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Outline Lecture 2 2(32)

1. Summary of Lecture 1

2. Bayesian linear regression

3. Motivation of Kernel methods
4. Linear Classification

1. Problem setup
2. Discriminant functions (mainly least squares)
3. Probabilistic generative models
4. Logistic regression (discriminative model)
5. Bayesian logistic regression

(Chapter 3.3 - 4)
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Summary of Lecture 1 (I/VI) 3(32)

The exponential family of distributions over x, parameterized by η,

p(x | η) = h(x)g(η) exp
(

ηTu(x)
)

One important member is the Gaussian density, which is commonly
used as a building block in more sophisticated models. Important
basic properties were provided.

The idea underlying maximum likelihood is that the parameters θ
should be chosen in such a way that the measurements {xi}N

i=1 are
as likely as possible, i.e.,

θ̂ = arg max
θ

p(x1, · · · , xN | θ).
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Summary of Lecture 1 (II/VI) 4(32)

The three basic steps of Bayesian modeling (where all variables are
modeled as stochastic)

1. Assign prior distributions p(θ) to all unknown parameters θ.

2. Write down the likelihood p(x1, . . . , xN | θ) of the data
x1, . . . , xN given the parameters θ.

3. Determine the posterior distribution of the parameters given the
data

p(θ | x1, . . . , xN) =
p(x1, . . . , xN | θ)p(θ)

p(x1, . . . , xN)
∝ p(x1, . . . , xN | θ)p(θ)

If the posterior p(θ | x1, . . . , xN) and the prior p(θ) distributions are
of the same functional form they are conjugate distributions and the
prior is said to be a conjugate prior for the likelihood.
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Summary of Lecture 1 (III/VI) 5(32)

Modeling “heavy tails” using the Student’s t-distribution

St(x | µ, λ, ν) =
∫
N
(

x | µ, (ηλ)−1
)

Gam (η | ν/2, ν/2) dη

=
Γ(ν/2 + 1/2)

Γ(ν/2)

(
λ

πν

) 1
2
(

1 +
λ(x− µ)2

ν

)− ν
2− 1

2

which according to the first expressions can be interpreted as an
infinite mix of Gaussians with the same mean, but different variance.
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−log Student
−log Gaussian Poor robustness is due to an

unrealistic model, the ML
estimator is inherently robust,
provided we have the correct
model.
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Summary of Lecture 1 (IV/VI) 6(32)

Linear regression models the relationship between a continuous
target variable t and a possibly nonlinear function φ(x) of the input
variable x,

tn = wTφ(xn)︸ ︷︷ ︸
y(xn,w)

+εn.

Solved this problem using

1. Maximum Likelihood (ML)

2. Bayesian approach

ML with a Gaussian noise model is equivalent to least squares (LS).
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Summary of Lecture 1 (V/VI) 7(32)

Theorem (Gauss-Markov)
In a linear regression model

T = Φw + E,

where E is white noise with zero mean and covariance R, the best
linear unbiased estimate (BLUE) of w is

ŵ = (ΦTR−1Φ)−1ΦTR−1T, Cov(ŵ) = (ΦTR−1Φ)−1.

Interpretation: The least squares estimator has the smallest mean
square error (MSE) of all linear estimators with no bias, BUT there
may exist a biased estimator with lower MSE.
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Summary of Lecture 1 (VI/VI) 8(32)

Two potentially biased estimators are ridge regression (p = 2) and
the Lasso (p = 1)

min
w

∑N
n=1

(
tn −wTφ(xn)

)2

s.t. ∑M−1
j=0 |wj|p ≤ η

which using a Lagrange multiplier λ can be stated

min
w

N

∑
n=1

(
tn −wTφ(xn)

)2
+ λ

M−1

∑
j=0
|wj|p

Alternative interpretation: The MAP estimate with the likelihood
∏N

n=1(tn −wTφ(xn))2 together with a Gaussian prior leads to ridge
regression and together with a Laplacian prior it leads to the LASSO.
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Bayesian Linear Regression - Example (I/VI) 9(32)

Consider the problem of fitting a straight line to noisy measurements.
Let the model be (t ∈ R, xn ∈ R)

tn = w0 + w1xn︸ ︷︷ ︸
y(x,w)

+εn, n = 1, . . . , N. (1)

where

εn ∼ N (0, 0.22), β =
1

0.22 = 25.

According to (1), the following identity basis function is used

φ0(xn) = 1, φ1(xn) = xn.

Since the example lives in two dimensions, we can plot distributions
to illustrate the inference.
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Bayesian Linear Regression - Example (II/VI) 10(32)

Let the true values for w be w? =
(
−0.3 0.5

)T
(plotted using a

white circle below).

Generate synthetic measurements by

tn = w?
0 + w?

1xn + εn, εn ∼ N (0, 0.22),

where xn ∼ U (−1, 1).

Furthermore, let the prior be

p(w) = N
(

w |
(
0 0

)T , α−1I
)

where

α = 2.
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Bayesian Linear Regression - Example (III/VI) 11(32)

Plot of the situation before any data arrives.

Prior,

p(w) = N
(

w |
(
0 0

)T ,
1
2

I
)
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Example of a few realizations from
the posterior.
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Bayesian Linear Regression - Example (IV/VI) 12(32)

Plot of the situation after one measurement has arrived.
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Likelihood (plotted as a
function of w)

p(t1 | w) = N (t1 | w0 + w1x1, β−1)

Posterior/prior,

p(w | t1) = N (w | m1, S1) ,

m1 = βS1ΦTt1,

S1 = (αI + βΦTΦ)−1.

Example of a few realizations
from the posterior and the first
measurement (black circle).
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Bayesian Linear Regression - Example (V/VI) 13(32)

Plot of the situation after two measurements have arrived.
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Likelihood (plotted as a
function of w)

p(t2 | w) = N (t2 | w0 + w1x2, β−1)

Posterior/prior,

p(w | T) = N (w | m2, S2) ,

m2 = βS2ΦTT,

S2 = (αI + βΦTΦ)−1.

Example of a few realizations
from the posterior and the
measurements (black circles).
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Bayesian Linear Regression - Example (VI/VI) 14(32)

Plot of the situation after 30 measurements have arrived.
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Likelihood (plotted as a
function of w)

p(t30 | w) = N (t30 | w0 + w1x30, β−1)

Posterior/prior,

p(w | T) = N (w | m30, S30) ,

m30 = βS30ΦTT,

S30 = (αI + βΦTΦ)−1.

Example of a few realizations
from the posterior and the
measurements (black circles).
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Predictive Distribution - Example 15(32)

Investigating the predictive distribution for the example above
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N = 2 observations N = 5 observations N = 200 observations

True system (y(x) = −0.3 + 0.5x) generating the data (red line)

Mean of the predictive distribution (blue line)

One standard deviation of the predictive distribution (gray shaded area) Note that this is
the point-wise predictive standard deviation as a function of x.

Observations (black circles)
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Posterior Distribution 16(32)

Recall that the posterior distribution is given by

p(w | T) = N (w | mN, SN),

where

mN = βSNΦTT,

SN = (αI + βΦTΦ)−1.

Let us now investigate the posterior mean solution mN above, which
has an interpretation that directly leads to the kernel methods
(lecture 4), including Gaussian processes.
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Generative and Discriminative Models 17(32)

Approaches that model the distributions of both the inputs and the
outputs are known as generative models. The reason for the name is
the fact that using these models we can generate new samples in the
input space.

Approaches that models the posterior probability directly are referred
to as discriminative models.
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ML for Probabilistic Generative Models (I/IV) 18(32)

Consider the two class case, where the class-conditional densities
p(x | Ck) are Gaussian and the training data is given by {xn, tn}N

n=1.
Furthermore, assume that p(C1) = α.

The task is now to find the parameters α, µ1, µ2, Σ by maximizing the
likelihood function,

p(T, X | α, µ1, µ2, Σ) =
N

∏
n=1

(p(xn, C1))
tn(p(xn, C2)

1−tn ,

where

p(xn, C1) = p(C1)p(xn | C1) = αN (xn | µ1, Σ),
p(xn, C2) = p(C2)p(xn | C2) = (1− α)N (xn | µ2, Σ).
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ML for Probabilistic Generative Models (II/IV) 19(32)

Let us now maximize the logarithm of the likelihood function,

L(α, µ1, µ2, Σ) = ln

(
N

∏
n=1

(αN (xn | µ1, Σ))tn ((1− α)N (xn | µ2, Σ))1−tn

)

The terms that depends on α are

N

∑
n=1

(tn ln α + (1− tn) ln(1− α))

which is maximized by α̂ = 1
N ∑N

n=1 tn = N1
N1+N2

(as expected). Nk
denotes the number of data in class Ck. Straightforwardly we get

µ̂1 =
1

N1

N

∑
n=1

tnxn, µ̂2 =
1

N2

N

∑
n=1

(1− tn)xn.
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ML for Probabilistic Generative Models (III/IV) 20(32)

L(Σ) = −1
2

N

∑
n=1

tn ln det Σ− 1
2

N

∑
n=1

tn(xn − µ1)
TΣ−1(xn − µ1)

− 1
2

N

∑
n=1

(1− tn) ln det Σ− 1
2

N

∑
n=1

(1− tn)(xn − µ2)
TΣ−1(xn − µ2)

Using the fact that xTAx = Tr
(
AxxT) we have

L(Σ) = −N
2

ln det Σ− N
2

Tr
(

Σ−1S
)

,

where

S =
1
N

N

∑
n=1

(
tn(xn − µ1)(xn − µ1)

T + (1− tn)(xn − µ2)(xn − µ2)
T
)
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ML for Probabilistic Generative Models (IV/IV) 21(32)

Lemma (Useful Matrix derivatives)

∂

∂M
ln det M = M−T,

∂

∂M
Tr
(

M−1N
)
= −M−TNTM−T.

Differentiating L(Σ) = −N
2 ln det Σ− N

2 Tr
(
Σ−1S

)
results in

∂L
∂Σ

= −N
2

Σ−T +
N
2

Σ−TSΣ−T

∂L
∂Σ

= 0

Hence, Σ = S

More results on matrix derivatives are available in Magnus, J. R., & Neudecker, H. (1999).
Matrix differential calculus with applications in statistics and econometrics. 2nd Edition,
Chichester, UK: Wiley.
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Generalized Linear Models for Classification 22(32)

In linear regression we made use of a linear model

tn = y(x, w) = wTφ(xn) + εn.

For classification problems the target variables are discrete, or
slightly more general, posterior probabilities in the range (0, 1). This
is achieved using a so called activation function f (f−1 must exist),

y(x) = f (wTx + w0). (2)

Note that the decision surface corresponds to y(x) = constant,
implying that wTx + w0 = constant. This means that the decision
surface is a linear function of x, even if f is nonlinear. Hence, the
name generalized linear model for (2).
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Gradient of L(w) for Logistic Regression (I/II) 23(32)

The negative log-likelihood is

L(w) = −
N

∑
n=1

(tn ln yn + (1− tn) ln(1− yn)) ,

where

yn = σ(an) =
1

1 + exp(−an)
, and an = wTφn.

Using the chain rule we have,

∂L
∂w

=
N

∑
n=1

∂L
∂yn

∂yn

∂an

∂an

∂w

where
∂L
∂yn

=
1− tn

1− yn
− tn

yn
=

yn − tn

yn(1− yn)
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Gradient of L(w) for Logistic Regression (II/II) 24(32)

Furthermore,

∂yn

∂an
=

∂σ(an)

∂an
= · · · = σ(an)(1− σ(an)) = yn(1− yn),

∂an

∂w
= φn.

which results in the following expression for the gradient

∂L
∂w

=
N

∑
n=1

(yn − tn)φn = ΦT(Y− T),

where

Φ =




φ0(x1) φ1(x1) . . . φM−1(x1)
φ0(x2) φ1(x2) . . . φM−1(x2)

...
...

. . .
...

φ0(xN) φ1(xN) . . . φM−1(xN)


 Y =




y1
y2
...

yN


 T =




t1
t2
...

tN
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Hessian of L(w) for Logistic Regression 25(32)

H =
∂2L

∂w∂wT = · · · =
N

∑
n=1

(yn − tn)φnφT
n = ΦTRΦ

where

R =




y1(1− y1) 0 . . . 0
0 y2(1− y2) . . . 0
...

...
. . .

...
0 0 . . . yN(1− yN)
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Bayesian Logistic Regression 26(32)

Recall that

p(T | w) =
N

∏
n=1

σ(wTφn)
tn
(

1− σ(wTφn)
)1−tn

Hence, computing the posterior density

p(w | T) =
p(T | w)p(w)

p(T)

is intractable. We are forced to an approximation. Three alternatives

1. Laplace approximation (this lecture)

2. VB & EP (lecture 5)

3. Sampling methods, e.g., MCMC (lecture 6)
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Laplace Approximation (I/III) 27(32)

The Laplace approximation is a simple approximation that is
obtained by fitting a Gaussian centered around the (MAP) mode of
the distribution.

Consider the density function p(z) of a scalar stochastic variable z,
given by

p(z) =
1
Z

f (z),

where Z =
∫

f (z)dz is the normalization coefficient.

We start by finding a mode z0 of the density function,

df (z)
dz

∣∣∣∣
z=z0

= 0.
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Laplace Approximation (II/III) 28(32)

Consider a Taylor expansion of ln f (z) around the mode z0,

ln f (z) ≈ ln f (z0) +
d
dz

ln f (z)
∣∣∣∣
z=z0︸ ︷︷ ︸

=0

(z− z0) +
1
2

d2

dz2 ln f (z)
∣∣∣∣
z=z0

(z− z0)
2

= ln f (z0)−
A
2
(z− z0)

2, (3)

where

A = − d2

dz2 ln f (z)
∣∣∣∣
z=z0

Taking the exponential of both sides in the approx. (3) results in

f (z) ≈ f (z0) exp
(
−A

2
(z− z0)

2
)
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Laplace Approximation (III/III) 29(32)

By normalizing this expression we have now obtained a Gaussian
approximation

q(z) =
(

A
2π

)1/2

exp
(
−A

2
(z− z0)

2
)

where

A = − d2

dz2 ln f (z)
∣∣∣∣
z=z0

The main limitation of the Laplace approximation is that it is a local
method that only captures aspects of the true density around a
specific value z0.
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Bayesian Logistic Regression (I/II) 30(32)

The posterior is

p(w | T) ∝ p(T | w)p(w), (4)

where we assume a Gaussian prior p(w) = N (w | m0, S0) and
make use of the Laplace approximation. Taking logarithm on both
sides of (4) gives

ln p(w | t) = −1
2
(w−m0)

TS−1
0 (w−m0)

+
N

∑
n=1

(tn ln yn + (1− tn) ln(1− yn)) + const.

where yn = σ(wTφn).
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Bayesian Logistic Regression (II/II) 31(32)

Using the Laplace approximation we can now obtain a Gaussian
approximation

q(w) = N (w | wMAP, SN)

where wMAP is the MAP estimate of p(w | T) and the covariance SN
is the Hessian of ln p(w | T),

SN =
∂2

∂w∂wT ln p(w | T) = S−1
0 +

N

∑
n=1

yn(1− yn)φnφT
n

Based on this distribution we can now start making predictions for
new input data φ(x), which is typically what we are interested in.
Recall that prediction corresponds to marginalization w.r.t. w.
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A Few Concepts to Summarize Lecture 2 32(32)

Hyperparameter: A parameter of the prior distribution that controls the distribution of the
parameters of the model.
Classification: The goal of classification is to assign an input vector x to one of K classes,
Ck, k = 1, . . . , K.

Discriminant: A discriminant is a function that takes an input x and assigns it to one of K
classes.

Generative models: Approaches that model the distributions of both the inputs and the
outputs are known as generative models. In classification this amounts to modelling the
class-conditional densities p(x | Ck), as well as the prior densities p(Ck). The reason for the
name is the fact that using these models we can generate new samples in the input space.

Discriminative models: Approaches that models the posterior probability directly are referred
to as discriminative models.

Logistic Regression: Discriminative model that makes direct use of a generalized linear
model in the form of a logistic sigmoid to solve the classification problem.

Laplace approximation: A local approximation method that finds the mode of the posterior
distribution and then fits a Gaussian centered at that mode.
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