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Abstract—A new approach to track bicycles from imagery
sensor data is proposed. It is based on detecting ellipsoids in
the images, and treat these pair-wise using a dynamic bicycle
model. One important application area is in automotive collision
avoidance systems, where no dedicated systems for bicyclists yet
exist and where very few theoretical studies have been published.
Possible conflicts can be predicted from the position and velocity
state in the model, but also from the steering wheel articulation
and roll angle that indicate yaw changes before the velocity
vector changes. An algorithm is proposed which consists of an
ellipsoid detection and estimation algorithm and a particle filter.
A simulation study of three critical single target scenarios is
presented, and the algorithm is shown to produce excellent state
estimates. An experiment using a stationary camera and the
particle filter for state estimation is performed and has shown
encouraging results.
Keywords: Tracking, Particle Filter, Computer Vision,
Ellipse Extraction, Bicycle.

I. INTRODUCTION

Automotive safety is an active research [2] and development
area in the industry of highest importance for society. There
are numerous collision avoidance (CA) and mitigation systems
on the market, and the first systems for protecting pedestrians
are appearing right now [11]. Such a driver assistance system
can highlight pedestrians to the driver using infrared cameras,
autonomously warn the driver, brake the car to avoid or
mitigate collision, steer away, or, as the last resort when the
collision is unavoidable, lift the hood and fire off external
airbags in front of the A pillars to make the best of the
situation.

Bicyclists are another group of vulnerable trafficants, where
much less has been done so far, but where the aforemen-
tioned avoidance and mitigation principles for pedestrians
can be applied once a good detection and tracking filter
exists. One of the few publications in this field [10] applies
computer vision algorithms based on trained classifiers. In
this contribution, we use a model-based approach by studying
the most characteristic features of a common bike: the two
wheels. The proposed algorithm first processes image data
in order to extract ellipsoids, see Figure 1. These ellipsoid
parameters are then input to a tracking filter based on a
bicycle model. The position and velocity state of the filter
can be used for collision avoidance decision algorithms as
done in conventional automotive CA systems [7]. Even more
interesting is to use the articulation of the front wheel and
the roll angle of the bicycle in the decision process. These
two states show the intention of the driver, and is a promising
indicator for assessing potential risk and issue an early conflict
warning.

To the best of authors knowledge there are few publica-
tions focused on bicycle and cyclist tracking and collision
avoidance. One of the few publications is [10]. However,

Figure 1. The green ellipses indicate measurements obtained from the two
bike wheels. The ellipse parameters are later fed through a particle filter
framework in order to estimate the bicycle state.

a lot of interesting algorithms are proposed for pedestrian
detection and tracking using stereo vision and infrared cameras
which can be tailored for the cyclists. In [3], [13] and [4]
algorithms for pedestrian detection and tracking are proposed
and in [15] an overview on vision-based pedestrian detection
for intelligent vehicles is provided.

This article is structured as follows: in the subsequent
section we describe a dynamic model for the bicycle’s motion.
In the third section we will describe a method for detecting
ellipses in the images and we derive the mapping between
extracted parameters of an ellipse in the image to the pose of
the projected wheel. We extend these methods for a bicycle
with two wheels. A particle filter is formulated for tracking
a bicycle in simulation, using three scenarios with a moving
camera. The tracking performance in simulation is evaluated
against three simulated maneuvers in Section IV. A particle
filter [6] is formulated for tracking of a bicycle using image
data captured by a stationary camera and evaluated in Section
V. The concluding remarks will be presented in the last
section.

II. DYNAMIC MODEL

A. Coordinate Systems

In a collision avoidance application the camera is mounted
on a moving platform. The pose of the platform relative to
the global frame may be measured or estimated using com-
plementary sensors. In this paper we assume that the platform
is moving with known speed in the XZ-plane and that it has
zero angular velocity. Therefore the global coordinate system
coincides with the camera’s coordinate system. In future work
the pose of the camera can be merged into the algorithm as an
input. In other words, we are interested in the relative pose of
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Figure 2. Illustration of the coordinate system and the bicycle parameters.
The wheelbase L and the distance of center of gravity to the wheel centers
is denoted by l1 and l2. The y-axis goes through the center of gravity and
the x-axis goes through the wheel centers.
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Figure 3. Illustration of the inclination θ of the bicycle. The inclination angle
can be calculated using Newton’s second law of motion. The gravitational
force is denoted by mg and the reaction force of the ground is denoted by
N .

the camera’s coordinate system and the bicycle’s coordinate
system which will be introduced here.

The origin of the bicycle’s coordinate system is attached to
a point below its center of gravity and along a line connecting
the centers of the two wheels. The x-axis of the bicycle’s
coordinate system is oriented along the bicycle’s frame and
passes through the centers of both wheels. The y-axis is
pointing downwards and the z-axis is pointing in the direction
perpendicular to the plane containing the rim of the rear wheel.
See Figure 2 and Figure 3.

B. Projected Bicycle

In order to describe the bicycle’s pose in the global coor-
dinate system we will parametrize the bicycle. The bicycle is
parametrized by the position of the origin of its coordinate
system Pc = (Xc, Yc, Zc), the normal vector to the rear wheel
nr = (n1r, n2r, n3r)

T , the steering angle δ, the slope of
bicycle’s track α, and its wheel base L. The caster angle
of the front wheel is neglected and the rotation axis of the
front wheel is assumed to be vertical to the flat ground along
the global Y -axis. The normal vector to the front wheel can
be calculated using the steering angle δ. The error for small
inclination angle θ and small slopes is very small.

The bicycle’s inclination in the roll direction while turning
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Figure 4. An extended bicycle model is used as motion model where ψ and
δ are shown in this figure. The orientation of the camera at the origin of the
global coordinate system is shown.
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Figure 5. The slope of the bicycle’s track is denoted by α
.

is denoted by θ and is given as

tan θ =
vxψ̇

g
, (1)

where g is the gravitational acceleration, vx is the longitudinal
speed of the bicycle and ψ̇ is the yaw rate of the bicycle.
Equation (1) can be derived by writing Newton’s second law
of motion in the lateral direction and in the vertical direction,
respectively. The speed of the bicycle in the lateral direction
will be denoted by vz .

By assembling the aforementioned parameters of the bicy-
cle’s pose into one vector the state vector

x = (ψ,Xc, Zc, ψ̇, vx, vz, δ, Yc, α)T (2)

is created and will be used later on to establish a motion model.
Using the state variables stated in (2), the position of the

center of both wheels and their respective normal vector is
calculated according to

Pr =

(
Xc − l2 cosψ cosα

Yc + l2 sinα
Zc − l2 sinψ cosα

)
(3)

Pf =

(
Xc + l1 cosψ cosα

Yc − l1 sinα
Zc + l1 sinψ cosα

)
(4)

nr = (sinψ cos θ, sin θ,− cosψ cos θ)T (5)

nf = (sin(ψ + δ) cos θ, sin θ,− cos(ψ + δ) cos θ)T . (6)

We assume that the radius of the wheel, r, l1 and l2, where
l1 + l2 = L, are known.

C. Motion Model
A motion model using the bicycle model [1] is created.

The nonlinear state space representation of the motion model
in continuous-time is given below



ẋ =



ψ̇
(cos(ψ)vx − sin(ψ)vz) cosα− VX
(sin(ψ)vx + cos(ψ)vz) cosα− VZ

ψ̈
0

− 2Cαvz
mvx

− vx+Cα(l1−l2)
mvx

ψ̇ + Cα
m δ

u

vx sinα− r sin(θ)θ̇
0


(7)

where

ψ̈ = −Cα(l1 − l2)

Izvx
vz −

Cα(l21 + l22)

Izvx
ψ̇ +

Cαl1
Iz

δ (8)

and VX and VZ are X and Z component of the host vehicle’s
speed. The modeling parameters are listed in Table I and are
illustrated in Figures 2–5. The cornering stiffness of the tires
is denoted by Cα, the bicycle’s mass is denoted by m. The
rotational inertia of the bicycle is shown by Iz . In this motion
model the steering angle δ is driven by the input u.

Table I
BICYCLE MODEL’S PARAMETERS

Parameters Cα m Iz l1 l2 r
Value 1000 80 26 0.60 0.49 0.32
Unit N kg kgm2 m m m

III. MEASUREMENT MODEL

The measurement model describes the mapping between the
state variables and the measured values. We are using a camera
as a sensor and the measured signals which will be used for
state estimation are the parameters of the two extracted ellipses
from the image of the two bicycle wheels. In this section we
describe how the measurement vector y relates to the state
variables x and how the ellipses are extracted from the image
data.

The measurement vector,

yk = (af , bf ,Re{z0f}, Im{z0f}, φf ,
ar, br,Re{z0r}, Im{z0r}, φr)T + e,

(9)

is composed of parameters of the two ellipses corresponding
to the front wheel and the rear wheel, respectively. An ellipse
can be parametrized using two semi-axes, a and b, and the
position of its center, z0 = Re{z0}+ iIm{z0} and the angle φ
which denote the angle between the largest semi-axis a and the
real axis in the complex image plane. The subscripts f and
r denote the association with the front and the rear wheel,
respectively.

A. Projected Wheel
In this section we derive the equations of the projection from

3D pose of a bicycle wheel (parametrized by the position of
the wheel’s center and a normal vector) to the corresponding
ellipse in the image plane. Let n = (n1, n2, n3)T denote the
normal vector to the wheel and let P0 = (X0, Y0, Z0) denote
the position of the center of the wheel. See Figure 6 for an
illustration. For a point (X,Y, Z) belonging to the bicycle’s
wheel with radius r we have the following relations,

Z X

Y

(X0, Y0, Z0)
n

Figure 6. The position of the center of the wheel and the normal vector to
its plane are used to describe the ellipse parameters.

(X −X0)2 + (Y − Y0)2 + (Z − Z0)2 − r2 = 0, (10)

nT

(
X −X0

Y − Y0
Z − Z0

)
= 0, (11)

where the latter equation can be written as

n3Z(X,Y ) = −n1X − n2Y + n1X0 + n2Y0 + n3Z0. (12)

Using the pinhole camera model, a point (X,Y, Z) is
projected onto the image coordinate z = (x + iy) according
to

z =
(X + iY )f

Z(X,Y )
=

n3(X + iY )f

−n1X − n2Y + Z0

, (13)

where
Z0 = n1X0 + n2Y0 + n3Z0. (14)

The projection of the points on the edge of the wheel onto
the image plane gives us a conic section. This can be repre-
sented as a second degree polynomial or equivalently using
homogeneous coordinates as

(Re{z} Im{z} 1) C

(
Re{z}
Im{z}

1

)
= 0, (15)

where

C =

(
c11 c12 c13
c21 c22 c23
c31 c32 c33

)
(16)

is the symmetric matrix and its components are given by

c11 =n21(D2 − r2)− 2n1X0Z0 + Z
2

0, (17)

c22 =n22(D2 − r2)− 2n2Y0Z0 + Z
2

0, (18)

c33 =n23(D2 − r2)f2 − 2n3Z0Z0f
2 + Z

2

0f
2, (19)

c12 =n1n2(D2 − r2)− (n2X0 + n1Y0)Z0, (20)

c13 =n1n3(D2 − r2)f − (n1Z0 + n3X0)Z0f, (21)

c23 =n2n3(D2 − r2)f − (n3Y0 + n2Z0)Z0f, (22)



where
D2 = X2

0 + Y 2
0 + Z2

0 . (23)

The resulting conic is an ellipse. In general, a conic is an
ellipse if the corresponding matrix C has two positive singular
values and one negative [9]. All z points calculated from (13)
will form an ellipse if (X,Y, Z) belong to the set described
by (10) and (11). This can be verified by inserting z from (13)
into (15) for points on the bicycle wheel, such that

n23(X −X0)2 + n23(Y − Y0)2+

(n1X + n2Y − n1X0 − n2Y0)2 − r2 = 0.
(24)

The center of the ellipse, z0 is given by(
Re{z0}
Im{z0}

)
= C

−1
(
−c13
−c23

)
, (25)

where
C =

(
c11 c12
c21 c22

)
. (26)

Let λ1 and λ2 be the eigenvalues of C, and V1 and V2 be
their respective normalized eigenvectors. The length of the
semi-axes and their directions, introduced in Section III-B,
are given by

a =

√
−detC

λ1 detC
(27)

b =

√
−detC

λ2 detC
(28)

φ = arcsin(V2(1)), (29)

where a, b, z0, φ are the parameters of the ellipses that are
given by the projection of the front and the rear wheel into
the camera. The measurement model can therefore be written
in nested format, where y = h(Pr, Pf , nr, nf ) + e1 is given
by (9)–(29). The mapping between Pr, Pf , nr and nf and
the state variable x is given by (3)–(6) respectively. We model
the noise as additive white Gaussian noise. This assumption
can be further evaluated using real data in a real world
implementation of the algorithm.

B. Ellipse Extraction
Extracting ellipses from an image is a well studied problem

within the computer vision community. Numerous approaches
have been suggested e.g. Hough transform approaches [14],
point based approaches [8] and approaches based on statistical
moments [5].

For our real world experiments a simplified setup has been
used, i.e. a static camera, a dark surrounding, a single bicycle
and reflective rims on the tires. These simplifications allow us
to extract points on the tires by background subtraction and
subsequent thresholding followed by standard morphological
operations. As a first step, points for connected components
are given the same label followed by a second step, where
components with different labels are merged based on prox-
imity. This results in a number of clusters each of which have
a unique label.

Motived by the knowledge that we are looking for only one
bike, thus expecting two wheels, we extract the two largest
clusters. Given points for these two clusters we estimate the

Figure 7. Ellipse extraction. Top left: Query image, Top right: Query image
after background subtraction. Bottom: Ellipses plotted with 0.9 and 1.1 times
the estimated size, the actual ellipse estimated are halfway between the lines.

ellipses corresponding to the wheels by the method by Halir
and Flusser [8]. The process of extracting ellipses from images
is illustrated in Figure 7.

IV. NUMERICAL SIMULATION

In order to evaluate the feasibility of the algorithm the
motion model introduced in Section II is simulated for three
trajectories which are all listed here and are illustrated in
Figure 8.

1) Lane change in front of the host vehicle
2) Crossing the host vehicles path with constant velocity
3) Left turn in front of the host vehicle

It should be noted that for the purpose of the simulation the
motion model is simulated in its most general form while
another motion model can be used for the tracking purposes.

Measurements are created using the measurement model
introduced in Section III. We added noise to the simulated
measurements according to

e ∼ N (0, R1) (30)

where
R1 = 5× 10−7I10×10. (31)

A. Setup
The extended Kalman filter is used for tracking of the

bicycle in simulation. The extended Kalman filter uses a
simplified motion model with the state

x = (ψ,Xc, Zc, ψ̇, vx, vz, δ)
T (32)

and dynamics

ẋ =



ψ̇
(cosψvx − sinψvz)− VX
(sinψvx + cosψvz)− VZ

ψ̈
0

− 2Cαvz
mvx

− vx+Cα(l1−l2)
mvx

ψ̇ + Cα
m δ

0


(33)
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Figure 8. In order to create a stream of frames which will be further on
used as measurements a bicycle model is created in MATLAB. The bicycle
model is simulated for three trajectories which are labeled accordingly.

where

ψ̈ = −Cα(l1 − l2)

Izvx
vz −

Cα(l21 + l22)

Izvx
ψ̇ +

Cαl1
Iz

δ. (34)

In this formulation of the motion model, the steering angle δ
is modeled as a disturbance. The measurement model is the
same as what we introduced in Section III save for the fact
that the slope α, is set to zero. The inclination of the bicycle θ
is not a state variable and is calculated using (1) in the nested
measurement function definition (9)-(29).

The motion model is discretized according to

xk+1 = f(xk) + ek (35)
yk = h(xk) + wk (36)

and the noise and the initial states is assumed to be according
to

ek ∼ N (0, R2) (37)
wk ∼ N (0, Q) (38)
x0 ∼ N (x̄0, Px0). (39)

where the x̄0 is the true initial state. The noise covariance
matrices are chosen according to

Q = T 2 Diag(0, 0, 0, 0, 0, 0, 0.01, 0) (40)
R2 = 2× 10−5I10×10 (41)

where T is the sampling time in the extended Kalman filter
implementation which in this simulation was set to 0.1s. Four
elements of x0, that is, ψ0, Xc0, Zc0, δ0, can be numerically
calculated using the inverse of the mapping introduced in the
measurement step with a number of iterations.

B. Results
Tracking performance for the three trajectories is presented

in Figures 9–11. Tracking performance is satisfactory with
respect to the lateral position, but not equally well in the
longitudinal direction. It is known that the depth estimates
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Figure 9. The lane change maneuver: The true and estimated trajectory by
the extended Kalman filter and the confidence of the estimates are shown for
t=0 s up to 6 s.
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Figure 10. The crossing maneuver: The true and estimated trajectory by the
extended Kalman filter and the confidence of the estimates are shown for t=0
s up to 6 s.

using image sensors under forward motion are not very precise
[12]. In order to further evaluate the filtering performance the
true value for the states and the estimated value from the
extended Kalman filter implementation are overlaid in Figure
12 for the lane change trajectory. The state estimates produced
by the extended Kalman filter were equally good for the other
two trajectories.

Evaluation of simulation results and study of the simulation
parameters showed the following shortcomings of the algo-
rithm and created new open issues:
• The assumptions for this simulation such as additive

Gaussian noise and the covariance of the measurement
vector, the ellipse parameters, is to be verified by real
world test results.

• The tracking algorithm showed to be very sensitive to
the presence of slope in the simulated trajectory. In the
real world test scenarios there where some degree of
inclination of the ground is expected, a remedy is needed.

• Due to the nonlinearities in the measurement model h
and the motion model the convergence of the extended
Kalman filter is affected by the initial state.

• The extended Kalman filter did not perform well when
realistic noise and covariances were used and its good
performance was limited to the narrow distribution of
noise and covariance shown in (31), (40) and (41).
Therefore a particle filter was used for the real world
experiment. The tracking algorithm based on particle
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Figure 11. The left turn maneuver: The true and estimated trajectory by the
extended Kalman filter and the confidence of the estimates are shown for t=0
s up to 6 s.
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Figure 12. The lane change maneuver: The true and estimated states by the
extended Kalman filter are shown for t=0 s up to 6 s. The state estimates by
the extended Kalman filter were equally good for other trajectories.

filter is summarized in Algorithm 1.

V. REAL WORLD EXPERIMENT

Two different sequences, an L-turn and an S-turn, were used
for testing our approach. The L-turn corresponds to a bicyclist
making a rapid left turn and crossing the view in front of the
camera. The S-turn corresponds to a bicyclist making a lane
change in front of a vehicle and continuing in the same lane.
The cyclist tried to stay within a 0.50 m wide corridor during
the scenarios, illustrated by the black lines in Figure 13 and
15.

The hardware setup consist of a stationary camera, a single
bicycle with reflective tires and dark surroundings. As said
before, using these simplifications allow us to extract points on
the tires by background subtraction followed by thresholding
and standard morphological operations, see Section III-B.

The optical axis of the camcorder (a Canon HV30) was
positioned parallel to the ground plane. Using a calibrated
setting allows us to acquire rough estimates of the bicycle
position for each frame by projecting the lowest part of the
ellipses back to the ground plane, see Figure 13 and 15.
Initialization of the particle filter for the first frame of each
sequence was done using the position estimated in this way.

Algorithm 1 Bicycle tracking using particle filter and ellipse
extraction.
Choose a proposal distribution q(xk+1|x1:k, yk+1), resampling
strategy and the number of particles N .
Initialization: Generate xi1 ∼ px0 , i = 1, . . . , N and let wi1|0 =
1/N .
Iteration: For k = 1, 2, . . . .

1) Measurement update: For i = 1, 2, . . . , N ,
Capture an image and extract ellipses according to Sec-
tion III-B. Given the ellipses form the the measurement
vector,

yk = (af , bf ,Re{z0f}, Im{z0f}, φf ,
ar, br,Re{z0r}, Im{z0r}, φr)T .

(42)

Calculate Pr, Pf , nr and nf for each xik using (3)–(6).
Calculate h(xik) using (16)–(29).

wik|k =
1

ck
wik|k−1p(yk|x

i
k), (43)

where the normalization weight is given by

ck =

N∑
i=1

wik|k−1p(yk|x
i
k), (44)

where, p(yk|xik) is evaluated using the measurement
model introduced in (9)–(29).

2) Estimation: The filtering density is approximated by
p̂(x1:k|y1:k) =

∑N
i=1 w

i
k|kδ(x1:k − x

i
1:k) and the mean

is approximated by x̂1:k ≈
∑N
i=1 w

i
k|kx

i
1:k.

3) Resampling: Optionally at each time, take N samples
with replacement from the set {xi1:k}Ni=1 where the
probability to take sample i is wik|k and let wik|k = 1/N .

4) Time update: Generate predictions according to the
proposal distribution

xik+1 ∼ q(xk+1|xik, yk+1), (45)

which can be evaluated using the motion model intro-
duced in (33).
Compensate for the importance weight

wik+1|k = wik|k
p(xik+1|xik)

q(xik+1|xik, yk+1)
. (46)

As for the purpose of tracking the bicycle motion a particle
filter and an extended Kalman filter were used. Due to the
nonlinearities in the measurement and in the motion model,
the extended Kalman filter did not give satisfactory results and
the particle filter was selected for the tracking. The number
of particles was set to 7000 to explore the 8 dimensional
state space. The measurement model (17)-(29) and the motion
model (33) was used in the particle filter formulation. The
noise was assumed to be distributed according to

ek ∼ N (0, R3), (47)
wk ∼ N (0, Q). (48)
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Figure 13. Estimated position for the S-turn maneuver using real image data
is shown. The particle filter estimates follows the experiment’s virtual corridor
very well.

The noise covariance matrices are chosen according to

Q = T 2 Diag(0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 400, 0),
(49)

R3 = 0.36× I10×10, (50)

where T = 0.04s.
In order to evaluate the filtering performance knowledge of

the true trajectory of the bicycle and the other state variables
such as the steering angle and the speed of the bicycle would
have been beneficial. In order to create reference values to
compare the estimated states with, a track was drawn on the
ground and the bicycle was ridden within a track of 50 cm
width. By measuring the spacial distances to the camera a
rough estimate of the bicycle’s trajectory was achieved. In
order to create a reference for the other states the bicycle
model was simulated and the steering input that would move
the bicycle within the trajectory was used as the reference
for the steering input. Other states are also estimated using
the bicycle model in the same fashion. Tracking performance
for the two trajectories is presented in Figures 13-16. The
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Figure 14. Estimated states for the S-turn maneuver using real image data
is compared with the quasi-true states created using simulation.

−6 −4 −2 0 2 4 6
0

2

4

6

8

10

12

14

16

18

20

 

 

simulated trajectory

position given by projection to ground plane

particle filter estimate using Algorithm 1

test corridor

view angle of the camera

Figure 15. Estimated position for the L-turn maneuver using real image
data is shown. The particle filter estimates follows the experiment’s virtual
corridor very well.
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Figure 16. Estimated states for the L-turn maneuver using real image data
is compared with the quasi-true states created using simulation.

results presented in this work should be viewed as a proof of
concept for tracking a bicycle using ellipse extraction. There
are of course other competing approaches for the problem
such as [10] where the cyclist and the bicycle are treated
as an extended target. The advantage of our approach which
can be be further enhanced if combined together with other
approaches is that the cyclist’s intention to turn can be detected
from the steering input before the speed vector is affected.
Another usage of this result is to combine the detection of the
steering input with a simpler motion model in a jump Markov
linear model framework.

VI. DISCUSSION

A bicycle tracking algorithm using the particle filter and
ellipse extraction is presented. The algorithm consists of an
ellipsoid detection and estimation algorithm and a particle fil-
ter. A simulation study of three critical single target scenarios
is presented, and despite the nonlinear state space equation
and measurement model the algorithm is shown to produce
excellent state estimates. An experiment using a stationary
camera and the particle filter for state estimation is performed
and has shown encouraging results. Future work includes
how to compute a covariance uncertainty from the ellipse
extraction algorithm, and how to handle the association and
track handling steps in a multi-target tracking framework, in
particular the unique ellipsoid pairing problem.
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[1] K. J. Åström, R. E. Klein, and A. Lennartsson. Bicycle dynam-

ics and control. IEEE Control Systems Magazine, 25(4):26–47,
August 2005.

[2] D. Bernstein, editor. Special Issue on Active Safety, volume 30.
Control Systems Magazine, IEEE, aug. 2010.

[3] N. Dalal and B. Triggs. Histograms of oriented gradients for
human detection. In Proceedings of the 18th Conference on
Computer Vision and Pattern Recognition (CVPR 2005), San
Diego, CA, USA, volume 1 of IEEE, pages 886 –893 vol. 1,
2005.

[4] P. Dollar, C. Wojek, B. Schiele, and P. Perona. Pedestrian
detection: A benchmark. In Proceedings of the 22nd Conference
on Computer Vision and Pattern Recognition (CVPR 2009),
Miami, Florida, USA., IEEE, pages 304 –311, 2009.

[5] P.-E. Forssén and A. Moe. View matching with blob features.
Image and Vision Computing, Canadian Robotic Vision Special
Issue, 27(1-2):99–107, January 2009.

[6] N.J. Gordon, D.J. Salmond, and A.F.M. Smith. Novel approach
to nonlinear/non-gaussian bayesian state estimation. Radar and
Signal Processing, IEE Proceedings F, 140(2):107 –113, April
1993.

[7] F. Gustafsson. Statistical Sensor Fusion. Studentliteratur, first
edition, 2010.
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