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Abstract— This paper deals with the problem of estimating the
vehicle surroundings (lane geometry and the position of other
vehicles), which is needed for intelligent automotive systems,
such as adaptive cruise control, collision avoidance and lane
guidance. This results in a nonlinear estimation problem. For
automotive tracking systems, these problems are traditionally
handled using the extended Kalman filter. In this paper we
describe the application of the marginalized particle filter to
this problem. Studies using both synthetic and authentic data
shows that the marginalized particle filter can in fact give better
performance than the extended Kalman filter. However, the
computational load is higher.

Index Terms— automotive tracking, non-linear state esti-
mation, extended Kalman filter, marginalized particle filter,
marginalization

I. INTRODUCTION

Future intelligent automotive systems such as adaptive
cruise control, collision avoidance and lane guidance will
require detailed knowledge of the vehicle surroundings. In this
paper, vehicle surroundings will refer to lane geometry and
other vehicles. Typically, lane information is obtained from a
vision system and other vehicles are detected using a radar.

The importance of integrating data from object tracking and
road geometry tracking has quite recently been recognized [1],
[9], [5], [20]. The main idea is to try to improve the road
geometry estimate by studying the motion of other vehicles
and vice versa. For example, if a couple of tracked vehicles
suddenly all start moving to the right, one of two things can
have happened. The first is that they all started a lane change
manoeuvre and the road remains straight. The other is that we
are entering a curve and the vehicles are still following the
center of their lanes. These possibilities can be treated within
a Bayesian framework, together with the information from the
lane tracker, to build a new estimator. In order to do this we
need to use a nonlinear measurement equation based on the
road geometry.

The most common approach to state estimation for nonlin-
ear problems in general, and for this application in particular,
is the Extended Kalman Filter (EKF). The EKF generally gives
good performance for lane tracking and not much effort has
been spent on studying other alternatives. In this work, we
investigate and compare the performance of the EKF to the

potentially more accurate particle filter [6], [7]. In particular,
we will study the Marginalized Particle Filter (MPF) [7], [8],
[19]. The MPF is a subtle combination of the Kalman filter
and the particle filter. It can be used for nonlinear estimation
problems with a conditionally linear substructure, where the
conditionally linear states are estimated using Kalman filters
and the nonlinear states are estimated using the particle filter.
There are two advantages with MPF compared to the standard
particle filter. First, for the linear states, the Kalman filter
provides the optimal solution. Second, the dimensionality
problem associated with the standard particle filter is reduced,
since the dimension of the state variables estimated using the
standard particle filter is reduced using marginalization.

Several geometric models for combined road prediction and
target tracking exists. We will use a model which assumes a
road consisting of circle segments, not the traditionally used
clothoid approximation. In [9], it was shown that this model
can indeed give better tracking performance. This model is
presented in Section II. In order to solve the problem at hand,
nonlinear estimation theory is needed. Hence, Section III is
devoted to this and in particular the two algorithms EKF and
MPF are discussed. These algorithms are then evaluated in
Section IV. Finally, the conclusions are given in Section V.

II. THE COMBINED LANE TRACKING AND OBJECT MODEL

The difference between tracking in automotive applications
and tracking in other applications, such as air traffic control
or naval tracking, is that in automotive tracking it can be
assumed that the motion of the tracked objects, with a certain
probability, is constrained to the road. In order to be able to use
and benefit from this fact, this section presents an appropriate
dynamic model. The key idea, upon which this model is based,
is the use of a curved coordinate system which is attached to
and follows the road.

A. Dynamic motion model

The coordinates x and y denotes the position in the curved
coordinate system, which is attached to the road according to
Fig. 1. In these coordinates, the motion model for the other
vehicles can be greatly simplified. For example, it allows us
to use the equation ẏ = 0, which simply means that it is
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Fig. 1. The coordinate systems used in deriving the dynamic motion model.
Here, (x, y) denotes the position in a curved coordinate system, which is
attached to and follows the road. Furthermore, (x̃, ỹ) denotes the position in
a coordinate system, which is attached to the moving host vehicle.

assumed that the other vehicles will follow their own lanes. In
the longitudinal direction we will use ẍ = −a cos Ψrel, where
a is the measured acceleration of the host vehicle and Ψrel is
the angle between the host vehicle and the lane. Hence, we
have the following motion model:

ẋi = vi, (1a)

v̇i = −a cos Ψrel, (1b)

ẏi = 0, (1c)

where vi is the longitudinal velocity of object i, i.e., the time
derivative of xi. Furthermore, Ψabs is the angle between the
vehicle and some fix reference. We can obtain a relationship
between the Ψrel and Ψabs by differentiating Ψrel w.r.t. time,

Ψrel = Ψabs + γ ⇒ (2a)

Ψ̇rel = Ψ̇abs + γ̇ = Ψ̇abs +
v

r
= Ψ̇abs + c0v, (2b)

where r is the current road radius, v the velocity and γ denotes
the angle between the lane and some fix reference. Ψ̇abs can
typically be measured with a yaw rate sensor. We also have

ẏoff = sin(Ψrel)v ≈ Ψrelv. (3)

Using Ẇ = 0 and ċ1 = 0, the continuous-time motion
equations for the host vehicle states can be written

Ẇ = 0, (4a)

ẏoff = vΨrel, (4b)

Ψ̇rel = vc0 + Ψ̇abs, (4c)

ċ0 = vc1, (4d)

ċ1 = 0. (4e)

The discrete-time dynamics is then given by assuming piece-
wise constant input signals, [a, Ψ̇abs] [18]. Furthermore,

adding stochastic process noise, the discrete-time motion equa-
tions for the objects become

xi
t+1 = xi

t + Tsv
i
t − at cos Ψrel,tT

2
s /2 + wi

1,t, (5a)

vi
t+1 = vi

t − at cos Ψrel,tTs + wi
2,t, (5b)

yi
t+1 = yi

t + wi
3,t, (5c)

and for the host vehicle

Wt+1 = Wt + w4,t, (6a)

yoff,t+1 = yoff,t + vTsΨrel,t + v2T 2
s c0,t/2,

+ v3T 3
s c1,t/6 + vT 2Ψ̇abs,t/2 + w5,t, (6b)

Ψrel,t+1 = Ψrel,t + vTsc0,t + v2T 2
s c1,t/2,

+ TsΨ̇abs,t + w6,t, (6c)

c0,t+1 = c0,t + vTsc1,t + w7,t, (6d)

c1,t+1 = c1,t + w8,t. (6e)

The variables {wi,t}8
i=1 are white, zero-mean Gaussian pro-

cess noise, with covariance matrices Qhost and Qobj for the
host and object states, respectively.

B. Measurement model

The measurements for the host vehicle, which are obtained
from a vision system, are Ψm

rel, cm
0 , Lm and Rm, where the

two latter are the distances to the left and right lane marking,
see Fig. 1. Superscript m denotes measured quantities. For
the other vehicles we use a fused radar and vision system
which measures the position, x̃m and ỹm, which is expressed
in the Cartesian coordinate system attached to the vehicle.
These relate to the states as

Lm
t = Wt/2 − yoff,t + e1,t, (7a)

Rm
t = −Wt/2 − yoff,t + e2,t, (7b)

Ψm
rel,t = Ψrel,t + e3,t, (7c)

cm
0,t = c0,t + e4,t, (7d)[

x̃i,m
t

ỹi,m
t

]
= T (xi

t, y
i
t) +

[
e5,t

e6,t

]i

, (7e)

where the variables {ei,t}6
i=1 denote white, zero-mean Gaus-

sian measurement noise with covariance matrices Rhost and
Robj for the host and object states, respectively. T is the
geometric transformation from the (x, y) coordinates to the
(x̃, ỹ) coordinates and i is used to index the tracked objects.
This transformation is given by [9]

T (x, y) = R(Ψrel)
[

(1 + c0y) sin(c0x)
(1 + c0y) cos(c0x) − 1 − c0yoff

]
1
c0

,

where R(Ψrel) is the rotation matrix

R(Ψrel) =
[

cos(Ψrel) sin(Ψrel)
− sin(Ψrel) cos(Ψrel)

]
. (8)



III. NONLINEAR ESTIMATION

According the previous section, the state-space model used
in this application is nonlinear. Hence, we have to handle
the problem of recursively estimating the state variable in a
nonlinear state-space model,

xt+1 = f(xt, ut) + wt, (9a)

yt = h(xt) + et, (9b)

where xt denotes the state variable, ut the input signal, wt the
process noise, yt the measurements and et the measurement
noise. The solution to this problem has been known for quite
some time and it can be shown to be [12]

p(xt|Yt) =
p(yt|xt)p(xt|Yt−1)

p(yt|Yt−1)
, (10a)

p(xt+1|Yt) =
∫

p(xt+1|xt)p(xt|Yt)dxt, (10b)

where Yt = {yi}t
i=0. Using the probability density func-

tion p(xt|Yt), any state estimate can be formed, e.g., the
commonly used least-mean-squares estimator E (xt|Yt) =∫

xtp(xt|Yt)dxt. However, the problem is that the multi-
dimensional integrals in (10) only permit a closed form
solution in rather restrictive special cases. The most commonly
used special case corresponds to that f and h in (9) are given
by linear functions and wt and et are independent Gaussian
noise sequences. In this case (10) will reduce to the standard
Kalman filter [14].

In the general case when there does not exist any closed
form solution to (10) two different alternatives are discussed
in the literature:

1) The nonlinear model (9) is approximated using a linear
model, with Gaussian noise. The Kalman filter is then
applied to this linearized model. This solution is referred
to as the extended Kalman filter.

2) The optimal solution (10) is approximated using numer-
ical methods, such as the particle filter.

Conceptually the second alternative provides the better solu-
tion. The reason is that it provides an approximation of the
optimal solution to the original problem, rather than an optimal
solution to an approximated problem. There is actually a third
category of algorithms, which provides suboptimal estimates
using multiple models and grid-based approximations.

The particle filter was first introduced by Gordon [10]. For a
thorough introduction to the standard particle filter the reader
is referred to [6], [7]. The particle filter is quite simple to
implement and it is given in Algorithm 1 if steps 4a and 4c
are neglected. If the model structure contains a conditionally
linear substructure this can be utilized by the marginalized
particle filter, which is discussed in Section III-B. Even though
the (marginalized) particle filter provides an alternative which
is conceptually superior to the EKF it should be kept in mind
that the computational complexity of the particle filter can
be quite substantial [15]. Furthermore, the quality delivered
using the EKF is often sufficient. Still, it is interesting to
solve the problem at hand using the (marginalized) particle
filter, since it provides an alternative algorithm for solving the
same problem. Furthermore, if more advanced measurement

equations, such as the ones resulting from map information
fusion, are considered the (marginalized) particle filter might
be the only option. The reason is that these measurement equa-
tions simply cannot be handled within the Kalman filtering
framework. However, within the particle filter framework the
use of these highly nonlinear measurement equations is rather
straightforward. The navigation problem for fighter aircraft,
using terrain elevation maps, has been posed and solved using
the marginalized particle filter [2], [17], [19].

In the subsequent sections it is explained how the EKF
and the marginalized particle filter can be applied to the
automotive tracking problem studied in this paper, using the
model described in Section II.

A. The Extended Kalman Filter

The extended Kalman filter has a long tradition in auto-
motive applications. For details on the Kalman Filter and the
extended Kalman filter, see e.g., [11], [13], [14], [16]. We
will use a one-step ahead predictor based on the EKF. The
equations are given below.

x̂t+1|t = Ax̂t|t−1 + But + AKt

(
yt − h(x̂t|t−1)

)
, (11a)

where the Kalman gain matrix Kt is given by,

Ct =
∂h

∂x

∣∣∣∣
x=x̂t|t−1

(11b)

Kt = Pt|t−1C
T
t (CtPt|t−1C

T
t + R)−1, (11c)

Pt+1|t = APt|t−1A
T + Q − AKtCtPt|t−1A

T (11d)

Here, Q and R are the combined process and measurement
noise covariance, i.e.,

Q =
[
Qhost 0

0 IM ⊕ Qobj

]
, R =

[
Rhost 0

0 IM ⊕ Robj

]
,

were M is the number of objects currently being tracked, IM is
an identity matrix of size M and ⊕ is the Kronecker product.
It is worth mentioning that in the state update (11a) a data
association algorithm is used. The reader is referred to e.g., [3]
for details regarding this matter.

B. The Marginalized Particle Filter

Let the state vector be partitioned according to

xt =
[
xl

t

xn
t

]
, (12)

where xl
t denotes the state variables with conditionally linear

dynamics and xn
t denotes the state variables with nonlinear

dynamics. Using this partitioning the dynamic model derived
in Section II can be written on the following form

xn
t+1 = An

nxn
t + An

l xl
t + Bn(xn

t )ut + wn
t , (13a)

xl
t+1 = Al

nxn
t + Al

lx
l
t + Bl(xn

t )ut + wl
t, (13b)

yt = g(xn
t ) + C(xn

t )xl
t + et, (13c)

where wn
t ∼ N (0, Qn), wl

t ∼ N (0, Ql), et ∼ N (0, R),
and wn

t is independent of wl
t. The extension to the case

where wn
t and wl

t are dependent is straightforward. The



linear state variables can be marginalized out and estimated
using the optimal Kalman filter, whereas the nonlinear state
variables are estimated using the particle filter. This technique
is sometimes referred to as Rao-Blackwellization [4]. The
resulting algorithm will be referred to as the marginalized
particle filter and it is thoroughly explained in e.g., [7], [8],
[19]. It is well-known that the quality of the estimates will
improve or remain unchanged when the MPF is used instead
of the standard particle filter [8]. Furthermore, is some cases
the computational complexity can be decreased using the
MPF [15].

Applying the marginalized particle filter to (13) results in
Algorithm 1. For a detailed derivation and discussion of this
algorithm the reader is referred to [19].

ALGORITHM 1 (The marginalized particle filter):

1) Initialization: For i = 1, . . . , N , initialize the particles,
x

n,(i)
0|−1 ∼ pxn

0
(xn

0 ) and set {xl,(i)
0|−1, P

(i)
0|−1} = {x̄l

0, P̄0}.

2) For i = 1, . . . , N , evaluate the importance weights
q
(i)
t = p(yt|Xn,(i)

t , Yt−1) and normalize

q̃
(i)
t = q

(i)
t /

∑N
j=1 q

(j)
t .

3) Particle filter measurement update (resampling): Resam-
ple N particles with replacement,

Pr(xn,(i)
t|t = x

n,(j)
t|t−1) = q̃

(j)
t .

4) Particle filter time update and Kalman filter:
a) Kalman filter measurement update,

x̂l
t|t = x̂l

t|t−1 + Kt(yt − gt(xn
t ) − Ctx̂

l
t|t−1),

Pt|t = Pt|t−1 − KtMtK
T
t , (14a)

Mt = CtPt|t−1C
T
t + Rt, (14b)

Kt = Pt|t−1C
T
t M−1

t . (14c)

b) Particle filter time update (prediction): For i =
1, . . . , N , predict new particles,

x
n,(i)
t+1|t ∼ p(xn

t+1|t|Xn,(i)
t , Yt).

c) Kalman filter time update

x̂l
t+1|t = Al

lx̂
l
t|t + Al

nxn
t + Bl(xn

t|t)ut

+ Lt(zt − An
l x̂l

t|t), (15a)

Pt+1|t = Al
lPt|t(Al

l)
T + Ql

t − LtNtL
T
t , (15b)

Nt = An
l Pt|t(An

l )T + Qn
t , (15c)

Lt = Al
lPt|t(An

l )T N−1
t , (15d)

where zt = xn
t+1 − An

nxn
t − Bn(xn

t|t)ut.
5) Set t := t + 1 and iterate from step 2.

In order to be able to use Algorithm 1 we need to identify
the structure (13) from the dynamic model (5) – (7). Here, xn

t

and xl
t consist of the following states:

xn
t =

[
Ψrel,t c0,t x1

t . . . xM
t

]T

xl
t =

[
Wt yoff,t c1,t v1

t y1
t . . . vM

t yM
t

]T

TABLE I

THE TOTAL NUMBER OF STATES AND THE NUMBER OF NONLINEAR STATES

FOR M OBJECTS.

M 1 2 3
Total 3M + 5 8 11 14

Nonlinear M + 2 3 4 5

were M denotes the number of tracked objects. Table I
summarizes the number of states for different numbers of
tracked objects. It can be seen that the motion dynamics (5)
and (6) fit the MPF structure (13) if we, for a single object,
write

xn
t+1 =


1 vTs 0

0 1 0
0 0 1




︸ ︷︷ ︸
An

n

xn
t +


0 0 v2T 2

s /2 0 0
0 0 vTs 0 0
0 0 0 Ts 0




︸ ︷︷ ︸
An

l

xl
t

+


Ts 0

0 0
0 cos Ψrel,tT

2
s /2




︸ ︷︷ ︸
Bn(xn

t )

ut + wn
t (16)

and

xl
t+1 =




0 0 0
vTs v2T 2

s /2 0
0 0 0
0 0 0
0 0 0




︸ ︷︷ ︸
Al

n

xn
t +




1 0 0 0 0
0 1 v3T 3

s /6 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1




︸ ︷︷ ︸
Al

l

xl
t

+




0 0
vT 2

s /2 0
0 0
0 cos Ψrel,tT

2
s /2

0 0




︸ ︷︷ ︸
Bl(xn

t )

ut + wl
t. (17)

Furthermore, the measurement model (7) conforms with this
structure,


Lm
t

Rm
t

Ψm
rel,t

cm
0,t


 =




0
0

Ψrel

c0,t




︸ ︷︷ ︸
ghost(xn

t )

+



−1/2 1 0 0 0
1/2 1 0 0 0
0 0 0 0 0
0 0 0 0 0




︸ ︷︷ ︸
Chost

xl
t + ehost,t

and[
x̃m

t

ỹm
t

]
= R(Ψrel,t)

[
sin(c0x

i)
cos(c0x

i) − 1

]
︸ ︷︷ ︸

gobj(xn
t )

+ R(Ψrel,t)
[
0 0 0 0 sin(c0x)
0 −1 0 0 cos(c0x)

]
︸ ︷︷ ︸

Cobj(xn
t )

xl
t + eobj,t.

Implementation of Algorithm 1 is now straightforward. Gener-
alization of (16) and (17) to multiple objects is accomplished



by extending the system matrices and the state vector accord-
ingly. Hence, the state dimension in the filter will change
dynamically, depending on the number of objects that are
tracked.

IV. EVALUATION

In this section we will discuss how the two filters were
compared. In order to evaluate a filter, the estimated states
are typically compared to the true values, if available. Here,
we have focused on the estimate of the curvature parameter
c0, which is crucial to many automotive applications, such
as adaptive cruise control systems, collision warning or any
system that rely on assigning leading vehicles to the correct
lane. This is sometimes referred to as the lane assignment
problem [9], [20].

In order to quantify the importance of the curvature param-
eter we approximate the ỹ-part of (7e) using a second-order
Taylor expansion around Ψrel = y = yoff = 0,

ỹ = (cos(c0x) − 1)
1
c0

≈ (1 − (c0x)2

2
− 1)

1
c0

= c0
x2

2
. (18)

This implies that for small changes in c0 we have,

∆ỹ ≈ x2

2
∆c0, (19)

which means that for a leading vehicle 100 meters in front of
the host vehicle, a small error of, say 5 ·10−4 (1/m) in c0 will
result in an error of 2.5 meters in ỹ. This is enough to assign
the leading vehicle to the wrong lane.

We have compared the filters using both synthetic and
authentic data. The two data sets were both run, first through
the EKF and then through the MPF using different numbers
of particles.

A. Synthetic data

For a simulation, the true values of all parameters are readily
available. Furthermore, a simulation allow us to test any filter
for specific scenarios or specific disturbance environments. We
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Fig. 3. The data sequence was recorded during poor visibility conditions.
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Fig. 4. The curvature RMSE for different numbers of particles, using
authentic data.

have tried to create a realistic environment, but at the same
time tried to challenge the filters with fast changes in the
road geometry. The results from the simulation are shown in
Fig. 2. The plot shows the root mean square error (RMSE) of
the curvature during the simulation using different numbers of
particles in the MPF. In the same plot the EKF performance
and the measured curvature, cm

0 , are shown.
Here, the MPF does not improve the estimation performance

compared to the EKF. The explanation to this could be that the
nonlinearities of the model are quite small and that the EKF
is performing close to the Cramér-Rao lower bound [16].

B. Authentic data

The authentic data set was recorded in the northern parts
of Sweden during the winter. From Fig. 3 it is clear that the
visibility of the lane markings is very low. Analogous to the
simulation experiment, we have compared the EKF to the MPF
using different numbers of particles. The true value of the
curvature which was used to compute the magnitude of the
errors was obtained from a detailed map. Fig. 4 show the
results of the experiment. For reference, we have also plotted
the curvature and the absolute curvature error over time in
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Fig. 5 and Fig. 6, respectively. As can be seen, the MPF
outperforms the EKF during high particle number settings.
Why the MPF is better here, but not for synthetic data needs
to be investigated further. The reason is probably that the MPF
is more robust to model errors, since it does not depend on the
derivatives of the measurement equations, or it is less sensitive
to errors in other assumptions about noise and inputs used in
the model. The fact that the curve is not monotonic in Fig. 4,
i.e., the error is higher for the highest particle setting is due
to the stochastic nature of the particle filter.

V. CONCLUSIONS

We have shown that the marginalized particle filter can be
implemented for automotive tracking and that it can give better
performance than the traditionally used extended Kalman filter.
Although the difference might not big enough to motivate
the extra computational cost today, future increases in com-
putational power will allow its implementation. Furthermore,
the marginalized particle filter might be the only choice if
more advanced nonlinear measurement equations, such as map
information fusion, are to be used.
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