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m If you have followed the course and completed the exercises
you will not be surprised when you see the exam.

m You will learn new things during the exam.

Practicalities:
m Time frame: 2 days (48h), somewhere during week 34.

m Within 48 hours after you have collected the exam, you put your

solutions in an envelope (seal it) and hand it in.

AUTOMATIC CONTROL
REGLERTEKNIK
LINKOPINGS UNIVERSITET

Machine Learning
T. Schon

About the Exam (Il/ll)

As usual the graduate exam honor code applies. This means,

m The course books, other books and MATLAB are all allowed
aids.

m Internet services such as email, web browsers and other
communication with the surrounding world concerning the exam
is NOT allowed.

m You are NOT allowed to actively search for the solutions in
books, papers, the Internet or anywhere else.

m You are NOT allowed to talk to others (save for the responsible
teachers) about the exam at all.

m [f anything is unclear concerning what is allowed and not, just
ask any of the responsible teachers.

m You are not allowed to look at exams from earlier version of the

course (obviously hard in this course anyway...).
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m Summary of lecture 6

m Motivation for Monte Carlo methods
m Basic Sampling Methods
e Transformation Methods
e Rejection Sampling
e Importance Sampling
m Markov Chain Monte Carlo (MCMC)
e General Properties
e Metropolis-Hastings Algorithm
e Gibbs Sampling

(Chapter 11)
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Summary of Lecture 6 (I/111) 5(44) | Summary of Lecture 6 (Il/ll) 6(44)

In boosting we train a sequence of M models y,,(x), where the error
function used to train a certain model depends on the performance of
the previous models. The models are then combined to produce the
resulting classifier (for the two class problem) according to

Y (x) = sign (): XY x))

We saw that the AdaBoost algorithm can be interpreted as a
sequential minimization of an exponential cost function.

Graphical Models: A graphical description of a probabilistic model
where variables are represented by nodes and the relationships

between variables correspond to edges.
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We started introducing some basic concepts for probabilistic
graphical models G = (V, L) consisting of
1. aset of nodes V (a.k.a. vertices) representing the random
variables and
2. aset of links £ (a.k.a. edges or arcs) containing elements
(i,j) € L connecting a pair of nodes (i,j) € V and thereby
encoding the probabilistic relations between nodes.

X0 X1 X2 XN
Y1 Y2 YN
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Summary of Lecture 6 (llI/111)

The set of parents to node j is defined as
PG) ={ieV](ij) €&}

The directed graph describes how the joint distribution p(x) factors
into a product of factors p(x; | xp(;)) only depending on a subset of
the variables,

xy) = Hp(xi | x’P(i))

icy

Hence, for the state-space model on the previous slide, we have

N N
p(X,Y) = P(xo)gp(xt | xt—1)gp(yt | xt)
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Probabilistic inference obviously depends on probability density
functions p(x).

We have two important problems with probabilistic inference:

1. Computing integrals

7(44) | Motivation for Monte Carlo (I/1ll) 8(44)

Examples: Bayesian Inference Marginalization
pylx)p(x)
d - / ,
JFeoptad: ptely) = TS plx, ) da
2. Optimization _
Examples: Maximum likelihood MaX|m.urr.1 a
posteriori

2

X = arg m;axp(x) XvL = arg mflxp(y|x)
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Ruap = arg maxp(x|y)




Motivation for Monte Carlo (lI/1ll) 9(44) Motivation for Monte Carlo (llIl/lll) 10(44)

m The models of reality are becoming more and
more complicated for us to be able to perform
these operations exactly.

m The standard way of solving these problems is to
make analytical approximations either in the
model or in the solution.

Examples:

e Use conjugate priors to make analytical
calculation of the integrals and optimization
possible.

e Variational approximations in the solutions.

m Analytical approximations change either the
problem or the solution that we are trying to obtain
and the effects are not always predictable.

Machine Learning
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m Another framework is to use numerical °
methods called Monte Carlo methods to
solve these problems. os

m With Monte Carlo, no sacrifice in the model =
or in the solution is made. 0

m The accuracy is limited only by our
computational resources. T

m Both integration and optimization can be done with these methods.

m If one can represent a complicated density with samples as

p(x) ~ & YN, 8. (x) any integral can be calculated by

N
[F@p) a5 L F0)
i=1
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Basic Sampling Algorithms 1144) | Transformation Method (I/11)

m Most processing environments have built-in
random number generators for the uniform
distribution.

m Assume that we would like to generate

p(x).The following scheme provides the
way.

o4
©

o4
=)

p(x) and cdf(x)

o
>

Generating samples from density p(x)

o
N

o

samples from a general univariate density i |-

e Generate u ~ U(0,1)

e Calculate () = cdf 1 (u)

where cdf(x) = [*_ p(x’) dx' is the
cumulative distribution function of x.
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m Suppose we have a random variable z ~ p.(z) which we can
obtain the samples from.
m If we transform the samples of z with an invertible function £ (-)
as y = f(z), the density of the samples we obtain would be
d
py(y) = p=(2)

-1
RO

dy
m The second term on the r.h.s. is absolutely necessary. Without it
the r.h.s. might not even be a proper density.
m Example: Letz ~ 1/(0,1). Let f(z) = z2. Then we have

fl) = Vyloro<y <1

0 0.2 04 0.6 08 1
vz

AUTOMATIC CONTROL
REGLERTEKNIK
LINKOPINGS UNIVERSITET

—p(2)
—p)

&

1 1

20y 2y

p() and p(z)

N

p(y) = p=(v7) \
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Transformation Method (Il/ll) 13(44) Random Number Generation - Perfect Sampling  14(44)

m For Gaussian random variable generation, the
following transformation method is proposed.

Box-Muller Method

1. Generate z1,2p ~ U(—1,1).

qfE . L
-1 -05 0 05 1
z,

2. Ifr2 & z1 +z2 > 1, discard the samples and go to 1.

3. If 2 < 1, calculate

-1 05 0 05 1
Y

2Inr? B 21In7?
Y1 =21\ — r2 and Yo = 2o\ — 7'2 N?.
for which y1,y2 ~ N (0,1). e

Machine Learning
T. Schon

AUTOMATIC CONTROL
REGLERTEKNIK
LINKOPINGS UNIVERSITET

Assumption: We have access to samples from the density we seek
to estimate,

N1

pn(x) =) ~° <x - xi)

i=1
We are seeking an estimate according to,

/ g(x)pn(x

The strong law of large numbers limy 0 In(g(x)) =25 I(g(x)).
Central limit theorem

tim YN (1 (6(x)) — I(g(x)))

N—oco O

In (g(x) E Ng(x)

45 N(0,1)
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Perfect Sampling - Example and Problem 5(44) Random Number Generation 6(44)

Consider sampling from the following Gaussian mixture

p(x) = 03N (x]2,2) +0.7N (x]9,19)

10 15 20 2% A5 -10 -5 o 5 10 15 20 25

50 000 samples
Obvious Problem: In general we are NOT able to sample from the

density we are interested in!
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915 -10 -5 o 5
x

5000 samples
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Target density (p) - We seek samples distributed according to this
density.

Proposal density (q) - This density is simple to generate samples
from.

Acceptance probability (w) -
OK.

Used to decide whether the sample is

p(%) e w(X)g(%)

Three common algorithms based on this idea:
1. Rejection sampling
2. Importance sampling
3. Metropolis-Hastings
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Rejection Sampling (I/IV) 17(44) | Rejection Sampling (lI/1V) 18(44)

m Hence, we must sample uniformly
over the area under p(x).

o
o

m Suppose p(x) is too complicated to
sample directly from.

o
o

p(x) and q(x)
o
kS

o
N

m For this purpose, we use a proposal
density g(x) that is easy to sample .
from such that p(x) < Kg(x) for all x. P

1. Sample x() ~ g(-).
2. Sample u ~ U(0, Kg(x)).
3. Ifu< p(x(i)) accept the sample x() as a valid sample from
m Then Lp(x) =1, i#0<u<p(x) p(-). Goto 1.
plxu) = {pEX) otherwise 4. Otherwise, discard x(") and go to 1.
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Rejection Sampling (lll/IV) 9¢44) @ Rejection Sampling (IV/IV) 0(44)

Example: Kernel based density estimates from samples obtained
with rejection sampling.

m Let us introduce a latent variable u.

m Consider the joint distribution

p(x,u) = p(ulx)p(x)

where we define
p(ulx) = U(u;0,p(x))

m This procedure does not depend on the fact that p(-

normalized. i.e., all p(-) terms can be replaced by an N-10 w100
unnormalized version f(-) such that p(x) = % o0 :6 :6
m The procedure can be used with multivariate densities in the ;50.4 gos gos
same way. = o o
m The rejection rate is given by 1 — % This is the percentage of Oi
what we waste. .2 0 2 o2 0 2 o2 0 2 4
m Therefore, one must select K as small as possible while still o8 == o8 =
satisfying p(x) < Kq(x) for all x. os s
m There are adaptive versions where one tries to obtain better go4 go4
proposals during the sampling process. 02 02
m Even the optimal K generally grows exponentially as the

dimension increases.
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Importance Sampling (I/1V) 2144) | Importance Sampling (Il/IV) 22(44)

m So far, we have presented sampling approaches where each
sample has equal contribution (importance) in the
approximating particle sum as

1 N

N Y .0 (x)

i=1

p(x) ~

which gave

[ £ dem G pe)

m In importance sampling, one samples from a proposal density
x) ~ g(-) and uses a weighted approximation for p(-).

Ly
~ =) 0 (x)
N =
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m We have the integral

N . .
e ax= [ 02 Shate) a3l

where w(i) £ %
q x
m This approximation procedure is equivalent to approximating
p(-) as
Les
p(x) ~ N - Y w6 (x)

N
Il
—_

m When the density p(+) is not normalized, one uses the
approximation
1 N o w(l)
~ ZT] lzzl w(l)5x(,') (x)

N w®
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Importance Sampling (lll/V) 344) | Importance Sampling (lll/IV) 4(44)

Rejection Sampling

AIgorlthm (Importance sampling)

. Generate N i.i.d. samples {¥'}) | from the proposal density
q(x) and compute the importance weights

@' =p(')/q(x), i=1,...,N.
2. Form the acceptance probabilities by normalization,

. . N .
w=w'/) @,
=1

i=1,...,N.

Results in the following approximation of the target density,

X =i
:;a)d(x—x)
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m In rejection and other types of
sampling, only particles positions
(denseness) carry information.

m In importance sampling, weights
also carry important information. _

m Note that, a large weight does not
necessarily mean that the density
value there is high. Particles density
is still important.

Importance Sampling

-4 -2 0 2 4
X
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Importance Sampling (IV/IV) 25(44) I Sampling Importance Resampling 26(44)

m Proposal selection is very important.

m Narrower proposals than the density can cause poor
representation of the density in some parts of space.

m ltis, in general, a good idea to choose wide proposals keeping
in mind that a too wide proposal would result in too many
samples with tiny weights which is a waste of computation.

N=1000 N=1000 N=1000

1 1 1
— () — () — ()
—qlx) —q(x) —q(x)
08 — loxafl 08 — loxafl 08 — 10xw
— () — () — ()
06 06 0|
z z =
=04 =04 =04
0.2 0.2 02|
PP
-4 2 0 2 4 -4 2 0 2 4 -6 -4 2 0 2 4 6
X X X
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pPn(x) =~ iwié(x — &)

We can now make use of resampling in order to generate an
unweighted set of samples. This is done by drawing new samples
with replacement according to,

P (xf - 5:1') —w, j=1,...,N,
resulting in the following unweighted approximation
N1
pa(x) =) -0(x —x')
ia N
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Sampling Importance Resampling - Algorithm 27(44) § The Importance of a Good Importance Density 28(44)

Algorithm (Sampling Importance Resampling (SIR))

1. Generate N ii.d. samples {%'}IN | from the proposal density
q(x) and compute the importance weights

@' =pE)/q(x'), i=1,...,N.

2. Form the acceptance probabilities by normalization,
N
w=w/Y @, i=1,..,N.
=1
3. Foreachi=1,...,N draw a new particle xlt' with replacement
(resample) according to,

P(xl’:icf) =w, j=1,...,N.

Machine Learning
T. Schon

AUTOMATIC CONTROL
REGLERTEKNIK
LINKOPINGS UNIVERSITET

o (x) = N'(5,20) 4 (x) = N'(1,20)

50 000 samples used in booth experiments.

Lesson learned: It is very important to be careful in selecting the
importance density.
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State Estimation 29(44) The Particle Filter

For a nonlinear state-space model
Xer1 ~ p(xes|xe)
yt ~ p(yelxt)
we can show that the filtering and the one-step ahead prediction
densities are

~

—N—N—
p(yelxe) p(xelyre—1)

plxlyia) = p(Yily1:-1)

plxialyie) = [ plxial) planlyna) dxi
N, s’ e’
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30(44)
Idea: Make use of SIR in order to find a first particle filter, i.e., an
algorithm that provides approximations of

p(xt ’ yl:t)
Recall, that we have (from the previous slide)

Pyl xe)p(xelyre—1)
p(ytly1:-1)

p(xtly1e) =

p(xelyr) o< p(yelxe) p(xelyre—1)
—_—— ——— ——
p(xt) a(xt) q(xt)

This implies that SIR can be used to produce estimates of

p(xt | y1t).
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A First Particle Filter

Algorithm (A first particle filter)
1. Initialize the particles, {xi}N | ~ p(x) and lett := 1.
2. Predict the particles by drawing N i.i.d. samples,
i=1,...,N.

%~ pxeli_y),
3. Compute the importance weights {@.}Y |,
@ =p(y¥), i=1,...,N.

and normalize w} = @i/ Y}, @ ‘
4. Foreachi=1,...,N draw a new particle x; with replacement,

P(xi=%)=w, j=1,...,N.

5. Sett:=t+ 1 and repeat from step 2. ]
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31(44) | IS Example — Linear System Identification (I/lll) 32(44)

Consider the following linear scalar state-space model

I S ER(HR )
Y= %xk+€k, K 0/7\0 a))

m The initial state: xo ~ N (xo; X0, Zo)-

m 0 with prior distribution 6 ~ N (6;0, 03)

m The identification problem is now to determine the posterior
p(0yo.n) using Importance Sampling.

m As usual, note the difference in notation compared to Bishop!
The observations are denoted i and the latent variables are

given by x.
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IS Example — Linear System Identification (I/lll)  3344) § IS Example — Linear System Identification (llI/lll)  34(44)

o @O )
Yk = 5%+ ek e 0 0 <

m We have solved this problem with both EM and VB using the
latent variables xo.y = {xo, ..., XN }.

m The main equation for the importance sampling for this example
is
p(0lyo.n) < p(yo:n|0)p(6)

m The problem here is that we cannot normalize this density
analytically since p(yo.n|0) is too complicated.

m We can still evaluate p(1yo.n|0) for different values of 6.
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m We would like to sample from p(8|yo.n) < p(yo.n|0)p(0).
m Choose the proposal as the prior g(-) = p(+).

N=5 iter no: 40 MC Samples: 800

| Sample 9(1) ~ q() 4 ——True posterior
1.2;|—True 6
m Set the weights as e
, 9 p(e0) I
wl) = p(yo.n|0')p(0') _ P(yO:Nw(l)) 3 0-8
( ) < 06
0.4
. . S (i) _ w(® 0.2
m Normalize the weights @ TR o - / : |

0

m The likelihood p(1o.n|0")) required for the weights above is given by a
Kalman filter as

N ) N . ;
=p(v0) [ TP(WilYoi-1,0") o« TTN (vis #1-1(87), Syi_1 (69))
i=2 i=2
Machine Learning
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p(yon|0@)

Markov Chain Monte Carlo 35(44) Markov Chain Monte Carlo 36(44)

m Importance sampling is also bound to fail in high dimensions.

m This is due to the fact that, in high dimensions, the support of
the density to be sampled from is only a tiny region in the overall
space and for this case, it is very difficult to find a proposal
without knowing the actual density.

m Markov Chain Monte Carlo (MCMC) is proposed to overcome
this problem.

m Whereas in standard sampling methods, the samples are
independent from each other, MCMC uses dependent samples.

m Due to the Markov property, each sample is dependent on the
previous sample i.e., each x(!) depends on x( -1,

m In general x(/) is generated as x(!) ~ g(x|x("=1)) to sample from

p(x).
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m Obviously, we want the overall behavior of the generated
samples to be similar to those of p(-).

m MCMC methods provide a way to do this with an arbitrary
proposal g(-|-).

Metropolis Hastings Algorithm
~q(").

e Generate an initial sample x(
e Fori=2,...,

— Sample ¥ ~ g(x[x(~1).
— Sample u ~ U(0,1).
— Set the new sample x(0) as

N if 4 < min ( P )
x@ =% p(x_r) WT)
x=1 otherwise
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M-H Example: Sampling from a Gaussian (I/ll) 37¢44) | M-H Example: Sampling from a Gaussian (Il/ll) 38(44)

i 2. 10 samples 100 samples 1000 samples
m Suppose the target density over x € IR= is i 1o = 10 = 10 =
> 8 — i) 8 — i) 8 — i)
4 1 08 s 6 6
x) =N (x
p) =N (5[ 3] o ¢
m Choose the proposal density g(x|z) as o 2 2 2
. . O » 0 0
1)y _ (-1 | 001 0
X x(’ = N X, X 0 5 10 0 5 10 0 5 10
9(xx) ( 00 001 " " g
10000 samples
(i-1) (i-1) B —0
L i1y i
m Noticing that g(x|x!"~")) = g(x"~"|x) for all x, we have . — Sampie
- i—1) = > 6
. p(®) gV p(x) .
min | 1, — W] = min 1,—.1 <,
p(D) gz} D) (xD)
2
m This version of the Metropolis-Hastings algorithm is called the 0
Metropolis algorithm. ° x 1 ° x 1
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M-H Some General Issues (I/ll) 39¢44) § MH Some General Issues (Il/ll) 40(44)

m M-H makes the samples converge to the
samples of a stationary distribution which 10000 samples 10

10000 samples

— ()
——Samples
— i)

Is the target distribution p(-). m Proposal selection is still an important

m The time that passes before the samples problem. N

starting to represent the target density is

If th I | h
called burn-in period. m If the proposal is selected too narrow, then

step-sizes get smaller and the burn-in

m We generally have to use only the samples . . J period becomes longer. 5 5 m
ot.>ta|ned. after the burn-in period. ' m If the proposal is too wide, then the burn-in

m Diagnosing convergence to the target -~ gets shorter, however, the acceptance rate T
distribution with MCMC algorithms is still is decreased significantly.
an active area of research.

m After the burn-in period is over, the Markov omi:\ ”m':x.

chain is said to be mixed.
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Gibbs Sampling

m Gibbs sampling is a special case
of the Metropolis-Hastings
algorithm where the proposal
function is set to be the

Gibbs Sampler for 2D

m Sample x(V) ~ g(-).
mFori=23,...

conditional distribution of the (i) (i-1)
_ e Sample x;” ~ p(xq|x; ).
variables. (i) (i)
e Sample x;° ~ p(xz]x;").

m [t is especially useful when the
dimension of the space to
sample is very large e.g. images.

o Setx() = ¥ AT,

m Note that due to the special
proposal, a Gibbs sampler does
not have an accept-reject step

as M-H.
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m Suppose, we are sampling in a
two dimensional space
x = [x1,x2]T. Then the Gibbs
sampler works as follows.

Machine Learning
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Optimization with MCMC

m Maximum a posteriori estimation requires
map = arg max p(xly) = argmaxp(x,y)

m The densities, in general, have multiple modes and local optima.
m MCMC methods can be used to find global optimum of such
densities.

m For this purpose, a time-varying target density is selected in an
MCMC iteration.

Machine Learning
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A Few Concepts to Summarize Lecture 11

Monte Carlo Methods: Approximate inference tools using the samples from the target
densities.

Basic Sampling Methods: The sampling methods to obtain independent samples from target
densities. Though quite powerful, these would give bad results with high dimensions.

MCMC: Monte Carlo methods which produce dependent samples but more robust in high
dimensions.

Metropolis-Hastings Algorithm: The most well-known MCMC algorithm using arbitrary
proposal densities.

Gibbs Sampler: A specific case of M-H algorithm which samples from conditionals iteratively
and always accepts a new sample.
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