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Abstract—A common computer vision task is navigation
and mapping. Many indoor navigation tasks require depth
knowledge of flat, unstructured surfaces (walls, floor, ceiling).
With passive illumination only, this is an ill-posed problem.
Inspired by small children using a torchlight, we use a spotlight
for active illumination. Using our torchlight approach, depth
and orientation estimation of unstructured, flat surfaces boils
down to estimation of ellipse parameters. The extraction of
ellipses is very robust and requires little computational effort.
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I. INTRODUCTION

Controlled illumination for computer vision is a well
known technique for solving hard vision problems or achiev-
ing high accuracy. Examples include estimation of depth
maps using structured light [1], range cameras using sheets
of light [2], shape from shading [3], and BDRF estima-
tion [4]. Humans also use active illumination for analysing
the depth-structure of a scene, e.g. small children using
a torchlight (flashlight in AE). However, to the best of
our knowledge, simple torchlights have not been used for
computer vision so far.

A common computer vision task is navigation and map-
ping. Many indoor navigation tasks require depth knowledge
of flat, unstructured surfaces (walls, floor, ceiling). With
passive illumination only, this is an ill-posed problem, but
using our torchlight approach, it becomes straightforward.
Since a camera is a projective sensor, the illumination source
must either be located at some distance from the camera, or
the emitted light must be bundled by a mirror, displacing
the virtual locus of the light source.

A potential field of application is robot navigation in
(partly) collapsed buildings, where no accurate maps are
available, no or bad illumination forces the robot to carry
along its own light source, and the floor, walls, and ceiling
might be covered by dust. Algorithms must be robust under
these circumstances. Processing must be simple and fast,
since the computations must be performed onboard and
resolution might be poor. Our torchlight approach fulfills
these requirements.

Active illumination as used in the literature, mostly makes
use of points and lines (laser, grids, etc), because this is
easy to analyse in geometric terms. Due to the small spatial
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Figure 1. The relative pose between the camera and a planar surface can
be obtained by fitting an ellipse to the projection of the light beam. The
final equations needed for the estimation can be seen below the illustration,
see section 2 for nomenclature.

support of these light-patterns, they are deemed to be brittle
when it comes to rough surfaces or occlusions. Using a light-
beam from a torchlight is probably more robust and the
resulting pattern on a flat surface (a filled ellipse) is easy
to analyse.

We propose a simple but robust method for estimating
3D plane parameters from a single perspective view of the
light-beam reflection, see Fig. I. The algorithm consists of
three steps: boundary extraction, ellipse fitting, and plane pa-
rameter computation. The method is tested in a setting with
low-cost equipment, consisting of a rechargeable spotlight
and a laptop webcam.

The paper is structured as follows: In the second section,
we give the formulation of ellipses in terms of Fourier
descriptors, derive the geometry of the projected light beam
and the estimation equations for the plane parameters, and
describe the experimental setup. The results are documented
in the third section and the paper is concluded with a
discussion of the results.



II. METHODS

Since Fourier descriptors [5] are complex valued and in
order to simplify the algebraic expressions, all in-plane
coordinates are represented using complex numbers.

A. Ellipses and Fourier Descriptors

Let C denote the set of complex numbers. Then an ellipse
E ⊂ C is defined by two foci f1 ∈ C and f2 ∈ C, such that
all ellipse points z ∈ E fulfill the property

|z − f1|+ |z − f2| = 2a , (1)

for some a ∈ R. The distance between the foci is 2c.
If we rotate the ellipse such that its principal axes are

aligned with the coordinate system (this is achieved by
multiplying with w = (f2 − f1)/2c), we obtain

Re{w(z − z0)}2
a2

+
Im{w(z − z0)}2

b2
= 1 , (2)

where b =
√
a2 − c2 and z0 = (f1 + f2)/2 is the center of

the ellipse.
An ellipse can be parametrized by one angle using two

complex exponentials
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e−iφ = a cosφ+ ib sinφ . (4)

That means that the Fourier descriptors of an elliptic
contour are all zero except for the frequencies {−1, 0, 1}
where the DC part is given by the center z0. If the extracted
contour deviate from an ideal ellipse, restricting the Fourier
descriptors to these frequencies corresponds to minimizing
the quadratic error of the contour according to Bessel’s
inequality and Parseval’s theorem [6].

B. Projected Cylinder Sections

From a geometric point of view, there is no difference
between a stereo rig and a rig carrying a camera and a
torchlight - the geometry is the same. One implication is that
estimates becomes more accurate with increasing baseline.
We achieve this by bundling the light with a mirror and thus
displacing the effective center of the light source.

We assume a parabolic mirror in the torchlight, which
results in a collinear lightbeam [7]. The collinear light beam
is modeled as a light cylinder of radius R which shares
its axis with the optical axis of a perspective camera. The
coordinate system is placed in the optical center with Z
being the optical axis. The focal length is denoted by f .

The light cylinder is hence given as

L(X,Y, Z) =

{
1 X2 + Y 2 ≤ R2

0 X2 + Y 2 > R2
. (5)

The light is reflected by a plane P at distance Z0

parametrized over (X,Y ) as

Z(X,Y ) = n1X + n2Y + Z0 , (6)

such that (n1, n2,−1) is normal to the plane. This vector
and Z0 fully parametrize the plane in 3D space. We assume
that the reflectance does not decay with the angle to the
normal vector.

The image of the reflected light is obtained by computing
the projection (note the complex parameterization of the
image plane z = x+ iy)

z =
(X + iY )f

Z(X,Y )
=

(X + iY )f

Re{n̄(X + iY )}+ Z0
, (7)

where n = n1 + in2. It is not trivial to see that (7) is an
ellipse if (X,Y ) are points of a circle. Using homogeneous
coordinates, one can derive the corresponding conic [8], p.59
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for points on the cylinder, such that X2 + Y 2 = R2.
From C we compute the ellipse parameters according

to [9] that are required for identifying (3). For C describing
an ellipse, we require Z2

0 > R2|n|2. We get the center of
the ellipse (DC Fourier descriptor) as

z0 =
fn

|n|2 − Z2
0

R2

(10)

The orientation of the major axis is given by the angle of
z0: w̄=z0/|z0| = n/|n|. The coefficients a and b in (2) are
given as

a =
fZ0

(
Z2

0

R2 − |n|2)R
, (11)

b =
f√

Z2
0

R2 − |n|2
. (12)

This can be verified by setting X + iY = R exp(iθ) in (7)
and plugging z, z0, w, a, and b into (2).

C. Estimation of Plane Parameters

Ellipse parameters can be estimated in many different
ways, three of which are

• Fourier descriptors (see Section II-A)
• Using four points [10]
• Using statistical moments (covariance matrix) [9]



The Fourier descriptor method results in a least-squares
solution as the covariance method does, but in addition to
the latter, a measure of the deviation from the ellipse model
is obtained. The quotient of the ellipse energy by the total
descriptor energy determines the confidence of a correct
estimate.

In all three cases, the first step is to extract the parameters
a, b and w. Let zk denote the Fourier descriptor with
frequency k ∈ Z. For the special geometry with identical
axis, w is obtained by the angle of z0. Next, we obtain from
(3)

a = w(z1 + z−1) , (13)
b = w(z1 − z−1) . (14)

Using the four-point method, a, b and w are usually given
directly. The second step is to compute Z0 and n. From (11)
and (12) we obtain

fa

b2
=
Z0

R
, (15)

such that the depth estimate is given as

Z0 =
Rfa

b2
. (16)

The angle between the plane normal and the optical axis is
given as

α = tan−1(|n|) , (17)

where we estimate the steepness |n| by plugging (12) into
(10), giving z0 = −nb2/f , and thus

n = − f
b2
z0 . (18)

The signal to noise ratio for measuring the distance (16)
becomes better for smaller f and R. On the other hand, (18)
can be rewritten as

n = −z0Z0

Ra
, (19)

which means that the signal to noise ratio for measuring
the steepness becomes better for larger R and smaller Z0.
In total, this means that for a certain light beam radius R,
a small focal length and small distances should be used in
order to obtain good results.

D. Experimental Setup

In our experiments, we use an off-the-shelf rechargeable
spotlight, see Fig. 2. It would be desirable to have a light
with a parabolic mirror to generate collinear light and avoid
spherical aberration [7], but the conical mirror in our light
still produces acceptable results. The radius R is measured
to be 60 mm.

A more severe problem that occurs is the anisotropy of
the resulting light-beam. This is presumably caused by the
shape of the filament in the halogen lamp. This anisotropy

Figure 2. Experimental setup: rechargeable spotlight and a webcam glued
to the center of its frontglass.

is modeled by varying the radius with the angle θ. The light
beam is not assumed to be circular, but elliptic. Hence

R(θ) = R(cos(θ − θ0) + α sin(θ − θ0)) . (20)

The angle θ0 is the measured orientation of the filament.
The eccentricity given in terms of the aspect ratio factor α
is calibrated from an image sequence.

As a camera, we use a standard laptop webcam with a
resolution of 640 × 480 pixels. This camera is glued to
the front glas of the spotlight, see Fig. 2. We calibrate
this cameras using the OpenCV calibration tool [11]. The
resulting focal lengths are 557.8 respectively 554.1 pixels
and the center is at 314.8 respectively 235.8, in x and y
direction respectively.

We placed the torchlight in front of a blue poster wall
at distances of 25 cm, 30 cm, 35 cm, 40 cm, and 50 cm,
see Fig. 6. The poster wall is rotated around the vertical
axis using a manual turntable with angles from 0◦ to 70◦ in
eight steps. However, no knowledge of this restriction has
been used in the general estimation equation (18). For each
distance and angle, at least 90 images were taken.

Videos showing experiments can be found at
http://www.cvl.isy.liu.se/research/torchlight/ .
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Figure 3. Two examples of camera views (25 cm and 0◦ respectively
60◦) with the fitted ellipses using Halir-Flusser and Fourier descriptors.

III. RESULTS

From the taken images (see Fig. 3 for two examples), we
extract the ellipse parameters using the Halir-Flusser method
(HF) and Fourier descriptors (FD). We removed the first ten
and last ten estimates, since these were often influenced by
manually starting and stopping the recording (shaking poster
wall).

From the ellipse parameters, we extracted the distance
estimates. Fig. 4 shows box plots of the achieved results for
the HF method (top) and the FD case (bottom). Accuracy
is decreasing with increasing distance in both cases, but the
HF-based estimates seem to be biased, presumably by the
contour being placed at integer positions. Fig. 5 shows the
corresponding results for the angular error of the estimated
rotation of the poster wall. Again, accuracy is decreasing
with increasing distance.
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Figure 4. Box plots (median, 25% and 75% quantile, inlier bounds) of
distance estimates.

IV. CONCLUSION

We have shown that distance and plane orientation can be
estimated using the torchlight approach. In order to solve
for ambiguities, increase accuracy, and remove outliers in
the estimates, the estimates should be computed using a
sequential (in time) filtering approach. This is also required
to build maps. A system fusing torchlight estimates to form
maps will be topic of future work.
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Figure 5. Box plots (median, 25% and 75% quantile, inlier bounds) of
angular error.

Figure 6. The experimental setup.
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