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About the Exam (I/II) 2(44)

If you have followed the course and completed the exercises
you will not be surprised when you see the exam.

You will learn new things during the exam.

Practicalities:

Time frame: 2 days (48h), somewhere during week 34.

Within 48 hours after you have collected the exam, you put your
solutions in an envelope (seal it) and hand it in.
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About the Exam (II/II) 3(44)

As usual the graduate exam honor code applies. This means,
The course books, other books and MATLAB are all allowed
aids.
Internet services such as email, web browsers and other
communication with the surrounding world concerning the exam
is NOT allowed.
You are NOT allowed to actively search for the solutions in
books, papers, the Internet or anywhere else.
You are NOT allowed to talk to others (save for the responsible
teachers) about the exam at all.
If anything is unclear concerning what is allowed and not, just
ask any of the responsible teachers.
You are not allowed to look at exams from earlier version of the
course (obviously hard in this course anyway...).

Machine Learning

T. Schön

AUTOMATIC CONTROL
REGLERTEKNIK

LINKÖPINGS UNIVERSITET

Outline of Lecture 7 4(44)

Summary of lecture 6

Motivation for Monte Carlo methods
Basic Sampling Methods
• Transformation Methods
• Rejection Sampling
• Importance Sampling

Markov Chain Monte Carlo (MCMC)
• General Properties
• Metropolis-Hastings Algorithm
• Gibbs Sampling

(Chapter 11)
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Summary of Lecture 6 (I/III) 5(44)

In boosting we train a sequence of M models ym(x), where the error
function used to train a certain model depends on the performance of
the previous models. The models are then combined to produce the
resulting classifier (for the two class problem) according to

YM(x) = sign

(
M

∑
m=1

αmym(x)

)

We saw that the AdaBoost algorithm can be interpreted as a
sequential minimization of an exponential cost function.

Graphical Models: A graphical description of a probabilistic model
where variables are represented by nodes and the relationships
between variables correspond to edges.
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Summary of Lecture 6 (II/III) 6(44)

We started introducing some basic concepts for probabilistic
graphical models G = (V ,L) consisting of

1. a set of nodes V (a.k.a. vertices) representing the random
variables and

2. a set of links L (a.k.a. edges or arcs) containing elements
(i, j) ∈ L connecting a pair of nodes (i, j) ∈ V and thereby
encoding the probabilistic relations between nodes.

x0 x1 x2
. . .

xN

y1 y2 yN
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Summary of Lecture 6 (III/III) 7(44)

The set of parents to node j is defined as

P(j) , {i ∈ V | (i, j) ∈ E}

The directed graph describes how the joint distribution p(x) factors
into a product of factors p(xi | xP(i)) only depending on a subset of
the variables,

p(xV ) = ∏
i∈V

p(xi | xP(i)).

Hence, for the state-space model on the previous slide, we have

p(X, Y) = p(x0)
N

∏
t=1

p(xt | xt−1)
N

∏
t=1

p(yt | xt)
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Motivation for Monte Carlo (I/III) 8(44)

Probabilistic inference obviously depends on probability density
functions p(x).

We have two important problems with probabilistic inference:

1. Computing integrals

Examples:
∫

f (x)p(x)dx

Bayesian Inference

p(x|y) = p(y|x)p(x)∫
p(y|x)p(x) dx

Marginalization

p(x1) =
∫

p(x1, x2) dx2

2. Optimization

Examples:

x̂ = arg max
x

p(x)

Maximum likelihood

x̂ML = arg max
x

p(y|x)

Maximum a
posteriori

x̂MAP = arg max
x

p(x|y)
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Motivation for Monte Carlo (II/III) 9(44)

The models of reality are becoming more and
more complicated for us to be able to perform
these operations exactly.

The standard way of solving these problems is to
make analytical approximations either in the
model or in the solution.
Examples:
• Use conjugate priors to make analytical

calculation of the integrals and optimization
possible.

• Variational approximations in the solutions.

Analytical approximations change either the
problem or the solution that we are trying to obtain
and the effects are not always predictable.
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Motivation for Monte Carlo (III/III) 10(44)

Another framework is to use numerical
methods called Monte Carlo methods to
solve these problems.

With Monte Carlo, no sacrifice in the model
or in the solution is made.

The accuracy is limited only by our
computational resources. −4 −3 −2 −1 0 1 2 3 4
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Both integration and optimization can be done with these methods.

If one can represent a complicated density with samples as
p(x) ≈ 1

N ∑N
i=1 δx(i)(x) any integral can be calculated by

∫
f (x)p(x) dx ≈ 1

N

N

∑
i=1

f (x(i))
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Basic Sampling Algorithms 11(44)

Most processing environments have built-in
random number generators for the uniform
distribution.

Assume that we would like to generate
samples from a general univariate density
p(x).The following scheme provides the
way.

Generating samples from density p(x)

• Generate u ∼ U (0, 1)

• Calculate x(i) = cdf−1(u)

where cdf(x) =
∫ x
−∞ p(x′) dx′ is the

cumulative distribution function of x.
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Transformation Method (I/II) 12(44)

Suppose we have a random variable z ∼ pz(z) which we can
obtain the samples from.
If we transform the samples of z with an invertible function f (·)
as y = f (z), the density of the samples we obtain would be

py(y) = pz(z)
∣∣∣∣
dz
dy

∣∣∣∣ = pz(f−1(y))
∣∣∣∣
df−1(y)

dy

∣∣∣∣
The second term on the r.h.s. is absolutely necessary. Without it
the r.h.s. might not even be a proper density.
Example: Let z ∼ U (0, 1). Let f (z) = z2. Then we have
f−1(y) =

√
y for 0 ≤ y ≤ 1.

p(y) = pz(
√

y)
∣∣∣∣−

1
2
√

y

∣∣∣∣ =
1

2
√

y

for 0 < y ≤ 1 and 0 otherwise.
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Transformation Method (II/II) 13(44)

For Gaussian random variable generation, the
following transformation method is proposed.

Box-Muller Method

1. Generate z1, z2 ∼ U (−1, 1).

2. If r2 , z2
1 + z2

2 > 1, discard the samples and go to 1.

3. If r2 ≤ 1, calculate

y1 = z1

√
−2 ln r2

r2 and y2 = z2

√
−2 ln r2

r2

for which y1, y2 ∼ N (0, 1).
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Random Number Generation - Perfect Sampling 14(44)

Assumption: We have access to samples from the density we seek
to estimate,

p̂N(x) =
N

∑
i=1

1
N

δ
(

x− xi
)

We are seeking an estimate according to,

ÎN (g(x)) =
∫

g(x)p̂N(x)dx =
N

∑
i=1

1
N

g(xi).

The strong law of large numbers limN→∞ ÎN(g(x))
a.s.−→ I(g(x)).

Central limit theorem

lim
N→∞

√
N

σ

(
ÎN(g(x))− I(g(x))

) d−→ N (0, 1)
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Perfect Sampling - Example and Problem 15(44)

Consider sampling from the following Gaussian mixture

p(x) = 0.3N (x | 2, 2) + 0.7N (x | 9, 19)

5000 samples 50 000 samples

Obvious Problem: In general we are NOT able to sample from the
density we are interested in!
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Random Number Generation 16(44)

Target density (p) - We seek samples distributed according to this
density.

Proposal density (q) - This density is simple to generate samples
from.

Acceptance probability (w) - Used to decide whether the sample is
OK.

p(x̃) ∝ w(x̃)q(x̃)

Three common algorithms based on this idea:

1. Rejection sampling

2. Importance sampling

3. Metropolis-Hastings
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Rejection Sampling (I/IV) 17(44)

Suppose p(x) is too complicated to
sample directly from.

Let us introduce a latent variable u.

Consider the joint distribution

p(x, u) , p(u|x)p(x)

where we define
p(u|x) , U (u; 0, p(x))
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Then
p(x, u) =

{
1

p(x)p(x) = 1, if 0 ≤ u ≤ p(x)

0, otherwise
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Rejection Sampling (II/IV) 18(44)

Hence, we must sample uniformly
over the area under p(x).
For this purpose, we use a proposal
density q(x) that is easy to sample
from such that p(x) ≤ Kq(x) for all x. −4 −2 0 2 4
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Rejection Sampling

1. Sample x(i) ∼ q(·).
2. Sample u ∼ U (0, Kq(x(i))).
3. If u ≤ p(x(i)) accept the sample x(i) as a valid sample from

p(·). Go to 1.

4. Otherwise, discard x(i) and go to 1.
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Rejection Sampling (III/IV) 19(44)

This procedure does not depend on the fact that p(·) is
normalized. i.e., all p(·) terms can be replaced by an

unnormalized version p̃(·) such that p(x) = p̃(x)∫
p̃(x′) dx′

The procedure can be used with multivariate densities in the
same way.

The rejection rate is given by 1− 1
K . This is the percentage of

what we waste.

Therefore, one must select K as small as possible while still
satisfying p(x) ≤ Kq(x) for all x.

There are adaptive versions where one tries to obtain better
proposals during the sampling process.

Even the optimal K generally grows exponentially as the
dimension increases.
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Rejection Sampling (IV/IV) 20(44)

Example: Kernel based density estimates from samples obtained
with rejection sampling.
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Importance Sampling (I/IV) 21(44)

So far, we have presented sampling approaches where each
sample has equal contribution (importance) in the
approximating particle sum as

p(x) ≈ 1
N

N

∑
i=1

δx(i)(x)

which gave
∫

f (x)p(x) dx ≈ 1
N

N

∑
i=1

f (x(i))

In importance sampling, one samples from a proposal density
x(i) ∼ q(·) and uses a weighted approximation for p(·).

q(x) ≈ 1
N

N

∑
i=1

δx(i)(x)
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Importance Sampling (II/IV) 22(44)

We have the integral∫
f (x)p(x) dx =

∫
f (x)

p(x)
q(x)

q(x) dx ≈ 1
N

N

∑
i=1

w(i)f (x(i))

where w(i) , p(x(i))
q(x(i))

.
This approximation procedure is equivalent to approximating
p(·) as

p(x) ≈ 1
N

N

∑
i=1

w(i)δx(i)(x)

When the density p(·) is not normalized, one uses the
approximation

p(x) ≈ 1
N

N

∑
i=1

w̄(i)δx(i)(x) where w̄(i) =
w(i)

∑N
i=1 w(i)
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Importance Sampling (III/V) 23(44)

Algorithm (Importance sampling)

1. Generate N i.i.d. samples {x̃i}N
i=1 from the proposal density

q(x) and compute the importance weights

w̃i = p(x̃i)/q(x̃i), i = 1, . . . , N.

2. Form the acceptance probabilities by normalization,

wi = w̃i/
N

∑
j=1

w̃j, i = 1, . . . , N.

Results in the following approximation of the target density,

p̃(x) =
N

∑
i=1

wiδ
(

x− x̃i
)
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Importance Sampling (III/IV) 24(44)

In rejection and other types of
sampling, only particles positions
(denseness) carry information.

In importance sampling, weights
also carry important information.

Note that, a large weight does not
necessarily mean that the density
value there is high. Particles density
is still important.
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Importance Sampling (IV/IV) 25(44)

Proposal selection is very important.

Narrower proposals than the density can cause poor
representation of the density in some parts of space.

It is, in general, a good idea to choose wide proposals keeping
in mind that a too wide proposal would result in too many
samples with tiny weights which is a waste of computation.
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Sampling Importance Resampling 26(44)

p̃N(x) ≈
N

∑
i=1

wiδ(x− x̃i)

We can now make use of resampling in order to generate an
unweighted set of samples. This is done by drawing new samples
with replacement according to,

P
(

xi = x̃j
)
= wj, j = 1, . . . , N,

resulting in the following unweighted approximation

p̂N(x) =
N

∑
i=1

1
N

δ(x− xi)
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Sampling Importance Resampling - Algorithm 27(44)

Algorithm (Sampling Importance Resampling (SIR))

1. Generate N i.i.d. samples {x̃i}N
i=1 from the proposal density

q(x) and compute the importance weights

w̃i = p(x̃i)/q(x̃i), i = 1, . . . , N.

2. Form the acceptance probabilities by normalization,

wi = w̃i/
N

∑
j=1

w̃j, i = 1, . . . , N.

3. For each i = 1, . . . , N draw a new particle xi
t with replacement

(resample) according to,

P
(

xi = x̃j
)
= wj, j = 1, . . . , N.
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The Importance of a Good Importance Density 28(44)

q1(x) = N (5, 20) q2(x) = N (1, 20)

50 000 samples used in booth experiments.

Lesson learned: It is very important to be careful in selecting the
importance density.
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State Estimation 29(44)

For a nonlinear state-space model

xt+1 ∼ p(xt+1|xt)

yt ∼ p(yt|xt)

we can show that the filtering and the one-step ahead prediction
densities are

p(xt|y1:t) =

︷ ︸︸ ︷
p(yt|xt)

︷ ︸︸ ︷
p(xt|y1:t−1)

p(yt|y1:t−1)

p(xt+1|y1:t) =
∫

p(xt+1|xt)︸ ︷︷ ︸ p(xt|y1:t)︸ ︷︷ ︸ dxt
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The Particle Filter 30(44)

Idea: Make use of SIR in order to find a first particle filter, i.e., an
algorithm that provides approximations of

p(xt | y1:t)

Recall, that we have (from the previous slide)

p(xt|y1:t) =
p(yt|xt)p(xt|y1:t−1)

p(yt|y1:t−1)

p(xt|y1:t)︸ ︷︷ ︸
p(xt)

∝ p(yt|xt)︸ ︷︷ ︸
a(xt)

p(xt|y1:t−1)︸ ︷︷ ︸
q(xt)

This implies that SIR can be used to produce estimates of
p(xt | y1:t).
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A First Particle Filter 31(44)

Algorithm (A first particle filter)

1. Initialize the particles, {xi
0}N

i=1 ∼ p(x0) and let t := 1.

2. Predict the particles by drawing N i.i.d. samples,

x̃i
t ∼ p(xt|xi

t−1), i = 1, . . . , N.

3. Compute the importance weights {w̃i
t}N

i=1,

w̃i
t = p(yt|x̃i

t), i = 1, . . . , N.

and normalize wi
t = w̃i

t/ ∑N
j=1 w̃j

t.
4. For each i = 1, . . . , N draw a new particle xi

t with replacement,

P(xi
t = x̃j

t) = wj
t, j = 1, . . . , N.

5. Set t := t + 1 and repeat from step 2.
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IS Example – Linear System Identification (I/III) 32(44)

Consider the following linear scalar state-space model

xk+1 = θxk + vk,

yk =
1
2

xk + ek,

(
vk
ek

)
∼ N

((
0
0

)
,
(

σ2
v 0

0 σ2
e

))
.

The initial state: x0 ∼ N (x0; x̄0, Σ0).

θ with prior distribution θ ∼ N (θ; 0, σ2
θ )

The identification problem is now to determine the posterior
p(θ|y0:N) using Importance Sampling.

As usual, note the difference in notation compared to Bishop!
The observations are denoted y and the latent variables are
given by x.
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IS Example – Linear System Identification (II/III) 33(44)

xk+1 = θxk + vk,

yk =
1
2

xk + ek,

(
vk
ek

)
∼ N

((
0
0

)
,
(

σ2
v 0

0 σ2
e

))
.

We have solved this problem with both EM and VB using the
latent variables x0:N , {x0, . . . , xN}.
The main equation for the importance sampling for this example
is

p(θ|y0:N) ∝ p(y0:N|θ)p(θ)

The problem here is that we cannot normalize this density
analytically since p(y0:N|θ) is too complicated.

We can still evaluate p(y0:N|θ) for different values of θ.

Machine Learning

T. Schön

AUTOMATIC CONTROL
REGLERTEKNIK

LINKÖPINGS UNIVERSITET

IS Example – Linear System Identification (III/III) 34(44)

We would like to sample from p(θ|y0:N) ∝ p(y0:N|θ)p(θ).
Choose the proposal as the prior q(·) = p(·).
Sample θ(i) ∼ q(·).
Set the weights as

w(i) =
p(y0:N|θ(i))p(θ(i))

q(θ(i))
= p(y0:N|θ(i))

Normalize the weights w̄(i) = w(i)

∑N
i=1 w(i) .
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The likelihood p(y0:N|θ(i)) required for the weights above is given by a
Kalman filter as

p(y0:N|θ(i)) =p(y0)
N

∏
i=2

p(yi|y0:i−1, θ(i)) ∝
N

∏
i=2
N (yi; ŷi|i−1(θ

(i)), Si|i−1(θ
(i)))
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Markov Chain Monte Carlo 35(44)

Importance sampling is also bound to fail in high dimensions.

This is due to the fact that, in high dimensions, the support of
the density to be sampled from is only a tiny region in the overall
space and for this case, it is very difficult to find a proposal
without knowing the actual density.

Markov Chain Monte Carlo (MCMC) is proposed to overcome
this problem.

Whereas in standard sampling methods, the samples are
independent from each other, MCMC uses dependent samples.

Due to the Markov property, each sample is dependent on the
previous sample i.e., each x(i) depends on x(i−1).

In general x(i) is generated as x(i) ∼ q(x|x(i−1)) to sample from
p(x).
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Markov Chain Monte Carlo 36(44)

Obviously, we want the overall behavior of the generated
samples to be similar to those of p(·).
MCMC methods provide a way to do this with an arbitrary
proposal q(·|·).

Metropolis Hastings Algorithm

• Generate an initial sample x(1) ∼ q(·).
• For i=2,. . . ,

– Sample x̄ ∼ q(x|x(i−1)).
– Sample u ∼ U (0, 1).
– Set the new sample x(i) as

x(i) =





x̄, if u < min
(

1, p(x̄)
p(x(i−1))

q(x(i−1) |x̄)
q(x̄|x(i−1))

)

x(i−1), otherwise
.
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M-H Example: Sampling from a Gaussian (I/II) 37(44)

Suppose the target density over x ∈ R2 is

p(x) = N
(

x;
[

4
4

]
,
[

1 0.8
0.8 1

])
σmax

σmin

ρ

Choose the proposal density q(x|z) as

q(x|x(i−1)) = N
(

x; x(i−1),
[

0.01 0
0 0.01

])

Noticing that q(x|x(i−1)) = q(x(i−1)|x) for all x, we have

min

(
1,

p(x̄)
p(x(i−1))

q(x(i−1)|x̄)
q(x̄|x(i−1))

)
= min

(
1,

p(x̄)
p(x(i−1))

)

This version of the Metropolis-Hastings algorithm is called the
Metropolis algorithm.
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M-H Example: Sampling from a Gaussian (II/II) 38(44)
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M-H Some General Issues (I/II) 39(44)

M-H makes the samples converge to the
samples of a stationary distribution which
is the target distribution p(·).
The time that passes before the samples
starting to represent the target density is
called burn-in period.

We generally have to use only the samples
obtained after the burn-in period.

Diagnosing convergence to the target
distribution with MCMC algorithms is still
an active area of research.

After the burn-in period is over, the Markov
chain is said to be mixed.
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MH Some General Issues (II/II) 40(44)

Proposal selection is still an important
problem.

If the proposal is selected too narrow, then
step-sizes get smaller and the burn-in
period becomes longer.

If the proposal is too wide, then the burn-in
gets shorter, however, the acceptance rate
is decreased significantly.
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Gibbs Sampling 41(44)

Gibbs sampling is a special case
of the Metropolis-Hastings
algorithm where the proposal
function is set to be the
conditional distribution of the
variables.

It is especially useful when the
dimension of the space to
sample is very large e.g. images.

Suppose, we are sampling in a
two dimensional space
x = [x1, x2]

T. Then the Gibbs
sampler works as follows.

Gibbs Sampler for 2D

Sample x(1) ∼ q(·).
For i = 2, 3, . . .,
• Sample x(i)1 ∼ p(x1|x(i−1)

2 ).

• Sample x(i)2 ∼ p(x2|x(i)1 ).

• Set x(i) = [x(i)1 , x(i)2 ]T.

Note that due to the special
proposal, a Gibbs sampler does
not have an accept-reject step
as M-H.
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Optimization with MCMC 42(44)

Maximum a posteriori estimation requires

x̂MAP = arg max
x

p(x|y) = arg max
x

p(x, y)

The densities, in general, have multiple modes and local optima.

MCMC methods can be used to find global optimum of such
densities.

For this purpose, a time-varying target density is selected in an
MCMC iteration.
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Markov chain Monte Carlo (MCMC) is
a powerful means for generating ran-
dom samples that can be used in
computing statistical estimates and
marginal and conditional probabili-
ties. MCMC methods rely on depend-

ent (Markov) sequences having a limiting distribution
corresponding to a distribution of interest. (Note that the
use of the term “Markov chain” in MCMC is not entirely con-
sistent with standard usage in stochastic processes. The
term is generally reserved for use with processes having dis-
crete outcomes. For consistency with standard terminology
in the MCMC area, however, we follow suit in this article in
using the term Markov chain under the more general appli-

cation to discrete or continuous out-
comes.) The use of dependent se-
quences contrasts with many classical
Monte Carlo methods, which are based
on independent samples. MCMC meth-
ods have the great advantage that they
apply to a broader class of multivariate
problems than methods based on inde-
pendent sampling. Over the last 10-15
years, the approach has had a large im-
pact on the theory and practice of sta-
tistical modeling. On the other hand,
MCMC has had relatively little impact
(yet) on estimation problems in control.

Background
This article is a survey of popular imple-
mentations of MCMC, focusing particu-
larly on the two most popular specific
implementations of MCMC: Metropolis-
Hastings (M-H) and Gibbs sampling. Al-
though the results presented have a rig-
orous basis, the presentation here is
relatively informal in the hopes of con-
veying the main ideas relevant to imple-
mentation. Our aim is to provide the
reader with some of the central motiva-
tion and the rudiments needed for a
straightforward application. The cited
references provide extensive detail not
presented here, including the rigorous
justification for many of the results.

Although MCMC has general applica-
bility, one area where it has had a revolutionary impact is
Bayesian analysis. MCMC has greatly expanded the range of
problems for which Bayesian methods can be applied. Me-
tropolis et al. [1] introduced MCMC-type methods in the
area of physics. Following key papers by Hastings [2],
Geman and Geman [3], and Tanner and Wong [4], the paper
of Gelfand and Smith [5] is largely credited with introducing
the applications of MCMC methods in modern statistics,
specifically in Bayesian modeling.

Over the last decade, many papers and books have been
published displaying the power of MCMC in dealing with real-
istic problems in a wide variety of areas. Among the excellent
review papers in this area are the survey by Besag et al. [6]
and the vignettes by Cappé and Robert [7] and Gelfand [8].
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I
n many problems encountered in signal processing, it is possible to accurately describe the underlying
statistical model using probability distributions. Statistical inference can then theoretically be performed
based on the relevant likelihood function or posterior distribution in a Bayesian framework. However,
most problems encountered in applied research require non-Gaussian and/or nonlinear models to cor-
rectly account for the observed data. In these cases, it is typically impossible to obtain the required statis-

tical estimates of interest [e.g., maximum likelihood (ML) or conditional expectation] in closed form as it
requires integration and/or maximization of complex multidimensional functions. A standard approach con-
sists of making model simplifications or crude analytic approximations to obtain algorithms that can be easily
implemented. With the recent availability of high-powered computers, numerical-simulation-based

IEEE SIGNAL PROCESSING MAGAZINE [152] NOVEMBER 2005 1053-5888/05/$20.00©2005IEEE

© INFINITY 8

Monte Carlo 
Methods
for Signal
Processing

[Arnaud Doucet and Xiaodong Wang]

[A review in the statistical signal processing context]

Spall, J.C., “Estimation via Markov chain Monte Carlo,” IEEE Control Systems
Magazine, vol.23, no.2, pp. 34- 45, Apr. 2003. http://ieeexplore.ieee.org/
stamp/stamp.jsp?tp=&arnumber=1188770&isnumber=26659

Doucet, A.; Wang X., “Monte Carlo methods for signal processing: a review in
the statistical signal processing context,” IEEE Signal Processing Magazine,
vol.22, no.6, pp. 152–170, Nov. 2005. http://ieeexplore.ieee.org/stamp/
stamp.jsp?tp=&arnumber=1550195&isnumber=33042

Andrieu C.; De Freitas N.; Doucet A.; Jordan M. I., “An Introduction to MCMC
for Machine Learning,” Machine Learning, vol.50, pp. 5–43, 2003.
http://www.cs.ubc.ca/~arnaud/andrieu_defreitas_doucet_jordan_

intromontecarlomachinelearning.pdf

Robert C. P.; Casella G., Monte Carlo Statistical Methods, Springer, 2004.
Some density functions in this lecture came from this one!

Gilks W. R.; Richardson S.; Spiegelhalter D. J., Markov Chain Monte Carlo,
Chapman & Hall, 1996.

Bishop C., Pattern Recognition and Machine Learning, Springer, 2006.

MacKay D. J. C., Information Theory, Inference and Learning Algorithms,
Cambridge University Press, 2003. (available online)
http://www.inference.phy.cam.ac.uk/mackay/itila/

Machine Learning

T. Schön

AUTOMATIC CONTROL
REGLERTEKNIK

LINKÖPINGS UNIVERSITET

A Few Concepts to Summarize Lecture 11 44(44)

Monte Carlo Methods: Approximate inference tools using the samples from the target
densities.

Basic Sampling Methods: The sampling methods to obtain independent samples from target
densities. Though quite powerful, these would give bad results with high dimensions.

MCMC: Monte Carlo methods which produce dependent samples but more robust in high
dimensions.

Metropolis-Hastings Algorithm: The most well-known MCMC algorithm using arbitrary
proposal densities.

Gibbs Sampler: A specific case of M-H algorithm which samples from conditionals iteratively
and always accepts a new sample.
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