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Abstract: This article reviews authors’ recently developed algorithm for identification of
nonlinear state-space models under missing observations and extends it to the case of unknown
model structure. In order to estimate the parameters in a state-space model, one needs to
know the model structure and have an estimate of states. If the model structure is unknown,
an approximation of it is obtained using radial basis functions centered around a maximum
a posteriori estimate of the state trajectory. A particle filter approximation of smoothed
states is then used in conjunction with expectation maximization algorithm for estimating the
parameters. The proposed approach is illustrated through a real application.

1. INTRODUCTION

Nonlinear models are commonly used to describe the be-
havior of many processes. Process variables, typically, can
be divided into latent variables (that are not measured)
and measured variables. A combination of latent and mea-
sured variables can be elegantly used to represent the
dynamic behavior of a nonlinear process in the following
form,

xt+1 = f(xt, ut, θ) + wt

yt = g(xt, ut, θ) + vt (1)
where xt ∈ Rn is the n-dimensional state vector, ut ∈ Rs

is the s-dimensional input vector, yt ∈ Rm is the m-
dimensional output or measurement vector, and wt, vt

are independent and identically distributed Gaussian noise
sequences of appropriate dimension and variances Q and
R respectively, θ ∈ Rp is a p-dimensional parameter vector
and f(.), g(.) are some nonlinear functions that describe
the dynamics of the process. The nonlinear functions f(.)
and g(.) are usually obtained using physical laws such as
energy and mass balance expressions for the process. How-
ever, often, due to the complexity of chemical processes,
it is difficult to develop accurate and reliable nonlinear
functions. This article reviews the authors’ previously

developed nonlinear identification algorithm for known
functions f(.) and g(.), and extends it to an algorithm
for approximation and estimation of f(.) and g(.) using
a combination of radial basis functions and Expectation
Maximization (EM) algorithm.

The complexity of the parameter estimation problem con-
sidered in this article arises due to unknown nonlineari-
ties, and presence of unmeasured latent variables. If the
latent variables are measured, then the model parameters
can be estimated using a straightforward nonlinear least
squares method (Ljung [1999]). If the process dynamic
functions are linear, then any sub-space approach can be
used (Van Overschee and Moor [1996]). On the other hand,
if the process dynamic functions are known but nonlinear
and latent variables are not measured, then approximate
maximum likelihood approaches such as the one based on
local linearization in (Goodwin and Agüero [2005]), and
those based on particle filter approximation in (Gopaluni
[2008], Schön et al. [2006]) can be used.

The algorithm presented in this article extends the one in
authors’ previous work on parameter estimation for known
model structure (Gopaluni [2008]). The central idea is to
find the parameter vector, θ, that maximizes the likelihood
function of the observations, yt. Due to the presence of



latent variables, xt, and missing observations, it is difficult
to develop this likelihood function. On the other hand,
due to Markov property of latent variables, it is rather
straightforward to develop a joint likelihood function of
the latent and measured variables. Hence, expectation
maximization, a maximum likelihood approach, that it-
eratively maximizes the likelihood of the observations by
maximizing the joint likelihood function in each iteration is
used. EM algorithm is implemented by iteratively finding
the expected value of the joint likelihood function in the
first step and maximizing it in the second step (Dempster
et al. [1977]).

This approach using EM algorithm for parameter esti-
mation poses two problems. A structure of the process
model (or in other words, the functions f(.) and g(.)),
and the distribution of noise sequence is needed to de-
velop the joint likelihood function. Moreover, since the
process is nonlinear, the distributions of latent variables,
xt, and measurements are likely to be non-Gaussian even if
Gaussian noise is assumed. As a result, the expected value
of the joint likelihood function required in EM algorithm
can not be analytically calculated. In this article, the
authors’ approach for nonlinear system identification for
the case of known model structure is explained, and then
extended to an approach that uses radial basis functions
to approximate the process dynamics. The expected value
of the joint likelihood function is then approximated using
particle filters. The proposed approach is also extended to
handle missing observations.

Many process variables in the chemical industry are mea-
sured irregularly due to physical and economical con-
straints. However, often times, a discrete model valid at
a higher sample rate than most measurements is desired.
Such a model can be estimated from irregular measure-
ments by treating all unavailable measurements as missing
observations. For linear systems, EM algorithm has been
extensively used for parameter estimation under miss-
ing observations (Shumway and Stoffer [2000], Isaksson
[1993]), and also applied in practice (Raghavan et al.
[2006]). Other approaches for linear systems based on
lifting techniques (Li et al. [2003]) and continuous time
identification (Wang and Gawthrop [2001]) have also been
reported. While the importance of estimating nonlinear
processes under missing observations has long been rec-
ognized (Gudi et al. [1995], Tatiraju et al. [1999]), to the
best knowledge of the authors, no work has been reported
for nonlinear stochastic processes. The published work on
parameter estimation for nonlinear systems treats only
states as missing data. In this paper the EM algorithm
is adapted to also handle nonlinear processes with missing
observations.

2. EXPECTATION MAXIMIZATION ALGORITHM

Expectation Maximization is an elegant optimization al-
gorithm that constructs a complete likelihood function
including the hidden states and missing observations,
and maximizes the likelihood function of observed data
through iterations. A brief description of the EM algorithm
is presented in this section to facilitate the development of
the proposed algorithm in later sections.

For the state-space model described in this article, let
p(y1:T |θ) 1 denote the joint likelihood function of the
observed data. The maximum likelihood estimate of the
parameter vector is obtained by maximizing this observed
data likelihood function. For certain classes of state-space
models, such as linear systems, it is possible to derive an
explicit expression for this joint density. However, for the
model considered in this paper, it is difficult to develop
such an expression. Instead, using the Markov property of
the model it is straightforward to develop an expression for
the complete (including states and observations) likelihood
function, p(x1:T , y1:T |θ). In light of this feature of the
Markovian state-space model, the joint probability den-
sity function of the states and observations is iteratively
maximized to obtain a maximizing θ for p(y1:T |θ). This
maximization approach is called EM algorithm and can be
summarized in four steps: (1). Choose an initial guess of
the parameter vector θ0 ∈ Ω. (2). Estimate the states given
the parameter vector and the observations and evaluate
Q(θi, θ) =

∫
log[p(x1:T , y1:T |y1:T , θ)]p(x1:T |y1:T , θi)dx1:T .

(3). Maximize Q(θi, θ) with respect to θ. Call the maxi-
mizing value θi+1. (4). Repeat the above two steps until the
change in parameter vector is within a specified tolerance
level. The second step in the above algorithm is called E-
step and the third step is called M -step. The likelihood
function increases monotonically through these iterations.
Due to the nonlinear nature of the dynamics it is not
possible to analytically evaluate the Q-function. In the
next section, an approximation of the Q-function and an
approach to maximize it are presented.

3. THE Q FUNCTION

In this section an approximation of the Q function that
can handle missing observations, is developed using the
Markovian property of the state-space model.

3.1 Full Data Case

In the rest of this article, it is assumed that the in-
puts are known and all the density functions of the
form p(.|., ., u1:T ) are denoted by p(.|., .) without explicitly
showing the input dependence. Consider the case where all
the observations {y1, · · · , yT } and the inputs {u1, · · · , uT }
are available. Then, using the Markov property of the
state space model, the joint density function of states and
outputs can be written as

p(x1:T , y1:T |y1:T , θ) =

= p(x1|y1:T , θ)
T∏

t=2

p(xt|xt−1, θ)
T∏

t=1

p(yt|xt, θ)

Performing the integrations in the expression for Q, the
following form of Q function can be obtained

1 y1:T denotes the set {y1, · · · , yT }.



Q(θi, θ) =
∫

log[p(x1|y1:T , θ)]p(x1|y1:T , θi)dx1

+
T∑

t=2

∫
log[p(xt|xt−1, θ)]p(xt−1:t|y1:T , θi)dxt−1:t

+
T∑

t=1

∫
log[p(yt|xt, θ)]p(xt|y1:T , θi)dxt. (2)

From the above expression, notice that approximations
of the density functions p(x1|y1:T , θi), p(xt−1:t|y1:T , θi),
p(xt|y1:T , θi) would allow one to approximate the Q func-
tion.

3.2 Missing Data in Output

Suppose that only a portion of the output measurements
at time instants {t1, · · · , tγ} are available and that they are
not available at time instants {s1, · · · , sβ}. In other words
only {yt1 , · · · , ytγ

} out of {y1, · · · , yT } are available. For
notational simplicity, it is also assumed that y1 and yT are
available. Then the Q function can be written as

Q(θi, θ) =
∫

log[p(x1|yt1:tγ , θ)]p(x1|yt1:tγ , θi)dx1

+
T∑

t=2

∫
log[p(xt|xt−1, θ)]p(xt−1:t|yt1:tγ , θi)dxt−1:t

+
tγ∑

t=t1

∫
log[p(yt|xt, θ)]p(xt|yt1:tγ , θi)dxt

+
sβ∑

t=s1

∫
log[p(yt|xt, θ)]p(xt, yt|yt1:tγ , θi)dxtdyt (3)

In order to approximate the Q functions, approximations
of the following density functions are required:
Full data case

(1) p(xt|y1:T , θ)
(2) p(xt−1, xt|y1:T , θ)

Missing data case

(1) p(xt|yt1:tγ , θ)
(2) p(xt−1, xt|yt1:tγ , θ)
(3) p(xt, yt|yt1:tγ , θ) for t /∈ {t1, · · · , tγ}

Notice that the maximum dimensionality of the above den-
sity functions is max(2n, n+m), and hence the accuracy of
these density functions does not deteriorate with increase
in the size of available measurements as is the case with
the method suggested in Andrieu et al. [2004].

4. IDENTIFICATION WITH KNOWN MODEL
STRUCTURE

The following particle approximations of the density func-
tions identified above can be obtained using Bayes’ rule
and importance sampling.

p(x1|yt1:tγ , θ) =
N∑

i=1

w̄
(i)
1|1δ(x1 − x

(i)
1 )

p(xt−1, xt|yt1:tγ
, θ) =

N∑

i=1

w̄
(i)
t,t−1δ(xt−1 − x

(i)
t−1)δ(xt − x

(i)
t )

p(xt|yt1:tγ
, θ) =

N∑

i=1

w̄
(i)
t|T δ(xt − x

(i)
t )

p(xt, yt|yt1:tγ , θ) =
N∑

i=1

w̄
(i)
t|xδ(xt − x

(i)
t )δ(yt − y

(i)
t )

where x
(i)
t represent state particles, y

(i)
t represent particles

of missing observations, w̄
(i)
1|1, w̄

(i)
t,t−1, w̄

(i)
t|T , w̄

(i)
t|x are weights

proportional to the corresponding density functions, and
δ(.) is a dirac-delta function. These weights depend on the
knowledge of the functions f(.) and g(.) or their respec-
tive approximations. Complete derivations of the above
expressions for particle approximations of various density
functions are presented in Gopaluni [2008]. By combining
the equations for the filter, smoother and the joint density
functions, one can approximate the Q function. Once an
approximation of the Q function is available, it is possible
to maximize it with respect to the parameter vector and
obtain the next iterate of the EM algorithm. By substitut-
ing the particle approximations of the density functions in
(3), approximate Q function can be written as

Q(θ′, θ) ≈
N∑

i=1

w̄
(i)
1|1 log[p(x(i)

1 |yt1:tγ , θ)] +
T∑

t=2

N∑

i=1

w̄
(i)
t,t−1

log[p(x(i)
t |x(i)

t−1, yt1:tγ , θ)] +
tα∑

t=t1

N∑

i=1

w̄
(i)
t|T log[p(yt|x(i)

t , θ)]

+
sβ∑

t=s1

N∑

i=1

w̄
(i)
t|x log[p(y(i)

t |x(i)
t , θ)]

(4)

Then the EM algorithm can be summarized as
(0). Initialization: Initialize the parameter vector to θ0.
Set i = 0. (1).Expectation: Evaluate the approximate
Q function according to (4) using θ′ = θi. (2). Maxi-
mization: Maximize the Q function with respect to θ and
call the maximizing parameter, θi+1. Maximization can
be performed using any standard optimization algorithm.
Then set θ = θi+1. (3). Iterate: Repeat steps 1 and 2
until the change in parameter vector is within a specified
tolerance level.

The maximization step is performed using standard non-
linear programming algorithms.

5. IDENTIFICATION WITH UNKNOWN MODEL
STRUCTURE

As mentioned in the previous section, the weights in the
particle approximations of various density functions de-
pend on knowing the structure of state and measurement
dynamic functions, namely f(.) and g(.). Hence, if the
process dynamics are unknown, then an approximation



of the dynamics is needed to apply EM algorithm. It is
well-known that any function can be approximated to an
arbitrary degree of accuracy using basis functions such
as radial basis functions. Therefore, the model in (1) is
approximated using radial basis functions as follows:

xt+1 =
Ix∑

i=1

hiρi(xt, ut, ci, σx) + Axt + But + wt

yt =
Iy∑

i=1

giγi(xt, ut, di, σy) + Cxt + Dut + vt

where ρi(., .) and γi(., .) are the radial basis functions
centered around ci and di with radii σ2

x and σ2
y

2 respec-
tively, A, B, C, D are appropriate matrices that are used
to capture any linear dynamics in the model. hi and gi

are constant vectors of appropriate dimensions. Ix and Iy

are the number of basis functions used in the state and
observation equations. Theoretically, even linear dynamics
in the process can be approximated if sufficiently large
number of radial basis functions are used. In order to
reduce the total number of parameters, and capture linear
dynamics directly, linear terms involving the matrices A,
B, C, and D are added. In this article, radial Gaussian
basis functions of the following form are used:

ρi(xt, ut, ci, σx) = e[−(x̄t−ci)
T σ−2

x (x̄t−ci)]

γi(xt, ut, di, σy) = e(−[x̄t−di)
T σ−2

y (x̄t−di)]

where x̄t = [xt ut]T 3 is the concatenated vector of
states and inputs. The parameter vector θ includes all the
constant parameters in the above model that describe the
process behavior, and is defined as θ = (θl, θnl), where θl

consists of all “linear” parameters, hi, gi, Q and R, and
θnl consists of all “nonlinear” parameters, ci, di, σx, σy.

Now that an approximate functional form of the state and
measurement dynamic functions is available, the approxi-
mate Q function in (4) can be evaluated by estimating the
appropriate weights. Unlike the case with known model
structure, the maximization of Q function is performed in
two steps using separable least squares. It is easy to notice
that the parameters in θl enter the model linearly, while
those in θnl enter the model nonlinearly. Hence, a two step
procedure where the linear parameters are estimated in
the first step using linear least squares, and the nonlinear
parameters are estimated in the second step, using the
previous estimate of linear parameters, through nonlinear
least squares is proposed. The procedure is described be-
low.

Step 1 Starting with an initial guess for the nonlinear
parameter vector, θnl, the Q function is maximized with
respect to θl. This maximization can be achieved through
linear least squares. Define the following matrices,

2 Please note that, for the sake of keeping the notation simple, it is
assumed that all the basis functions in the state and measurement
equations have identical radii. However, the development presented
in this work is valid even if they are not identical.
3 Please note that we have used T to denote length of data and
also to denote transpose of a matrix. Usually the context makes this
difference obvious.

Ωx = [h1 h2 · · ·hIx
A B]

st = [I1ρ1(xt, ut, c1, σx) I1ρ2(xt, ut, c2, σx) · · ·
I1ρIx

(xt, ut, cIx
, σx) xt ut]

where I1 is a vector of ones of appropriate dimensions.
Noticing that the Q function is convex and quadratic in
Ωx, through straightforward calculations, it can be shown
that

Ωx =

[
T∑

t=1

< xts
T
t >xx

][
T∑

t=1

< sts
T
t >xx

]−1

(5)

where < . >xx is used to denote integration with respect to
the density function p(xt−1, xt|yt1:tγ

, θ). The integrations
can be performed using particle approximation of the
corresponding density function. The state co-variance can
be shown to be

Q =
1
T

T∑
t=1

〈
(xt+1 − Ωxst)xT

t+1

〉
xx

.

Similarly, defining the matrices,

Ωy =
[
g1 g2 · · · gIy C D

]

rt = [I1γ1(xt, ut, d1, σy) I1γ2(xt, ut, d2, σy) · · ·
I1γIy (xt, ut, dIx , σy) xt ut

]

and noticing that the Q function is convex and quadratic
in Ωy, it can be shown that,

Ωy =

[
tγ∑

t=t1

< ytr
T
t >x +

sβ∑
t=s1

< ytr
T
t >yx

]

[
tγ∑

t=t1

< rtr
T
t >x +

sβ∑
t=s1

< rtr
T
t >yx

]−1

(6)

where < . >x denotes integration with respect to the
density function p(xt|y1:T , θ) and < . >yx denotes integra-
tion with respect to the density function p(yt|xt, θ). The
measurement noise co-variance can be shown to be,

R =
1
T

[
tγ∑

t=t1

〈
(yt − Ωyrt)yT

t

〉
x

+
sβ∑

t=s1

〈
(yt − Ωyrt)yT

t

〉
yx

]
.

(7)

All the integrations are performed using corresponding
particle approximations. The parameters in the matrices
Ωx, Ωy, Q, and R constitute the linear parameter vector,
θl.

Step 2 : In step one, it is assumed that the centers and
widths of the radial basis functions are known. However,
in practice, they are usually unknown. In this step, centers
and radii are estimated. The basic idea is to obtain a max-
imum a posteriori (MAP) estimate of the state trajectory
and fix centers and radii that provide the best possible
predictions of MAP state estimate and the observations.
The MAP estimate of the state under missing observations
is obtained using a modified version of Viterbi algorithm
described in Godsill et al. [2001]. The modified version ac-



counts for missing observations. The algorithm is described
below for the sake of completeness 4 .
Viterbi Algorithm

1. Initialization: For 1 ≤ i ≤ N , δ1(i) = log(p(x(i)
1 )) +

log(p(y1|x1)).
2. Recursion: For 2 ≤ t ≤ T , and 1 ≤ j ≤ N ,

δt(j) =





log(p(yt|x(j)
t )) + max

i
[δt−1(i)+

log(p(x(j)
t |x(i)

t−1))
]
if yt is measured

max
i

[
log(p(y(i)

t |x(j)
t )) + δt−1(i)+

log(p(x(j)
t |x(i)

t−1))
]
if yt is missing

ψt(j) = arg max
i

[
δt−1(i) + log(p(x(j)

t |x(i)
t−1))

]

3. Termination: iT = arg maxi δT (i) and xMAP (T ) =
x

(iT )
T .

4. Backtracking: For t = T − 1, T − 2, · · · , 1, it =
ψt+1(it+1), and xMAP (t) = xt(it).

Now the centers and radii of radial basis functions are
estimated using standard nonlinear least squares on the
MAP trajectory of states, MAP estimate of missing obser-
vations, and the available input-output data.

5.1 The Algorithm

The complete proposed identification algorithm is summa-
rized below:

0. Initialization: Initialize the parameter vector to θ0.
1. Expectation: Approximate the expected value of

the complete log-likelihood function (E-step) using
particle filters.

2 Maximum a Posteriori Estimate: Obtain a max-
imum a posteriori estimate of the state trajectory
using Viterbi algorithm. Using this MAP estimate of
the state trajectory, fix the centers and variances of
the radial basis functions. In other words, estimate
(θnl)i+1, where i denotes the number of EM algorithm
iterations performed so far.

3. Maximization: Maximize the Q function with re-
spect to θl and call the maximizing parameter,
(θl)i+1. Then set θi+1 = [(θl)i+1 (θnl)i+1].

4. Iterate: Repeat steps 1, 2, and 3 until the change in
parameter vector is within a specified tolerance level.

6. EXAMPLE

The proposed approach is applied on data collected from
a real continuous stirred tank reactor (CSTR). The gov-
erning equations of this popular CSTR, shown in figure 1,
are given below (Morningred et al. [1992], Chen [2004])

dCA

dt
=

q

V
(CAi − CA)− k0CAe−EA/T

dT

dt
=

q

V
(Ti − T )− ∆H

ρCp
k0CAe−EA/T − ρcCpc

ρCpV
qc

4 for notational clarity, the parameter dependence is not shown in
the density functions

Fig. 1. Continuous Stirred Tank Reactor - Picture taken
from Seborg et al. [2004].

(1− e
− hA

qcρcCpc )(T − Tc)

where CA is the concentration of the reactant in the
reactor, T is the temperature in the reactor, q is the
flow rate, V is the volume of the reactor, CAi and Ti

are inflow concentration and temperature, k0CAe−EA/T

is the reaction rate, ∆H is the reaction heat, ρ and ρc

are the densities of the reactant and the cooling fluid
respectively, Cp and Cpc are the corresponding specific
heats, h and A are the effective heat transfer coefficient and
area respectively, Tc and qc are the temperature and flow
rate of the cooling fluid. Finite difference discretization
of the above continuous time differential equations results
in the following model, where the state vector is xt =
[xt(1) xt(2)] = [CA(t) T (t)], and

f(xt, ut, θ) = xt−1

+ ∆t




q

V
(CAi − xt−1(1))− θ1xt−1(1)e−EA/xt−1(2)

q

V
(Ti − xt−1(2))− θ2xt−1(1)e−EA/xt−1(2)




+




0
ρcCpc

ρCpV
ut−1

[
1− e−θ3A/(ut−1ρcCpc)

]
(Tc − xt−1(2))




where θ1 = k0, θ2 = (k0∆H)/(ρCp), θ3 = hA,
g(xt, ut, θ) = xt and ∆t is the discretization sample time.
CAi and qc are input variables.

Using real measurements from an experiment conducted
on this CSTR 5 , different models are developed. The f(.)
and g(.) functions in the model are approximated using
radial basis functions with Ix = 10, Iy = 10. The data
set consists of 1000 samples of concentration, CA, and
temperature, T , and coolant flow rate, qc, measurements.

Full Data Case: The proposed algorithm is applied
on this data, with randomly chosen initial guess for the
paramter vector. The predictions of concentration from
the estimated model for different prediction horizons are
shown in figure 2. The %-fit, at these prediction horizons,
calculated with the estimated model is comparable to that
of input-output Hammerstein-Weiner (HW) models built
5 Data obtained from “Database for the Identification of Systems”
- http://homes.esat.kuleuven.be/smc/daisy/



Table 1. % fit of the models for different
prediction horizons

% missing data Prediction Horizon

1 5 10 20

0% 89% 82% 75% 65%

5% 88% 79% 73% 59%

10% 88% 79% 69% 58%

15% 87% 76% 71% 60%

20% 87% 76% 71% 58%

using Matlab system identification toolbox. However, it
should be noted that while there is no realistic and fair
way to compare the complexities of HW and state space
models, an attempt is made to compare the “best” trial
and error based HW model with the state-space model es-
timated using the proposed approach. The main advantage
of the proposed method, over other nonlinear input-output
identification methods, is in its ability to handle missing
data.

Missing Data Case: In order to test the ability of the
proposed algorithm to estimate parameters in presence
of missing observations, four different subsets of the data
are created by randomly choosing a fraction of the mea-
surements. These subsets are created with 5%, 10%, 15%,
and 20% of the observations missing. Table 1 shows the
percentage fit of the various models. It is well-known that
the bias and variance errors of the estimated parameters
increase with increase in the fraction of missing obser-
vations. This phenomenon can be observed in table 1
through the deterioration in the predictive ability of the
models obtained from data sets with higher percentages of
missing observations. The relatively poor performance of
the models at large prediction horizons can be explained
by the choice of input excitation used. The input-output
data from the process is collected by exciting the input
using a bi-level PRBS signal. It is believed that a multi-
level PRBS excitation signal will improve the %-fit of the
above models.
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Fig. 2. True and predicted concentration profiles - Full
data case.

7. CONCLUSIONS

An approach to identify stochastic nonlinear systems using
a combination of expectation maximization algorithm and

particle filters is presented. This approach is extended to
handle missing observations and to the case of unknown
model structure. The developed algorithm is applied to a
real continuous stirred tank reactor.
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