψ(t) + T ψ̇(t). (12c)

Finally, plugging in the observed speed ϑm(t) and angular velocity ψ̇m(t)
gives the following dynamic model with process noise w(t)
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X(t+ T ) = X(t) + ϑm(t)T cos(ψ(t)) + T cos(ψ(t))wϑ(t), (13a)

Y (t+ T ) = Y (t) + ϑm(t)T sin(ψ(t)) + T sin(ψ(t))wϑ(t), (13b)

ψ(t+ T ) = ψ(t) + T ψ̇m(t) + T sin(ψ(t))wψ̇(t). (13c)

This model has the following structure

xk+1 = f(xk, uk) + g(xk, uk)vk, uk =

(
ϑmk
ψ̇mk

)
(13d)

that fits the particle filter perfectly. Normally, additional support sensors are
needed to get observability of the absolute position. This is for instance the
case in many robotics applications. However, the road map contains suffi-
ciently rich information in itself.

Note that the speed and the angular velocity measurements are modeled as
inputs, rather than measurements. This is in accordance to many navigation
systems, where inertial measurements are dead-reckoned in similar ways. The
alternative is to extend the state vector with speed and angular velocity, but
this increased state dimension would make the particle filter less efficient
unless some Rao-Blackwellization is used.

3.2 A Complete Matlab Algorithm

Suppose that an input sequence u1:N or speed and angular velocity (yaw
rate), and a likelihood map similar to the one in Fig. 4(d) are given. The
likelihood function L(i, j) is assumed to be represented with a matrix where
each row i corresponds to the corresponding element X(j) in the vector X,
and similarly for the column Y (j) for a vector Y . A likelihood function such
as the one in Figure 2 can be generated from an arbitrary map using the code
in Listings 1.

Listing 1: Matlab code for generating likelihood from a bitmapped map

y = imread ( ’ v a l l a . png ’ ) ; % Snapshot o f map

ys=sum(y , 3 ) ; % r+g+b
ind=find ( ys ˜=761); % White rgb value in map

yr=zeros ( s ize ( ys ) ) ; % 0 f o r non s t r e e t a reas
yr ( ind )=1; % 1 f o r s t r e e t a reas
ym=locmin2 ( yr , 4 ) ; % S p e c i a l : l o c a l min over 9x9 square
L=conv2(1−ym, ones ( 2 0 , 2 0 ) ) ; % LP−smoothing g i v e s l i k e l i h o o d

surf (L ) ;
shading i n t e r p ;

campos=[−1000 −4000 1 0 0 0 0 ] ;
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The function locmin2 is non-standard but simple. It computes the local
minimum over a square of nine times nine pixels (within a distance of 4 pix-
els). Using this likelihood and some additional parameters for the coordinate
transformation from pixels to world coordinates, the particle filter can be
implemented in Matlab as given in Listings 2.

Listing 2: Complete Matlab listing for positioning.

function Xhat = MapAidedPositioning (y , u , L , pe , vrand , f , h , p0 , dp)

Tf = s ize (u , 2 ) ; % Number o f data
N = 1000 ; % P a r t i c l e s

[ IndX , IndY ] = find (L>0.5∗max(L ( : ) ) ) ; % Threshold ing
IndR = ce i l ( length ( IndX )∗rand (N, 1 ) ) ; % Random road po in t s

Psi = 2∗pi∗rand (N, 1 ) ; % Random heading

% Coordinate t rans fo rmat ion

X = [ 0 : s ize (L,2) −1] ∗ dp (1) + p0 ( 1 ) ;

Y = [ 0 : s ize (L,1) −1] ∗ dp (2) + p0 ( 2 ) ;

% I n i t i a l i z a t i o n

Xp( 1 , : ) = IndX ( IndR ) ∗ dp (1) + p0 ( 1 ) ;
Xp( 2 , : ) = IndY ( IndR ) ∗ dp (2) + p0 ( 2 ) ;

Xp( 3 , : ) = Psi ;

for k = 1 : Tf

% Road l i k e l i h o o d
w = interp2 (X,Y, L ,Xp( 1 , : ) ,Xp( 2 , : ) , ’ n ea r e s t ’ , 0 ) ;

w = w.∗ pe ( y ( : , k ) ,Xp ) ;
% Measurement l i k e l i h o o d

w = w/sum(w) ; % Normal izat ion

Xhat ( : , : ) = w( : ) ’ ∗Xp ’ ; % Mean est imate
Xp = resample (Xp,w) ; % Resampling

vk = vrand (N) ; % Process no i s e

Xp = f (Xp, u ( : , k ) , vk ) ; % State p r e d i c t i o n
end

The code in Listings 2 is complete, except for the basic resampling function
resample. Implementations and a discussion on this function are found in
[15]. Initialization is performed over the whole road network. The PF is the
simplest possible bootstrap (SIR) one originally proposed in [13], and there
are more advanced ones that can be more efficient for this application, see [15]
for a more thorough treatment of implementation and code aspects.

Finally, if there are more sensor information relating to position (such as
temporary GPS positions) or course (such as a compass), these are easily
incorporated in the filter as additional likelihood function multiplications.
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3.3 Tracking Model

The simplest possible tracking model, yet one of the most common ones in
applications, is given by a two-dimensional version of Newton’s force law:

x(t) =


X(t)
Y (t)

Ẋ(t)

Ẏ (t)

 , ẋ(t) =


Ẋ(t)

Ẏ (t)
wX(t)
wY (t)

 (14a)

The corresponding discrete time model is given by

xk+1 =


1 0 T 0
0 1 0 T
0 0 1 0
0 0 0 1

xk +


T 2/2 0
T 0
0 T 2/2
0 T

(wXkwYk
)
. (14b)

Suppose the sensor model depends on the position only, similarly to (6),

yk = h(Xk, Yk) + ek. (15)

Since the motion model is linear in the state and noise, the MPF applies, so
the velocity component can be handled in a numerically very efficient way.

The code in Listings 3 gives a fundamental example that fits GPS mea-
surements to a road map using a constant velocity model.

Listing 3: Example of how to use the function in Listing 2 for tracking using
GPS measurements.

% Measurement model .

h=i n l i n e ( ’ sum( ( repmat (y , s i z e (x ,2) ) − [ x ( 1 , : ) ; x ( 2 , : ) ] ) . ˆ 2 ) , 1 ) ’ ) ;

pe=i n l i n e ( ’ exp (−0.5∗sum ( ( repmat (y , 1 , s i z e (x ,2)) −x ( 1 : 2 , : ) ) . ˆ 2 ) / 1 0 ˆ 2 ) ’ , ’ y ’ , ’ x ’ ) ;

% Dynamic model .
f=i n l i n e ( [ ’ [ x (1 , : )+ u (1 , : )+0 .5∗ v ( 1 , : ) . ∗ cos ( x ( 3 , : ) ) ; ’ . . .

’ x (2 , : )+ u (2 , : )+0 .5∗ v ( 1 , : ) . ∗ s i n ( x ( 3 , : ) ) ; ’ . . .

’ x (3 , : )+ v ( 2 , : ) ] ; ’ ] , ’ x ’ , ’ u ’ , ’ v ’ ) ;
vrand=i n l i n e ( ’ randn (2 ,N) ’ ) ;

% PF
Xhat=MapAidedPositioning (GPS, [ 0 ; 0 ] , L , pe , vrand , f , h , [ 0 0 ] , [ 0 . 5 0 . 5 ] ) ;
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3.4 Manifold Model

We here return to the filter framework discussed in Section 2.1.3. The man-
ifold model is essentially a one-dimensional version of the tracking model
(14),

x(t) =

(
l(t)

l̇(t)

)
, ẋ(t) =

(
l̇(t)
w(t)

)
, (16a)

with a discrete time counterpart

xk+1 =

(
1 T
0 1

)
xk +

(
T 2/2
T

)
vk. (16b)

With a particle representation of the position lk along the current road seg-
ment, the event of passing a junction is easily detected (lik < 0 or lik > Li),
and the new road segment can be initialized according to the prior probabil-
ity πji. Note that the velocity component l̇k can be represented with a KF
according to the MPF algorithm, since the velocity is linear and Gaussian in
the model. The posterior then resembles the expression in (7).

The same sensor model as in (6) and (15) now also includes a transforma-
tion

yk = h(Xi(lk), Y i(lk)) + ek, (17)

where Xi(l) is the mapping from the driven distance l on road segment i to
the Cartesian position X, and similarly for Y i(l).

4 Map Handling

This section describes the fundamentals of vectorized road maps, and some
key calculations needed in (dynamic) map matching.

4.1 The Shape Format

In a geographic information system (GIS) different forms of geographically
referenced information can be analyzed and displayed. There are two classical
methods to store GIS data: raster data (images) and vector data. Different
geometrical types can be described by vector data and basically there are
three broad type categories; zero-dimensional points are used to represent
points-of-interest, lines are used to represent linear features such as roads
and topological lines, and polygons are used to represent particular areas
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such as lakes. There exist many approaches to store geospatial vector data
and one popular representation is the ESRI shape file. There are 14 differ-
ent shape types, for example, a road network is represented as a number of
PolyLines. A PolyLine is an ordered set of vertices that consists of one or
more parts. A part is a connected sequence of two or more points. Parts may
or may not be connected to one another. Parts may or may not intersect
one another. See [10] for more details. Apart from the vector information,
each data item may also have attributes that describe properties of the item.
Examples of attributes in the road case are road type, street name, speed
limit, driving direction, etc. Here, only road network information is consid-
ered, but of course there are other types of information such as terrain type
and topological data that can facilitate the target tracking and sensor fusion
performance.

For target tracking purposes it is convenient to have a slightly different
representation with redundant information to facilitate and speed up the
data processing. One data structure represents the roads and this structure
contains the road stretch and the corresponding attributes. This structure
is more or less the raw shape data plus an ID number for each road and
an intersection ID for each road end. An additional structure is used for the
intersections and it contains the location and all connected roads (IDs) of each
intersection. The exact data structure depends on what type of additional
information is included, such as driving direction and prior probabilities for
roads in an intersection. The described road structure contains the following
fields:

• ID – unique road ID
• N – number of parts
• x – (1×N) vector with x coordinates
• y – (1×N) vector with y coordinates
• z – (1×N) vector with z coordinates
• i1 – intersection ID of the road start intersection
• i2 – intersection ID of the road end intersection

and the intersection structure contains

• ID – unique intersection ID
• M – number of connecting roads
• r – (1×M) vector with IDs of the connecting roads
• x – x coordinate
• y – y coordinate
• z – z coordinate.
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4.2 Computational Issues Related to the Map

Even though the shape format allows for curved road segments, all available
maps use the straight line representation. This means that for instance round-
abouts are approximated using a number of straight lines. This section will
describe a couple of computations needed in road-assisted navigation.

First, consider the virtual measurement approach. If the likelihood is rep-
resented as the grid in Fig. 2(d), then the measurement update is based on
interpolation in this grid. This approach requires certain pre-computations
and a large memory. A more efficient approach is based on defining a likeli-
hood function based on the distance d to the closest road point. The likelihood

can for instance be defined as l(d) = e−
d2

2σ2 + l0, where l0 is optionally added
to allow for off-road driving.

Denote the shortest distance to road segment i with di, see Fig. 7(a). Using
the scalar product, it is given by

di = xpk − pi −
(
xpk − pi

)T (
pi+1 − pi

)(
pi+1 − pi

)T (
pi+1 − pi

) (pi+1 − pi). (18)

Note that this value must satisfy di ∈ [0, Li] to be feasible. This calculation
has to be performed for all road segments to find the minimum d = mini di.
Clearly, an efficient data base handling is required. Further, there is a need
for an efficient pre-scan of a suitable candidate set of road segments. Here, the
absolute norm to each end point can be used, ‖xpk−pi‖ = |xXk −pXi |+|xYk −pYi |.

Note that the above operation is also needed in standard map matching
using vectorized maps.

The second approach to road-assisted navigation is based on a state con-
straint in the prediction step, and this can be rather tricky. Consider a linear
motion model, for instance the one in (14b),

xk+1 =

(
A1

A2

)
xk +

(
B1

B2

)
vk, (19)

where the upper blocks A1 and B1 correspond to position. Now, if vk ∈
N (0, σ2I2), we need to generate constrained samples from this distribution
that assures that A1xk + B1vk corresponds to a point on the road network.
Fig. 7(b) illustrates the geometry for this directional process noise. In this
case with a linear road segment, the conditional distribution can be computed
analytically. The result is a one-dimensional Gaussian distribution where the
variance is smaller than σ2, the larger d the smaller variance.
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Fig. 7: Computational issues related to the trajectory in Fig. 1. (a) The
closest distance d to the road network needs to be computed in the virtual
measurement approach. (b) A random noise that takes any prediction back
to the road network needs to be generated in the state constraint approach.

5 Navigation Applications

This section surveys some approaches to on-board navigation systems based
on dead-reckoning. It explains the basic sensor models, and provides some
illustrative examples from field tests. Such systems can be used as a support
or back-up to satellite based navigation.

5.1 Odometric Approach

Odometry is the term used for dead-reckoning the rotational speeds of two
wheels on the same axle of a vehicle. It is used in a large range of robotics
applications, as well as in some vehicle navigation systems. Odometric nav-
igation or positioning based on inertial sensors or dead reckoning sensors is
challenging due to drift and bias in the measurements. Particularly for rel-
atively cheap sensors that are available in ordinary passenger vehicles. Map
aided positioning based on vectorized road charts in combination with infor-
mation from internal automotive sensors such as individual wheel speed and
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Fig. 8: Notation for the lateral dynamics and curve radius relations for a
four-wheeled vehicle.

yaw rate available from the CAN-bus has been studied in several Master’s
Theses [18,20,26,40] and made commercially available at Nira Dynamics AB.

In [18] the basic theory and implementation for map aided vehicle posi-
tioning, was studied, where the particle filter was demonstrated to yield suf-
ficiently good navigation performance when incorporating information from
yaw rate and wheel speed sensors. The unknown wheel radius parameter
estimation problem was also addressed. The raw signals are the angular ve-
locities of the wheels which can be measured by the ABS sensors in cars. The
angular velocities can be converted to virtual measurements of the absolute
longitudinal velocity and yaw rate as (see [14] or Chapter 13 and 14 in [16]
for details), assuming a front wheel driven vehicle with slip-free motion of
the rear wheels,

ϑm =
ω3r3 + ω4r4

2
≈ ϑ+ wϑ, (20a)

ψ̇m = ϑm
2

B

ω3r3
ω4r4
− 1

ω3r3
ω4r4

+ 1
≈ ψ̇ + wψ̇. (20b)

See Fig. 8 for the notation. The noise terms can be assumed to be Gaussian,

wϑ ∼ N (δϑ, σ
2
ϑ), (21a)

wψ̇ ∼ N (δψ̇, σ
2
ψ̇

). (21b)
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We assume in this section that both the mean and the variance are known.
Fig. 9 shows an example.

During this development stage different hardware platforms were investi-
gated. In [40] varies particle filter variants were studied and the MPF/RBPF
was used as an efficient method to incorporate more states in real-time.
The ability to enhance positioning while driving slightly off-road was demon-
strated in [26]. This is important for handeling of inaccurate maps or when
the map information is not available. In [20] the positioning aspect was shifted
from the use of internal data such as wheel speed information to the case when
inertial measurements are available from an external IMU sensor. Typically
the problem studied used accelerometers and gyros as a stand alone sensor for
positioning in combination with the road map. Several different models were
studied also in combination with the available internal automotive sensors.

In Fig 9 the map aided positioning using wheel speed information and
road map information is demonstrated, where GPS information is used as a
ground truth reference only. In Fig 9 (a), the particle filter is initialized in
the vicinity of the GPS position (blue circle) at a traffic light. The initial
distribution is uniform on road segments in a region around the GPS fix. As
seen the GPS position is located slightly off-road, which could be due to a
measurement error, multi-path phenomenon, or that the road segment width
does not match the actual road width. To ensure a robust algorithm against
these issues, particles are allowed slightly off-road. The expected mean from
the particle filter (red circle) is far away from the true position. In Fig 9 (b)
the algorithm has been active for some time, and the vehicle has turned left at
the crossing. As seen, the PDF is now highly multi-modal. The PF algorithm
uses only wheel speeds from the CAN-bus. The GPS is only used to evaluate
the ground truth. In Fig 9 (c), after yet some turns, the filter has converged to
a uni-modal distribution and the mean estimate is close to the GPS position.

5.2 Odometric Approach with Parameter Adaptation

The offsets in (21) depend on the wheel radii as

δϑ ∝ r3 + r4, (22a)

δψ̇ ∝ r3 − r4. (22b)

Further, the noise variances depend on the surface. Both surface and wheel
radii change over time, but with different rates, and the offsets are crucial for
dead-reckoning performance.

The standard approach to deal with this problem is to augment the state
vector with these two offsets (or the more physical wheel radius offsets). These
parameters are then estimated adaptively in the filter. Fig. 10 illustrates one
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(a) The PF is depicted shortly after initialized
using prior information.

(b) Multi-modal PDF representing the posi-
tion.

(c) The PF has converged to a uni-modal

PDF

Fig. 9: Map aided positioning using wheel speed sensor information in com-
bination with road map information.

advantage with this approach: dead-reckoning improves to enable accurate
GPS integrity monitoring, so that small GPS errors are detected.

5.3 Inertial Measurement Support

The drawback with the approaches in the preceding sections is that they
require wheel speed signals. This is not easy for portable and after-market
solutions. An appealing approach is to base the dead-reckoning on an inertial
measurement unit (IMU). This can either be three-dimensional (two horizon-
tally mounted accelerometers and a yaw-rate gyro) or a full six-dimensional
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(a) GPS integrity check (b) No GPS integrity check

Fig. 10: GPS supported odometry. Multi-path propagation close to the park-
ing house gives unreliable GPS positions (marked in (a)). (a) Bias adaptation
gives the predictive performance required to exclude GPS outliers. (b) Illus-
tration of what happens if GPS outliers are used in the filter.

unit with three accelerometers and three gyros. The former assumes a flat
world and no roll and pitch dynamics of the vehicle, while the latter allows
for a more flexible and versatile full state estimation framework. Further, just
one single lateral accelerometer can be used to detect cornering, an important
event in dynamic map matching. We here summarize the results in [20].

Fig. 11 and Fig. 12 (from [20]) illustrate some different combinations,
providing the following conclusions:

• The wheel speed based dead-reckoning gives superior performance.
• Pure dead-reckoning of an IMU cannot be used as a backup solution to

GPS, unless the initial alignment and offset estimation is improved, see
Fig. 11(b).

• Dynamic map matching based on dead-reckoning of an IMU and cornering
detection from lateral acceleromater is a feasible backup solution to GPS,
see Fig. 11(b). However, the robustness is not convincing, see the first plot
in Fig. 12.

• When wheel speed signals are available, also including IMU does not im-
prove the result of dynamic map matching significantly, see Fig. 11(c-d)
and the last two plots in Fig. 12. However, for some driving conditions this
might be the case.

In [20] several different models were studied to find a feasible real-time im-
plementation with sufficient flexibility and performance. The studied models
are summarized below:

• Model M0: a pure odometric model (see Section 3).
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(a) Driven path on map (b) Comparison of pure 2D dead-
reckoning (M2) and 2D dead-reckoning

with corner detection and map matching

(M2Ay)

(c) Wheel speed based dead-reckoning
and dynamic map matching (M0)

(d) Wheel speed and 6D IMU based
dead-reckoning and dynamic map

matching (M0M3)

Fig. 11: IMU supported navigation. Pictures from [20].

• Model M1: a general 3D constant acceleration model with quaternions
for orientation representation and accelerometer and rate gyro biases (22
states).

• Model M2: utilized the 2D property of vehicle positioning and it used a
coordinated turn model (11 states)

• Model M2ay: the same as M2 but also using the lateral accelerometer to
improve positioning.

• Model M3: a simplified coordinated turn model without biases (6 states).

In Model M1, the following state vector is used

x = (p v a q w abias wbias)
T
, (23)
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Fig. 12: The test drive in Fig. 11(a) is repeated many times, so the average
performance and robustness of the alternatives can be compared. Picture
from [20].

where p is the 3D position vector, v the 3D velocity vector, a the 3D accel-
eration vector, q the four components of the quaternion vector representing
orientation, and ω is the angular rate. The continuous time dynamics for the
model is given by

ẋ(t) = (v a wa −0.5S(w)q ww wa,bias ww,bias)
T
, (24)

where wa is the noise for the acceleration, wω is the noise for the rotation,
and S(ω) a rotation matrix.

In order to simplify the dynamics and adapt the model to a more common
2D vehicle scenario, Model M1 is simplified. Basically a coordinated turn
model is used, where only the longitudinal speed and acceleration are con-
sidered as states together with 2D position and a full orientation description
with bias terms. This leads to 11 states in Model M2 which describes the
vehicle positioning problem very well. The model can be improved by sup-
porting it with information from the lateral accelerometer ay (Model M2ay).
If further reduction of the state vector is need biases terms can be consid-
ered as fixed parameters, which will only be updated at the initial alignment.
Furthermore, IMU signals can be considered as input signals, yielding only 6
states. For details we refer to [20].

Fig 11 shows some comparative results from field trials in the same area
as in the map of Fig 2. Fig 12 compares the performance over 10 different
experiments on the same route. As seen the pure IMU model has worse per-
formance than the odometric model. This is because it was hard to estimate
the biases and perform a sufficiently good initial alignment, compensating
for the gravitational vector. This can probably be improved, however since
noisy signals are double integrated to yield position, it is a much tougher
problem than integrating wheel speed signals once. As seen a sensor fusion
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between automotive sensors and IMU yields basically the same result as the
odometric one.

From Fig. 11 and Fig. 12 we conclude the following:

• The wheel speed based dead-reckoning gives superior performance.
• Pure dead-reckoning of IMU cannot be used as a backup solution to

GPS, unless the initial alignment and offset estimation is improved, see
Fig. 11(b).

• Dynamic map matching based on dead-reckoning of IMU and cornering
detection from lateral acceleromater is a feasible backup solution to GPS,
see Fig. 11(b). However, the robustness is not convincing, see the first plot
in Fig. 12.

• When wheel speed signals are available, also including IMU does not im-
prove the result of dynamic map matching significantly, see Fig. 11(c-d)
and the last two plots in Fig. 12. However, for some driving conditions this
might be the case.

6 Tracking Approaches

Tracking road-bound vehicles is important in surveillance and certain appli-
cations in intelligent transportation systems. This section illustrate how this
can be done using wireless radio measurements, microphone sensor networks,
radars and airborne video cameras.

6.1 Radar Support

A radar system emits electromagnetic waves and analyzes the reflected waves
to determine the range, direction, and radial speed of both moving and fixed
objects. Both the initial Kalman filter based studies [23,35,36] and subsequent
particle filter based approaches [1,31] on target tracking with road network in-
formation were motivated by radar applications. In this direction of research,
extensive effort was spent for improving the methods [9, 24, 30, 33, 38, 41]
especially for ground moving target indication (GMTI) which is a mode of
operation of a radar system where the range rate (Doppler) is used to discrim-
inate moving targets against stationary clutter. The probability of detection
in GMTI systems depends not only on the environment topography, but also
on the relative radial velocity of the target.

Let xk = (Xk, Yk)T be the position of the target relative a global Cartesian
reference system. For simplicity, assume that the sensor is located at the
origin. The GMTI observation model can be expressed as



Contents 29

yk = h(xk, uk, ek) =

rkθk
ṙk

+ ek =


√
X2
k + Y 2

k

arctan2(Yk, Xk)
XkẊk+YkẎk√

X2
k+Y

2
k

+ ek (25)

where ek is the measurement noise modeled as

ek ∼ N
(
0,diag(σ2

r , σ
2
θ , σ

2
ṙ)
)
. (26)

This is just a 2D model, but it is straightforward to include the elevation
angle to get a 3D description.

A basic simulation example is here given to show the advantages of us-
ing road network information when tracking a moving on-road target. The
target is detected if the radial speed is above the minimum detectable veloc-
ity (MDV). False detections are assumed to be uniformly and independently
distributed and the number of false detections is assumed to be Poisson dis-
tributed. A global nearest neighbor (GNN) association algorithm is used with
standard gating and initiator logic. Snapshots from two GMTI road target
tracking examples are shown in Fig. 13 where an off-road target model (left)
and an on-road target model (right) are used, respectively. A particle filter
is used in both cases and it is possible to see that an on-road model is ad-
vantageous since the resulting particle cloud is significantly denser, i.e., the
variance is smaller. The advantage of using road information is even more ob-
vious when the target is not detected, e.g. due to Doppler blindness, and the
filter have to predict the target motion. More extensive analysis of the target
tracking problem with GMTI can be found in [1], [41] and references therein.
A radar system emits electromagnetic waves and analyzes the reflected waves
to determine the range, direction, and radial speed of both moving and fixed
objects. Ground moving target indication (GMTI) is a mode of operation of
a radar system where the range rate (Doppler) is used to discriminate moving
targets against stationary clutter. The probability of detection depends on
the environment topography, but also on the relative radial velocity of the
target.

6.2 Wireless Radio Network Support

There are a number of different measurement types that can be used to posi-
tion a wireless network user. Most of the work focuses on the range measure-
ments depending on time of arrival (TOA), time difference of arrival (TDOA)
observations and received signal strength (RSS) observations, see [17] and the
references therein. Among such alternatives, the RSS measurements, which
do not require any additional hardware, are the most easily available. The
RSS measurement might, on the other hand, be much more noisy than other
type of measurements and prior information like the road maps proves to be
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Fig. 13: Snapshots from two GMTI road target tracking examples with an off-
road target model (left) and an on-road target model (right). The stationary
radar sensor is located near the lower right corner and the circles indicate all
detections, both false and true. A particle filter is used and the particles are
represented by dots. An on-road model is advantageous since the resulting
particle cloud is significantly denser, i.e., the variance is smaller. In particular,
when the target is not detected due to Doppler blindness, the prediction of
the target motion is better when using the road information.

crucial in obtaining a reasonable performance. The two most common models
connecting the target range to the RSS measurements are the general expo-
nential path loss model, which is known as Okumura-Hata model [19,42], and
a dedicated power map constructed off-line for the region of interest.

The Okumura-Hata model says that the RSS value in a log power scale
decreases linearly with the log-distance to the antenna i.e.,

zk = PBS − 10α log10(‖pBS − xpk‖2) + ek, (27)

where zk is the RSS measurement; xpk is the target position; PBS is transmit-
ted signal power (in dB); α is the path loss exponent; ek is the measurement
noise and pBS is the position of the antenna (base-station (BS)) and the
notation ‖ · ‖2 denotes the standard `2-norm. This is quite a crude approxi-
mation, where the noise level is high and further depends on multi-path and
non-line of sight (NLOS) conditions.

The second alternative is to determine the RSS values at discrete points in
the area of surveillance and save this in a database. This can be done using off-
line measurement campaigns, adaptively by contribution from users or using



Contents 31

cell planning tools. The advantage of this effort is a large gain in signal to
noise ratio and less sensitivity to multi-path and NLOS conditions. The set of
RSS values that are collected for each position from various BSs is called the
fingerprint for that location. The idea of matching observations of RSS to the
map of the previously measured RSS values is known as fingerprinting. The
set of all fingerprints forms an unconventional but informative measurement
model and this can be used in localization.

With both alternatives, there are two possible approaches: static and dy-
namic localization. In the static approach, no assumptions about the target
motion is made and for each measurement one generates a position estimate
based on the corresponding measurement. In this case, the estimator is a
static function of the input measurement. In the second approach, one can
use a motion model for the target behavior along with an estimator (which is
a dynamic function of the measurements) sequentially updating the estimates
with the incoming measurements. Since the information in different measure-
ments are fused by means of the motion model with such an approach, much
better accuracy is achievable.

In this section, we present the results obtained in the example study pre-
sented in [5] where WiMAX RSS data from three sites and seven BSs was
collected in the urban area (in Brussels) shown in Fig. 14. The collected data
was saved in a database and used to locate the target based on a separate
test data. The following five approaches were used to localize the target.
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Fig. 14: MAP of the area under study, sites with base stations and the mea-
surement locations.
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• Static Positioning: The test data is used in a static manner as described
above to locate the target. Basically, the position of the closest fingerprint
to the collected measurement becomes the estimate.

• Dynamic–OH–off-road: A particle filtering based approach with an off-
road (i.e., no road-map information) target motion model and the OH-
model of (27) as the measurement model.

• Dynamic–OH–on-road: A particle filtering based approach with a road-
constrained target motion model and the OH-model of (27) as the mea-
surement model.

• Dynamic–Fingerprinting–off-road: A particle filtering based approach
with an off-road (i.e., no road-map information) target motion model and
the fingerprint database as the measurement model. See the details on how
to utilize the fingerprints in the measurement likelihood calculation in [4].

• Dynamic–Fingerprinting–on-road: A particle filtering based approach
with a road-constrained target motion model and the fingerprint database
as the measurement model. See the details on how to utilize the fingerprints
in the measurement likelihood calculation in [4].

(a) Dynamic vs. Static Estimation (b) OH-model vs. Fingerprinting

Fig. 15: Wireless network supported tracking

The results in the form of the cumulative distribution functions of the posi-
tion estimation errors are shown in Fig. 15 in two plots. The dynamic and
static estimation results are compared in Fig. 15a. A definite advantage of
the dynamic approaches seen even without the road-map information with
95% probability though in rare events (below 0.67%) static estimation can
sometimes get better results. On average, the road information in the dy-
namic case seems to result in about 25m’s better accuracy. Fig. 15b compares
the OH-based and the fingerprinting based methods. Without the road con-
straints, the simple OH-model behaves much worse than the fingerprinting
based methods with positioning errors above 400m’s (95% line). However,
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when the on-road model is utilized, the accuracy can reach up to 100m’s
(95% line) which is even better than the off-road fingerprinting case. Hence,
the road map information is capable of making even the crudest measurement
models behave as good as sophisticated ones.

6.3 Sensor Network Support

This section considers the problem of localizing an unknown number of tar-
gets around an acoustic sensor network. Since acoustic power is additive at
each sensor, the RSS from different sources cannot be resolved and the frame-
work is difficult to extend to multiple target tracking. In practice, the expo-
nential signal decay rate implies that the closest target will dominate each
sensor observation. One applicable approach is to consider each sensor as a
binary proximity sensor as studied in for instance [3]. However, this requires
an excessive amount of sensors to get accurate multi-target tracking (MTT).
Another problem associated with the RSS measurements is that the emitted
acoustic powers from the targets are unknown and must be estimated along
with the target states. For these reasons, MTT ideas with acoustic sensors
appeared in the literature with either direction of arrival (DOA) [7,8,11,12] or
time difference of arrival (TDOA) [28] measurements. The power (and/or en-
ergy) based measurements case was also examined with few examples in [6,37]
which assume that either the number of targets or the emitted powers are
known.

When the road information is supplied, the problem can be tackled much
more easily. We here summarize results in [29]. The map of the area under
study is shown in Fig. 16 along with the road information and microphone
positions. The onroad position coordinates pη are marked in the figure at each
50 meters. We have 10 microphones collecting data at 4kHz placed around
the road. Each microphone position is illustrated with a cross sign in Fig. 16.

The synchronized recordings of a motorcycle and a car are used while the
correct positions are measured with GPS sensors. The correct positions of
the targets projected onto the road coordinates are shown in Fig. 17a. The
microphone network is also illustrated in Fig. 17a with cross signs at t = 0
denoting the closest onroad point to each microphone. The recordings for
the motorcycle and the car were obtained separately and we obtain our two-
target data by adding the sound waveforms for the two cases. The onroad
position coordinates are discretized uniformly with 5m distance between ad-
jacent points and the point mass filter based Emitted Power Density (EPD)
filter of [29] is run

1. For car’s sound data only;
2. For motorcycle’s sound data only;
3. For the superposed sound data of the car and the motorcycle.
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Fig. 16: The map of the area, road segment, microphones and coordinates
used in the example. The distance markings on the road segment denote the
onroad position coordinates. Microphone positions are illustrated with cross
signs.

The resulting position estimates obtained are illustrated in Fig.s 17b, 17c and
17d respectively. Single target detection and tracking seem to be good except
for some occasional missing detections in the motorcycle only case. In the
two target case, the target initiation delays a little and target loss happens
a little earlier. However, both targets can be tracked quite similarly to the
single target cases.

6.4 Vision Support

Vision sensors are bearings-only sensors providing the azimuth and inclina-
tion to the target relative the sensor platform. A vision sensor is here defined
as a staring-array electro-optical/infrared sensor (EO/IR) with limited field-
of-view (FOV). Let p = (X,Y, Z)T be the 3D position of the target relative
a global Cartesian reference system. For simplicity, assume that the sensor is
located at the origin. An observation at time t is the relative angles between
the sensor and the target, i.e.,

yk = h(xk, uk, ek) =

(
φk
θk

)
+ ek =

(
arctan2(Yk, Xk)

arctan2(Zk,
√
X2
k + Y 2

k )

)
+ ek, (28)
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Fig. 17: The correct onroad positions of the two targets and the estimation
results. The closest onroad point to each microphone is also illustrated with
cross signs at t = 0.

where ek is the measurement noise modeled as

ek ∼ N
(
0, σ2I2×2

)
. (29)

A measurement yk is obtained by transforming a detection at an image
point (u v)T to azimuth and inclination angles given the knowledge of the
sensor orientation. For an ideal vision sensor, a point pb = (Xb Y b Zb)T ,
expressed in Cartesian coordinates relative the camera fixed reference system,
is projected in a virtual image plane onto the image point (u v)T according
to the ideal perspective projection formula(

u
v

)
=

f

Zb

(
Xb

Y b

)
(30)
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where f is the focal length of the camera. However, in practice the intrin-
sic parameters of the vision sensor model must be estimated to handle lens
distortion etc.

Prior information about the environment, like the road network, will im-
prove the target tracking performance significantly. In particular, in the vision
sensor case, the problem is not fully observable if the sensor is stationary.
However, as the example below indicates, there is more prior information
apart from the road network that can support the estimation process. In this
simulation example a single car is tracked by a UAV equipped with a camera.
The simulation environment and the path of the car are shown in Fig. 18.
The sensor platform is flying in a circle with a radius of 100 meters and
approximately 100 meters above the ground, the approximate sensor view is
shown Fig. 19. An observation is the azimuth and inclination angles obtained
from a detection.

The results from three different target tracking filters are shown in Fig. 19
and Fig. 20. The first filter is a standard bootstrap PF that assumes that the
car will always be on the known road network manifold (this filter is called
“on-road PF”). The second filter is a bootstrap PF based on a coordinated-
turn like model that is not using the road network information (this filter
is called “off-road PF”). The third filter is a multiple model PF (MMPF)
with two sub-filters, one sub-filter identical to the on-road PF and one sub-
filter identical to the off-road PF (this filter is called “on/off-road MMPF”).
All filters have 1000 particles in total. The root mean square position errors
for 100 simulation runs are shown in Fig. 20. The car is occluded behind a
building between 12-17 [s] and the errors grow due to that, especially the off-
road PF have serious problem here. The car is rediscovered, but after about
18 [s] the car enters a parking lot that is not part of the road network model.
Hence the on-road PF diverge, but the MMPF and off-road PF can handle
that mode change. In Fig. 20 the on-road mode probability of the MMPF is
shown. When the car is on the parking lot the on-road probability is very
small.

Knowledge about the buildings and vegetation is also very useful to be
able to draw conclusions from non-detection [38]. In the current example the
car moves through an intersection just before it is occluded by a building,
see Fig. 19. A target tracking filter that is not using this so called “negative
information” will spread its particles on both roads since no detections are
received. However, a filter that utilizes the negative information would discard
the particles on the visible road segment, since if the car would have been on
that road segment it should have been detected.

Even though this example is a simulation where some problems, such as
navigation error and multiple targets are neglected, it is still possible to
draw some general conclusions. Using road network data as prior information
will improve the target tracking performance for sensor vision applications.
Especially when the motion of the sensor platform is rather limited since
bearings-only tracking performance depends very much on the movement of
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the sensor platform. The road information is also very useful to predict the
target motion in the case of non-detection, for instance due to occlusion.
However, algorithms that rely much on prior information should always be
used with a fail-safe algorithm that can take over when the prior information
is wrong. If the navigation error is slowly varying the measurements will be
biased and may cause major problems for the filter that uses the road network
as state space manifold, especially when the targets are close to intersections.
Using “negative information” is a conceptually simple thing to do to increase
the performance in environments and situations where the probability of
detection varies. The gain of negative information is more obvious when using
it in the road network context.

Fig. 18: Left: The simulation environment [32]. Right: The path of the car,
driving from left to right. The sensor platform is flying north of this area.
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Fig. 19: Left: The car to the right of the building will soon be occluded. Right:
The filter results. The MMPF (blue) and the off-road PF (black) are hard to
discriminate from the ground truth (green). The PF (red) is diverging when
the car is off-road.
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7 Conclusions

Map matching is an appealing approach to road-assisted navigation when
accurate position information is available, for instance from GNSS (global
navigation satellite systems), see Chapter In-Car Navigation Basics for a
survey. Without a reliable position sensor, the navigation problem is more
challenging, and a kind of dynamic map matching is needed that takes both
a motion model of the vehicle and the topology of the map into account.
We have surveyed state of the art algorithms for road-assisted navigation
and tracking using the following main principles for how to incorporate the
road-constraint into a filtering framework:

• The road constraint is included as a virtual measurement. This fits the
particle filter algorithm well, where the measurement update corresponds
to multiplying each weight with a scalar that depends on the distance to
the closest road point. The advantage is its simplicity. The disadvantage is
the potentially poor particle efficiency, where a large number of positions
end up outside the road network.

• The road constraint is converted into a direction process noise that projects
the state back to the road network. This is a commonly used approach in
tracking applications such as GMTI (ground moving target indicator). The
advantages are that it fits a Kalman filter framework, and that it provides
better particle efficiency in a particle filter than the virtual measurement
approach. The disadvantage is that the mathematical operation to gener-
ate such noise is quite complex, and that ad-hoc approximations may be
needed.

• The road network is interpreted as a manifold, where a discrete state is
used to represent the road network between junctions, and a continuous
state variable represents the one-dimensional position between the junc-
tions. The advantage is that this approach utilizes all information in an
efficient way. The disadvantage is a more complex algorithm.

A wide range of sensor combination and performance indicators were pre-
sented.

The position estimate from dynamic map matching can never be more
accurate than the road map itself, and commercial maps are always subject
to small deviations from reality. For navigation purposes, this does not pose
any problems. For advanced driver assistance systems (ADAS), the position
relative to the road and both stationary and dynamic obstacles are needed,
and this is the subject of Chapter Situational awareness and road prediction
for trajectory control applications.
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