
Input Design for Nonlinear Stochastic

Dynamic Systems - A Particle Filter

Approach

R. Bhushan Gopaluni ∗ Thomas B. Schön ∗∗

Adrian G. Wills ∗∗∗

∗ Department of Chemical and Biological Engineering, University of
British Columbia, Vancouver, Canada V6T 1Z3 (Tel: 604 827 5668;

e-mail: bhushan.gopaluni@ubc.ca).
∗∗ Division of Automatic Control, Linköping University, SE-581 83
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Abstract: We propose an algorithm for optimal input design in nonlinear stochastic dynamic
systems. The approach relies on minimizing a function of the covariance of the parameter
estimates of the system with respect to the input. The covariance matrix is approximated
using a joint likelihood function of hidden states and measurements, and a combination of state
filters and smoothers. The input is parametrized using an autoregressive model. The proposed
approach is illustrated through a simulation example.

1. INTRODUCTION

Input design is an important first step in parameter es-
timation. Often, the inputs are designed by optimizing
some function of the covariance matrix of the parameters.
Deriving this covariance matrix as an explicit function of
the inputs has proved to be a difficult problem. The early
work on input design was based on asymptotic covariance
expressions for linear models derived in Ljung [1985].
These expressions are asymptotic in both model order
and sample size. They are also simple and provide good
frequency domain intuition into the asymptotic variance
of the estimates and hence have been used extensively
for input design (Ljung and Yuan [1985], Yuan and Ljung
[1985], Gevers and Ljung [1986], Hjalmarsson et al. [1998],
Forssell and Ljung [2000]). They have also been success-
fully implemented in practice (Zhu [1998, 2003]).

Despite the wide spread use of the above mentioned
asymptotic expressions in input design, some recent work
has shown that covariance expressions based on asymp-
totic model order are not accurate (Xie and Ljung [2001],
Garatti et al. [2004], Ninness and Hjalmarsson [2004]).
There has also been work done on obtaining finite sam-
ple covariance estimates (Weyer et al. [1999], Weyer and
Campi [2002], Campi and Weyer [2005]). However, these
methods do not yet seem to be amenable to input de-
sign. More recently, the asymptotic covariance expressions
based on the Cramér-Rao lower bound have been used to
develop convex optimization based input design methods
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(Hildebrand and Gevers [2003], Jansson and Hjalmarsson
[2005]).

The parameter covariance estimates developed for linear
systems, in particular those developed for asymptotic
model order, are unfortunately, not applicable to all types
of nonlinear systems in a straightforward fashion. However,
if maximum likelihood methods are used for parameter
estimation, the Cramér-Rao lower bound can be used
to approximate the covariance estimates. In general, this
lower bound can not be written as an explicit function
of inputs and therefore, formulation of the input design
problem is rather challenging for nonlinear stochastic
systems. Consequently, the literature on input design for
such systems has been rather scarce despite attempts to
solve this problem for some special cases of nonlinear
systems.

An input design algorithm for static nonlinear systems
was developed in Vincent et al. [2010]. In Hjalmarsson
and Mårtensson [2007], the authors attempt to learn from
the linear input design case by considering certain types
of input-output nonlinear models and in Larsson et al.
[2010] an algorithm for FIR type nonlinear systems was
considered. However, to the best of the authors knowledge,
there are no known algorithms for general nonlinear state-
space models. In this work, we propose an input design
algorithm for nonlinear stochastic state-space models.

The proposed approach is based on the expressions for the
Cramér-Rao lower bound derived in Robert and Casella
[1999] and in Oakes [1999]. These expressions are often not
available as explicit functions of the input sequence. We
employ sequential Monte Carlo methods [Gordon et al.,
1993, Doucet and Johansen, 2011] in order to obtain
an approximation of the covariance matrix and then we



employ a parametrization of the input signal to render the
problem of input design computationally tractable. More
specifically it is a smoothing probability density function
for the state that is needed and this can be approximated
using particle smoothers, see e.g., Douc et al. [2010],
Doucet and Johansen [2011].

2. PROBLEM FORMULATION

Let us consider a nonlinear dynamic state-space model of
the form

xt+1 = f(xt, ut, θ) + wt, (1a)

yt = g(xt, ut, θ) + vt, (1b)

where xt ∈ Rn×1 is the n-dimensional state vector, ut ∈
Rs×1 is the s-dimensional input vector, yt ∈ Rm×1 is
the m-dimensional output or measurement vector, and
wt, vt are independent and identically distributed (i.i.d.)
Gaussian noise sequences of appropriate dimension, θ ∈
Rp×1 is a p-dimensional parameter vector and f(.), g(.) are
known nonlinear functions. We use (.)i:j , j > i to denote
a sequence of data from t = i to t = j. For instance yi:j
denotes the set of measurements {yi, yi+1, · · · , yj}. Let us
assume that the data from an experiment on a process
described by the above model consists of T samples and
that the true parameter vector is θ0.

There are many approximate approaches to parameter
estimation for the model in (1). Among them, the max-
imum likelihood approach has received significant atten-
tion, since in many cases it provides consistent estimates
(among other attractive properties). While these proper-
ties have not been shown for the nonlinear case consid-
ered here, we nevertheless develop an approach to de-
sign the input sequence to minimize a function of the
covariance matrix of parameters estimated through the
maximization of the likelihood function. The asymptotic
covariance of the maximum likelihood estimates is given
either by the negative inverse of the second derivative of
the log-likelihood function or by the inner product of the
first derivatives of the log-likelihood function (Cramér-Rao
lower bound). Let py(y1:T |u1:T , θ) be the density function
of the measurements. Then the covariance matrix of the
parameter estimates, denoted by Σ(u1:T , θ0), is given by
the following expressions,

Σ(u1:T , θ0) = −
[
Ey

( ∂2

∂θ∂θ′
log py(y1:T |u1:T , θ)

)]−1

θ=θ0

(2a)

=

[
Ey

(
∂

∂θ
log py(y1:T |u1:T , θ) ×

∂

∂θ
log py(y1:T |u1:T , θ)

′

)]−1

θ=θ0

(2b)

where (.)′ is used to denote the transpose of a vec-
tor and Ey denotes the expected value with respect to
py(y1:T |u1:T , θ). Using the parameter covariance expres-
sion, the input design problem is often expressed as,

min
u1:T

h(Σ(u1:T , θ0))

s.t. l(u1:T ) ≤ 0
(3)

where h(Σ(u1:T , θ0)) can take different forms depending
on the context of input design. It is common to use

h(Σ(u1:T , θ0)) = trace(Σ(u1:T , θ0)) or h(Σ(u1:T , θ0)) =
det(Σ(u1:T , θ0)). Furthermore, l(u1:T ) is a function of the
input that allows us to impose constraints on the input
magnitude or power or rate of change. The above input
design problem does not have any output constraints.
However, output constraints may be required in real prob-
lems and it is straightforward to include them in the above
formulation.

The optimization problem in (3) is non-trivial due to the
fact that often a functional form of h is unknown and that
the optimization could potentially be high dimensional
(dimensionality of the optimization variable being sT ) and
nonconvex. Even in the simplest case of linear systems
with Gaussian state and measurement noise, deriving an
explicit expression for h is difficult.

3. FOUR CHALLENGES AND OUR APPROACH

There are four challenges that we need to address in order
to make the optimization problem (3) tractable,

(1) we need an approximation of the covariance matrix;
(2) the input sequence needs to be characterized;
(3) we have to account for the fact that h(Σ(u1:T , θ0)

is not necessarily deterministic and it varies with a
particular realization of the inputs u1:T used in any
given experiment;

(4) the optimization problem must be solved efficiently
and reliably.

Another well-known, but under-appreciated challenge is
that the optimization problem (as posed in (3)) depends on
the true value of the parameters that need to be estimated.
In other words, we need an optimal input in order to obtain
the best possible estimate of θ0, however, that estimate
itself is needed to design the optimal input. Clearly, the
problem in (3) is not practical, however, an often accepted
remedy is to use an estimate of θ0 in (3). We believe that a
good solution to avoid having to use θ0 in (3) is to design
the input through an iterative approach, where an estimate
of θ0 is progressively improved. However, this approach is
beyond the scope of this work and is not further explored.
In the following sections, solutions are proposed for each
of the four challenges identified above.

We believe that any attempt to provide a generic analytical
solution to this problem will be very challenging at best.
Instead, we propose an approximation of the optimization
problem (3). Let us now discuss how to handle the four
challenges in more detail.

3.1 Challenge 1: Parameter Covariance Matrix

This section provides the expressions to be approximated
and briefly discusses how these approximations may be
obtained. In Section 4 we will then provide explicit ex-
pressions for how to compute these approximations.

The first challenge is to find an approximation of the co-
variance matrix. It is well known that the derivatives of the
density function of the measurements, ∂

∂θ
py(y1:T |u1:T , θ),

which are required to estimate covariance (as in (2)) are
hard to evaluate for nonlinear state-space models. How-
ever, due to the Markov property of the states in the state-
space model in (1), the joint density function of the hidden



states and the measurements pxy(x1:T , y1:T |θ) is easier to
evaluate. In Oakes [1999], it was shown that the covariance
matrix in (2a) can be expressed as a function of this joint
density function. The corresponding covariance matrices
are given by

Σ(u1:T , θ0) = −
[
Ey(

∂2

∂θ∂θ′
log py(y1:T |u1:T , θ))

]−1

θ=θ0

= −
[
Ey

(
∂2

∂θ∂θ′
Ex[log pxy(x1:T , y1:T |u1:T , θ)]+

∂2

∂θ∂θ′0
Ex[log pxy(x1:T , y1:T |u1:T , θ)]

)]−1

θ=θ0

(4)

where Ex is the expectation operator with respect to
px(x1:T |y1:T , θ0). The approximations that we employ in
this work, are easier to express if the expectation oper-
ator is outside the derivatives. The derivatives and the
expectation operators can be interchanged and (4) can be
expressed as (see Louis [1982], Robert and Casella [1999],
Duan and Fulop [2011])

Σ(u1:T , θ0) = −Ey

[
Ex

∂2

∂θ∂θ′
[log pxy(x1:T , y1:T |u1:T , θ)]+

+ V arx

(
∂

∂θ
[log pxy(x1:T , y1:T |u1:T , θ)]

)]−1

θ=θ0

(5)

where V arx is the variance with respect to px(x1:T |y1:T , θ0).
The covariance matrix in (2b), can also be similarly ex-
pressed using the joint density function as follows (Oakes
[1999]),

Σ(u1:T , θ0) =

[
Ey

(
∂

∂θ
Ex[log pxy(x1:T , y1:T |u1:T , θ)]

∂

∂θ
Ex[log pxy(x1:T , y1:T |u1:T , θ)]

′

)]−1

θ=θ0

(6)

The expressions for the covariance matrices given in (5)
and (6) can both be used in the input design problem.
The covariance matrix as expressed in (6) is inherently
positive definite, and therefore it is sometimes preferred.
However, numerical simulations suggest that the particle
approximations used in this work require a large number
of samples of states and measurements in order to reliably
approximate (6), as compared to those required to approx-
imate (5). The computational complexity of the particle
approximations (presented in Section 4) increases with the
number of samples and therefore, an approximation of (5)
is used in estimating the parameter covariance.

In order to approximate (5), we must be able to evaluate
high dimensional integrals with respect to py(y1:T |u1:T , θ)
and px(x1:T |y1:T , θ). The expected value Ex can easily be
approximated using sequential Monte Carlo methods [Gor-
don et al., 1993, Doucet and Johansen, 2011]. In the
following section, one such approximation is developed and
is used in the optimization problem in (3).

3.2 Challenge 2: Input Parametrization

An algorithm for input design is developed in this section,
by proposing solutions to the remaining three challenges
identified earlier. The second challenge is that of char-
acterizing the input sequence from t = 1 to t = T . A

naive approach to the optimization problem in (3) will
be to simply treat the vector u1:T as a high dimensional
optimization variable. However, this approach will render
the optimization rather inefficient if the length of exper-
iment (T ) is “large”. Instead, we propose to parametrize
the input sequence by using the following autoregressive
model,

ut = Φ(ut−1:t−nu
, θu) + rt, (7)

where Φ is a linear or nonlinear function of the input,
and θu is a parameter vector that defines this function.
Furthermore, rt ∈ Rs is a noise sequence independent of
the state and the measurement noise. The input in (7)
is uniquely determined by the coefficients θu and the
characteristics of noise rt. The noise sequence can also be
parametrized by assuming that it has a standard paramet-
ric probability density function. This representation of the
input naturally covers a wide range of input sequences,
with the range being dependent on the order and the form
of the function Φ.

3.3 Challenge 3: Formulating the Optimization Problem

The input design problem in (3) can now be posed as

min
θu

h(Σ(u1:T , θ0))

s.t.
1

T

T∑

t=1

[ut − Φ(ut−1:t−nu
, θu)]

2 ≤ σ2
r ,

l(u1:T ) ≤ 0,

(8)

where σ2
r is the variance of rt. The above formulation is

appealing from an optimization point of view as long as
the number of parameters in θu is much smaller than T .
It is easy to see that h(Σ(u1:T , θ0)) is deterministic only
if u1:T is deterministic. However, u1:T is stochastic due
to the nonlinear autoregressive model in (7). Assuming
that the noise sequences, rt, wt, and vt are independent,
a deterministic version of the optimization problem in (8)
can be formulated as,

min
θu

h(EuΣ(u1:T , θ0))

s.t.
1

T

T∑

t=1

Eu[ut − Φ(ut−1:t−nu
, θu)]

2 ≤ σ2
r ,

Eu[l(u1:T )] ≤ 0,

(9)

where Eu is the expected value with respect to the input.

3.4 Challenge 4: Solving the Optimization Problem

The fourth challenge is the optimization of the nonlinear
objective function in (9). An explicit functional form of
the objective function is difficult (if not impossible) to
derive for general nonlinear stochastic systems. However,
an approximation can be obtained using sequential Monte
Carlo methods. Any standard optimization algorithm can
be used on this approximate objective function.

4. APPROXIMATING THE COVARIANCE MATRIX

An approximation of the covariance matrix in (5), requires
an approximation of the following expected values of the
derivatives of the joint log-likelihood function,



I1
∆
= Ex

∂2

∂θ∂θ′
[log pxy(x1:T , y1:T |u1:T , θ)] (10a)

I2
∆
= Ex

(
∂

∂θ
[log pxy(x1:T , y1:T |u1:T , θ)]

)2

(10b)

I3
∆
=

[
Ex(

∂

∂θ
[log pxy(x1:T , y1:T |u1:T , θ)])

]2
(10c)

2 In Robert and Casella [1999], a Monte Carlo approx-
imation based on the measurement of a large number
of samples of the state trajectories was proposed. This
approach involves generating many samples of the state
trajectory from the distribution p(x1:T |y1:T , θ). For in-
stance, the approximation of the expected value of the
first derivative in I3 takes the following form,

√
I3 = Ex

∂

∂θ
[log pxy(x1:T , y1:T |θ)] ≈

1

N

N∑

i=1

∂

∂θ
[log pxy(x

(i)
1:T , y1:T |θ)], (11)

where x
(i)
1:T are samples of the states drawn from the

distribution p(x1:T |y1:T , θ) and N is the number of such
samples. This is a naive approach that does not account
for the likelihood of occurrence of a particular state tra-

jectory x
(i)
1:T . Instead, an approximation of the expectation

operator of the following form was suggested in Andrieu
et al. [2004],

Ex

∂

∂θ
[log pxy(x1:T , y1:T |θ)] ≈

1

N

N∑

i=1

w(i) ∂

∂θ
[log pxy(x

(i)
1:T , y1:T |θ)], (12)

where w(i) are weights proportional to the probability of

the occurrence of x
(i)
1:T . In Andrieu et al. [2004], it was

also pointed out that sampling directly from the high
dimensional density function p(x1:T |y1:T , θi) is inefficient.
An alternative approximation that only requires sampling
from low dimensional density functions can be developed
following the approach in Gopaluni [2008], Schön et al.
[2011].

Using the Markov property of the state-space model, the
expectation in (10c) can be written as,
√
I3 =

∫
∂

∂θ
log[p(x1|y1:T , θ)]p(x1|y1:T , u1:T , θ)dx1

+

T∑

t=2

∫
∂

∂θ
log[p(xt|xt−1, θ)]p(xt−1:t|y1:T , u1:T , θ)dxt−1:t

+

T∑

t=1

∫
∂

∂θ
log[p(yt|xt, θ)]p(xt|y1:T , u1:T , θ)dxt, (13)

where p(.) denotes the probability density function of the
corresponding variables. The integrals in (13) typically do
not have analytical solutions. However, particle approx-
imations of p(xt|y1:T , θ) and p(xt−1:t|y1:T , θ) allow us to
approximate the integrals. The following expressions for
particle approximations of these functions are derived in
Gopaluni [2008], Schön et al. [2011],

2 Please note that for simplicity the expressions for I1, I2 and I3 are
written for scalar θ but are valid for vector θ as well with appropriate
changes.

p(xt|y1:T , u1:T , θ) =

N∑

i=1

w
(i)
t|T δ(xt − x

(i)
t ), (14a)

p(xt−1:t|y1:T , u1:T , θ) =

N∑

i=1

w
(i)
t−1,tδ(xt−1:t − x

(i)
t−1:t),

(14b)

where w
(i)
t|T and w

(i)
t−1,t are appropriate weights and

x
(i)
t , x

(i)
t−1:t are particle samples of xt drawn from an im-

portance density function. Furthermore, δ represents the
Dirac-delta function. Complete expressions for the weights
are provided in the references cited. Using the above ap-
proximations of the density functions, the following ap-
proximation of

√
I3 can be obtained,

√
I3 ≈

N∑

i=1

w
(i)
1|T

∂

∂θ
log[p(x

(i)
1 |y1:T , θ)]dx1

+
T∑

t=2

N∑

i=1

w
(i)
t−1,t

∂

∂θ
log[p(x

(i)
t |x(i)

t−1, θ)]dxt−1:t

+
T∑

t=1

N∑

i=1

w
(i)
t|T

∂

∂θ
log[p(yt|x(i)

t , θ)]dxt. (15)

The particle approximations, Î1 and Î2, of I1 and I2 are
obtained analogously. An approximation of the covariance
matrix can now be written as,

Σ(u1:T , θ0) ≈ −
[
Ey

(
Î1 + Î2 − Î3

)]−1

θ=θ0

(16)

This approximation depends on both the input and the
measurement sequences. Clearly, no measurements are
available before an experiment is conducted. Therefore,
an approximation of the expectation with respect to the
measurements can be obtained as follows,

Ey(Î1 + Î2 − Î3) =∫
(Î1 + Î2 − Î3)py(y1:T |u1:T , θ0)dy1:T . (17)

The density function of the measurements conditioned on
the input sequence is unknown. However, a sample-based
approximation (albeit not very efficient) of the following
form can be obtained through simulations of the model
in (1),

py(y1:T |u1:T , θ0) ≈
1

My

My∑

i=1

δ(y1:T − y
(i)
1:T ), (18)

where y
(i)
1:T are samples of measurements and My is the

number of such samples generated. Using the approxima-
tion (18) of py(y1:T |u1:T , θ0), the integral in (17) can now
be approximated. The covariance matrix is still a function
of the stochastic input that is to be designed. Therefore, in
(9) we proposed using the average covariance matrix over
all the stochastic inputs possible. The expectation of the
objective function with respect to the input can similarly
be approximated using the sample-based approximation of
the input density function,

pu(u1:T |θu) ≈
1

Mu

Mu∑

i=1

δ(u1:T − u
(i)
1:T ), (19)

where Mu is the number of input sequences generated
for a given θu. The input samples can be generated



from the nonlinear autoregressive model in (7). These
approximations allow us to formulate an objective function
that is tractable. It should be noted that the accuracy of
the approximate objective function depends on a number
of factors, such as the number of particles used (N), the
number of samples of y1:T (My), the number of samples of
u1:T (Mu), the noise characteristics of the model and the
input.

5. RESULTING INPUT DESIGN ALGORITHM

The approximations introduced above allow us to refor-
mulate the input design optimization problem as follows,

min
θu

1

Mu

Mu∑

i=1

h(Σ(u
(j)
1:T , θ0))

s.t.
1

T

T∑

t=1

Eu[ut − Φ(ut−1:t−nu
, θu)]

2 ≤ σ2
r ,

Eu[l(u1:T )] ≤ 0.

(20)

The above optimization problem is often non-convex and
needs to be implemented through an iterative approach
that involves standard numerical solvers [Nocedal and
Wright, 2006]. The proposed algorithm for input design,
including the iterations in the optimization algorithm, is
summarized in Algorithm 1 below,

Algorithm 1 Input Design Using the Particle Smoother

1: Choose an initial guess for the input design parameter

vector θu = θ
(0)
u . Set j ← 0.

2: while not converged do
3: Generate an input sequence using (7).

4: Generate the My measurement samples, y
(i)
1:T , and

Mu samples of u
(j)
1:T through simulations of their

respective models.
5: Approximate the covariance matrix using (16), (18)

and (19).
6: Use any standard nonlinear optimization algorithm

to find a new input design parameter vector, θ
(j+1)
u

that decreases the value of the objective function in
(20).

7: Set j ← j + 1.
8: end while

The algorithm proposed above does come with a few
costs. It is computationally very expensive since it involves
multiple evaluations of particle approximations of the
smoothed and the filtered states. Moreover, a number of
approximations are made in arriving at the covariance of
the parameter estimates, making it difficult to quantify
the accuracy of these approximations. However, these
approximations have the desirable property of asymptotic
consistency (as N →∞ and M →∞).

As mentioned earlier, a practical input design algorithm
should not depend on the true model parameter vector θ0.
However, the method as presented above assumes that this
vector is known. It is beyond the scope of this work to ex-
plore iterative approaches that will allow us to circumvent
this problem, however, we would like to mention that this
algorithm is very much amenable to iterative input design.
The proposed algorithm is illustrated through a simulated
example in the subsequent section.

6. SIMULATION EXAMPLE

The following simulated example with a nonlinear state-
space model is taken from Wills et al. [2008].

xt+1 = axt +
xt

b+ x2
t

+ ut + wt, wt ∼ N (0, q), (21a)

yt = cxt + dx2
t + vt, et ∼ N (0, r), (21b)

where θ′0 = [a b c d] = [0.7 0.6 0.5 0.4] are parameters of
the model that are estimated. The state and measurement
noise covariances are both equal to 0.01 (i.e., q = r =
0.01). The state and measurement equations are both
nonlinear in xt and the parameter b appears nonlinearly.
We are interested in choosing an input that minimizes
the covariance of these parameters. Please note that the
variances of the state and the measurement equations
are also usually estimated, however, to keep the example
simple enough, we do not consider them as parameters.

The proposed algorithm was implemented with N = 100,
and T = 500. The following five cases were considered,

Case 1: A second order autoregressive model was
used,

ut = α1ut−1 + α2ut−1 + rt, (22)

where θ′u = [α1 α2] is the input parameter vector. The
variance of rt was 0.01. In order to ensure that the
model is stable, the input parameters were restricted
to α1 ∈ [0, 1) and α2 ∈ [0, 1) and the maximum
allowed input variance was unity (i.e., ‖u1:T‖22 ≤ 1).

Case 2: The input model in (22) was used and the
input power was constrained (i.e., ‖u1:T‖22 ≤ 0.25).

Case 3: A first order autoregressive model of the
following form was used,

ut = α1ut−1 + rt. (23)

The variance of rt was 0.01 and α1 ∈ [0, 1).
Case 4: Case 3 was repeated with the input power
constrained as in Case 2.
Case 5: The input was white noise with unit variance.

In all the above cases, the trace of the covariance matrix
was used in the objective function. A graph showing the
magnitude plot of the optimal input under the five cases
is shown in Figure 1. The trace of the covariance matrix in
cases 2 and 4, when the input power is heavily constrained,
is as expected more than that in cases 1 and 3. The trace
of the covariance matrix with white noise input is better
than that due to the optimal inputs generated through the
proposed algorithm.

The results in this example appear promising. However,
we faced problems in implementing an optimization al-
gorithm on the objective function in (20). As mentioned
earlier, the proposed optimization problem is potentially
nonconvex. Moreover, a number of approximations are
made in evaluating this objective function. As a result, the
objective function tends to be non-smooth and hence may
have many local minima. To get around the local minima,
in future, we will be considering stochastic optimization
algorithms.



Table 1. Trace of covariance matrix (the ob-
jective function in the input design problem)

Case 1 2 3 4 5

trace(Σ) 1.1e−3 2.2e−3 1.6e−3 2.6e−3 6.3e−4
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Case 3: First order input model − unconstrained

Case 4: First order input model − constrained

Fig. 1. The magnitude plot of the input in the five cases
considered.

7. CONCLUSIONS

An algorithm for input design in nonlinear stochastic
systems is proposed. The algorithm involves minimization
of a function of particle approximations of the Cramér-Rao
lower bound. The algorithm provides a tractable solution
to the problem considered. Simulation results suggest that
the approximations are reasonable and the algorithm is
a viable alternative to designing inputs through linear
approximation of nonlinear systems.
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