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1 Implementation Details – Cholesky updates of the Matrix K̃

The Cholesky decomposition of a positive-definite matrix K is a decomposition into a lower trian-
gular matrix L, according toK = LLT, where we refere to L as the Cholesky factor ofK. Consider
a symmetric positive-definite matrix K with Cholesky factor L, both with block entries according
to

K =

(
K11 K12 K13

× K22 K23

× × K33

)
L =

(
L11 0 0
L21 L22 0
L31 L32 L33

)
, (1)

where K12 is a column vector, K22 is a scalar and K23 is a row vector. We construct the matrix K̃
by replacing one row and one column in K. The task is now to make use of this decomposition in
order to find the Cholesky factor M of the matrix K̃,

K̃ =

K11 K̃12 K13

× K̃22 K̃23

× × K33

 K̃ = MMT, M =

(
M11 0 0
M21 M22 0
M31 M32 M33

)
. (2)

without having to explicitly compute yet another Cholesky decomposition. Put in slightly different
words we want to express the block entries of the Cholesky factor M in terms of the block entries
in L that we already have available to us in (1).

From (1) we have

K = LLT =

L11L
T
11 L11L

T
21 L11L

T
31

× L21L
T
21 + L22L

T
22 L21L

T
31 + L22L

T
32

× × L31L
T
31 + L32L

T
32 + L33L

T
33

 (3)

allowing us to identify the following relationships

K11 = L11L
T
11, (4a)

K21 = L21L
T
11, (4b)

K31 = L31L
T
11, (4c)

K22 = L21L
T
21 + L22L

T
22, (4d)

K32 = L31L
T
21 + L32L

T
22, (4e)

K33 = L31L
T
31 + L32L

T
32 + L33L

T
33. (4f)

From (4a) and (2) we have

M11 = L11. (5a)
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By similar identifications of terms we have

M21 = K̃21L
−T
11 , (5b)

M31 = L31, (5c)

M2
22 = K̃22 −M21M

T
21, (5d)

M32 =
1

M22

(
K̃32 −M31M

T
21

)
, (5e)

M33M
T
33 = K33 −M31M

T
31 −M32M

T
32, (5f)

Using back-substitution it is straightforward to find the factors M21 and M31 by exploiting the fact
that the L11 matrix is lower triangular. The term M22 is scalar and found simply via a square
root operation and the term M32 is given by (5e). However, computing M33 by a direct Cholesky
decomposition is too expensive and again it comes down to exploiting the structure inherent in the
problem. Let us start by inserting (4f) into (5f), resulting in

M33M
T
33 = L33L

T
33 + L31L

T
31 + L32L

T
32 −M31M

T
31 −M32M

T
32 (6a)

= L33L
T
33 + L32L

T
32 −M32M

T
32, (6b)

where the last equality follows (5c). Since L32L
T
32 and M32M

T
32 are both rank one, we can now

compute M33 by one rank-one update and one rank-one downdate of L33. See [1] for an overview
of rank-one update/downdate methods. This concludes our work in finding the decomposition K̃ =
MMT.

2 The CPF-AS Algorithm

The basic idea underlying PMCMC is to use SMC to construct a Markov kernel leaving the exact
joint smoothing distribution invariant. Hence, we seek a family of ergodic Markov kernels on XT+1,

{Mθ : θ ∈ Θ}, (7)

such that, for each θ, Mθ(x0:T | x̃0:T ) leaves p(x0:T | θ,y0:T ) invariant. In PGAS, these kernels
are constructed using a procedure referred to as a conditional particle filter with ancestor sampling
(CPF-AS). This procedure is particularly suitable for non-Markovian latent variable models [2], as
it relies only on a forward recursion.

CPF-AS is similar to a standard SMC sampler, but with the important difference that one particle
at each time step is specified a priori. Let these particles be denoted x̃0:T = {x̃0, . . . , x̃T }. More
precisely, we condition on the event that x̃t is contained in the collection of particles {xi

t}Ni=1,

generated at time t. To accomplish this, we sample according to xi
t ∼ p(xt | θ,x

ai
t

0:t−1) only for
i = 1, . . . , N − 1. The N th particle is then set deterministically: xN

t = x̃t. The CPF-AS is given
in Algorithm 1.

The conditioning on a pre-specified collection of particles implies an invariance property of the
CPF-AS, which is key to its applicability in an MCMC sampler.
Proposition 1. Let the support of the target density be a subset of the support of the proposal density.
Then, for any θ and any N ≥ 2, the procedure

(i) Run Algorithm 1 conditionally on x̃0:T ;

(ii) Sample x̃′0:T with P(x̃′0:T = xi
0:T ) = wi

T ;

defines an irreducible and aperiodic Markov kernel MN
θ on XT , with invariant distribution p(x0:T |

θ,y0:T ).

Proof. The invariance property follows by the construction of the CPF-AS in [2], and the fact that
the law of x̃′0:T is independent of permutations of the particle indices. This allows us to always
place the conditioned particles at the N th position. Irreducibility and aperiodicity follows from [3,
Theorem 5].
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Algorithm 1 CPF-AS, conditioned on x̃0:T

1. Initialize:
(a) Draw xi

0 ∼ p(x0 | θ,y0) for i = 1, . . . , N − 1.
(b) Set xN

0 = x̃0.
(c) For i = 1, . . . , N , set wi

0 ∝ p(y0 | θ,xi
0), where the weights are normalized to sum to 1.

2. For t = 1, . . . , T do:

(a) Draw ait with P (ait = j) = wj
t−1 for i = 1, . . . , N − 1.

(b) Draw xi
t ∼ p(xt | θ,x

ai
t

0:t−1) for i = 1, . . . , N − 1.

(c) Draw aNt with P(aNt = j) ∝ wj
t−1p(x̃t:T | θ,xj

1:t−1).

(d) Set xN
t = x̃t.

(e) For i = 1, . . . , N , set wi
t ∝ p(yt | θ,xi

t), where the weights are normalized to sum to 1.

Consequently, if x̃0:T ∼ p(x0:T | θ,y0:T ) and we sample x̃′0:T according to the procedure given
in Proposition 1, then, for any number of particles N , it holds that x̃′0:T ∼ p(x0:T | θ,y0:T ). For
N = 1 we get, by construction, x̃′0:T = x̃0:T , i.e. the trajectories are perfectly correlated (this is
why we need N ≥ 2 to get an irreducible kernel). On the other hand, as N →∞, the conditioning
will have a negligible effect on the CPF-AS. Hence, x̃′0:T will be effectively independent of x̃0:T

and (with an infinite number of particles) distributed according to the exact smoothing distribution.
The number of particles N will thus affect the mixing of the Markov kernel MN

θ . The invariance
property of the kernel holds for any N , but the larger we take N , the smaller the correlation will be
between x̃′0:T and x̃0:T . However, it has been experienced in practice that the correlation drops off
very quickly as N increases [2, 4], and for many models a moderate N is enough to obtain a rapidly
mixing kernel.

3 An Additional plot for the Nonlinear System Benchmark

In Figure 1 we show the values of the hyper-parameters that are learnt during the experiment.
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Figure 1: Hyper-parameter samples.
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