

Machine Learning T. Schön AUTOMATIC CONTROL REGLERTEKNIK LINKÖPINGS UNIVERSITET

Summary of Lecture 1 (III/VI)

Summary of Lecture 1 (IV/VI)

Bayesian Linear Regression - Example (I/VI) Bayesian Linear Regression - Example (II/VI) 9(32) 10(32) Let the true values for w be $w^{\star} = \begin{pmatrix} -0.3 & 0.5 \end{pmatrix}^T$ (plotted using a Consider the problem of fitting a straight line to noisy measurements. Let the model be $(t \in \mathcal{R}, x_n \in \mathcal{R})$ white circle below). Generate synthetic measurements by $t_n = \underbrace{w_0 + w_1 x_n}_{y(x,w)} + \epsilon_n, \qquad n = 1, \dots, N.$ (1) $t_n = w_0^{\star} + w_1^{\star} x_n + \epsilon_n, \qquad \epsilon_n \sim \mathcal{N}(0, 0.2^2),$ where where $x_n \sim \mathcal{U}(-1, 1)$. $\epsilon_n \sim \mathcal{N}(0, 0.2^2), \qquad \beta = \frac{1}{0.2^2} = 25.$ Furthermore, let the prior be $p(w) = \mathcal{N} \left(w \mid \begin{pmatrix} 0 & 0 \end{pmatrix}^T, \alpha^{-1}I \right)$ According to (1), the following identity basis function is used $\phi_0(x_n) = 1, \qquad \phi_1(x_n) = x_n.$ where Since the example lives in two dimensions, we can plot distributions $\alpha = 2$. to illustrate the inference. AUTOMATIC CONTROL AUTOMATIC CONTROL Machine Learning Machine Learning REGLERTEKNIK REGLERTEKNIK LINKÖPINGS UNIVERSITET T. Schön LINKÖPINGS UNIVERSITET T. Schön **Bayesian Linear Regression - Example (III/VI) Bayesian Linear Regression - Example (IV/VI)** 11(32) 12(32)Plot of the situation before any data arrives. Plot of the situation after one measurement has arrived. 0.4 0.2 -0.3 -0. Likelihood (plotted as a Posterior/prior. Example of a few realizations 0.5 -0.5 0.5 function of w) from the posterior and the first measurement (black circle). $p(w \mid t_1) = \mathcal{N}\left(w \mid m_1, S_1\right),$ $p(t_1 \mid w) = \mathcal{N}(t_1 \mid w_0 + w_1 x_1, \beta^{-1})$ Prior. $m_1 = \beta S_1 \Phi^T t_1,$ Example of a few realizations from $S_1 = (\alpha I + \beta \Phi^T \Phi)^{-1}.$ $p(w) = \mathcal{N}\left(w \mid \begin{pmatrix} 0 & 0 \end{pmatrix}^T, \frac{1}{2}I \right)$ the posterior. Machine Learning

Machine Learning T. Schön

AUTOMATIC CONTROL REGLERTEKNIK LINKÖPINGS UNIVERSITET

T. Schön

AUTOMATIC CONTROL REGLERTEKNIK LINKÖPINGS UNIVERSITET

Concretive and Discriminative Models	ML for Probabilistic Concrative Medale (1/1)()
Approaches that model the distributions of both the inputs and the outputs are known as generative models. The reason for the name is the fact that using these models we can generate new samples in the input space. Approaches that models the posterior probability directly are referred to as discriminative models.	Consider the two class case, where the class-conditional densities $p(x C_k)$ are Gaussian and the training data is given by $\{x_n, t_n\}_{n=1}^N$. Furthermore, assume that $p(C_1) = \alpha$. The task is now to find the parameters α , μ_1 , μ_2 , Σ by maximizing the likelihood function, $p(T, X \alpha, \mu_1, \mu_2, \Sigma) = \prod_{n=1}^N (p(x_n, C_1))^{t_n} (p(x_n, C_2)^{1-t_n},$ where $p(x_n, C_1) = p(C_1)p(x_n C_1) = \alpha \mathcal{N}(x_n \mu_1, \Sigma),$ $p(x_n, C_2) = p(C_2)p(x_n C_2) = (1 - \alpha)\mathcal{N}(x_n \mu_2, \Sigma).$
Machine Learning AUTOMATIC CONTROL REGLERTERNIK I. Schön LINKÖPINGS UNIVERSITET	Machine Learning AUTOMATIC CONTROL REGLERTEKNIK T. Schön
ML for Probabilistic Generative Models (II/IV) 19(32)	ML for Probabilistic Generative Models (III/IV) 20(32)
Let us now maximize the logarithm of the likelihood function,	
$L(\alpha, \mu_1, \mu_2, \Sigma) = \ln \left(\prod_{n=1}^{N} \left(\alpha \mathcal{N}(x_n \mid \mu_1, \Sigma) \right)^{t_n} \left((1 - \alpha) \mathcal{N}(x_n \mid \mu_2, \Sigma) \right)^{1 - t_n} \right)$	$L(\Sigma) = -\frac{1}{2} \sum_{n=1}^{N} t_n \ln \det \Sigma - \frac{1}{2} \sum_{n=1}^{N} t_n (x_n - \mu_1)^T \Sigma^{-1} (x_n - \mu_1)$
The terms that depends on α are	$-\frac{1}{2}\sum_{n=1}^{N}(1-t_{n})\ln\det\Sigma-\frac{1}{2}\sum_{n=1}^{N}(1-t_{n})(x_{n}-\mu_{2})^{T}\Sigma^{-1}(x_{n}-\mu_{2})$
$\sum_{n=1}^{N} \left(t_n \ln \alpha + (1-t_n) \ln(1-\alpha) \right)$	Using the fact that $x^T A x = \text{Tr}(A x x^T)$ we have
$\widehat{\mu}_{1} = \frac{1}{N_{1}} \sum_{n=1}^{N} t_{n} = \frac{1}{N_{2}} \sum_{n=1}^{N} t_{n} = \frac{N_{1}}{N_{1}+N_{2}} \text{ (as expected). } N_{k}$ denotes the number of data in class C_{k} . Straightforwardly we get $\widehat{\mu}_{1} = \frac{1}{N_{1}} \sum_{n=1}^{N} t_{n} x_{n}, \qquad \widehat{\mu}_{2} = \frac{1}{N_{2}} \sum_{n=1}^{N} (1-t_{n}) x_{n}.$	$L(\Sigma) = -\frac{N}{2} \ln \det \Sigma - \frac{N}{2} \operatorname{Tr} \left(\Sigma^{-1} S \right),$ where $S = \frac{1}{N} \sum_{n=1}^{N} \left(t_n (x_n - \mu_1) (x_n - \mu_1)^T + (1 - t_n) (x_n - \mu_2) (x_n - \mu_2)^T \right)$

Hessian of $L(w)$ for Logistic Regression 25(32)	Bayesian Logistic Regression 26(32)
$H = \frac{\partial^2 L}{\partial w \partial w^T} = \dots = \sum_{n=1}^N (y_n - t_n) \phi_n \phi_n^T = \Phi^T R \Phi$ where $R = \begin{pmatrix} y_1(1 - y_1) & 0 & \dots & 0 \\ 0 & y_2(1 - y_2) & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & y_N(1 - y_N) \end{pmatrix}$	Recall that $p(T \mid w) = \prod_{n=1}^{N} \sigma(w^{T}\phi_{n})^{t_{n}} \left(1 - \sigma(w^{T}\phi_{n})\right)^{1-t_{n}}$ Hence, computing the posterior density $p(w \mid T) = \frac{p(T \mid w)p(w)}{p(T)}$ is intractable. We are forced to an approximation. Three alternatives 1. Laplace approximation (this lecture) 2. VB & EP (lecture 5) 3. Sampling methods, e.g., MCMC (lecture 6)
Machine Learning AUTOMATIC CONTROL REGLERTEKNIK I.NKÖPINGS UNIVERSITET	Machine Learning AUTOMATIC CONTROL REGLERTEKNIK T. Schön LINKÖPINGS UNIVERSITET
Laplace Approximation (I/III) 27(32)	Laplace Approximation (II/III) 28(32)
The Laplace approximation is a simple approximation that is obtained by fitting a Gaussian centered around the (MAP) mode of the distribution. Consider the density function $p(z)$ of a scalar stochastic variable z , given by	Consider a Taylor expansion of $\ln f(z)$ around the mode z_0 , $\ln f(z) \approx \ln f(z_0) + \underbrace{\frac{d}{dz} \ln f(z)}_{=0} _{z=z_0} (z-z_0) + \frac{1}{2} \frac{d^2}{dz^2} \ln f(z) \Big _{z=z_0} (z-z_0)^2$
$p(z) = \frac{1}{Z}f(z),$	$= \ln f(z_0) - \frac{1}{2}(z - z_0)^2,$ (3) where
where $Z = \int f(z)dz$ is the normalization coefficient. We start by finding a mode z_0 of the density function, $\frac{df(z)}{dz}\Big _{z=z_0} = 0.$	$A = -\frac{d^2}{dz^2} \ln f(z) \Big _{z=z_0}$ Taking the exponential of both sides in the approx. (3) results in $f(z) \approx f(z_0) \exp\left(-\frac{A}{2}(z-z_0)^2\right)$

Machine Learning T. Schön AUTOMATIC CONTROL REGLERTEKNIK LINKÖPINGS UNIVERSITET

Machine Learning

T. Schön

AUTOMATIC CONTROL REGLERTEKNIK LINKÖPINGS UNIVERSITET

Laplace Approximation (III/III)

By normalizing this expression we have now obtained a Gaussian approximation

$$q(z) = \left(\frac{A}{2\pi}\right)^{1/2} \exp\left(-\frac{A}{2}(z-z_0)^2\right)$$

where

$$A = -\frac{d^2}{dz^2} \ln f(z) \bigg|_{z=z_0}$$

The main limitation of the Laplace approximation is that it is a local method that only captures aspects of the true density around a specific value z_0 .

Machine Learning T. Schön

Bayesian Logistic Regression (II/II)

Using the Laplace approximation we can now obtain a Gaussian approximation

$$q(w) = \mathcal{N}(w \mid w_{\mathsf{MAP}}, S_N)$$

where w_{MAP} is the MAP estimate of $p(w \mid T)$ and the covariance S_N is the Hessian of $\ln p(w \mid T)$,

$$S_N = \frac{\partial^2}{\partial w \partial w^T} \ln p(w \mid T) = S_0^{-1} + \sum_{n=1}^N y_n (1 - y_n) \phi_n \phi_n^T$$

Based on this distribution we can now start making predictions for new input data $\phi(x)$, which is typically what we are interested in. Recall that prediction corresponds to marginalization w.r.t. w.

AUTOMATIC CONTROL

REGLERTEKNIK LINKÖPINGS UNIVERSITET

31(32)

The posterior is

29(32)

$$p(w \mid T) \propto p(T \mid w)p(w), \tag{4}$$

where we assume a Gaussian prior $p(w) = \mathcal{N}(w \mid m_0, S_0)$ and make use of the Laplace approximation. Taking logarithm on both sides of (4) gives

$$n p(w \mid t) = -\frac{1}{2}(w - m_0)^T S_0^{-1}(w - m_0) + \sum_{n=1}^N (t_n \ln y_n + (1 - t_n) \ln(1 - y_n)) + \text{const}$$

where
$$y_n = \sigma(w^T \phi_n)$$
.

Machine Learning T. Schön

1

AUTOMATIC CONTROL REGLERTEKNIK LINKÖPINGS UNIVERSITET

A Few Concepts to Summarize Lecture 2

32(32

Hyperparameter: A parameter of the prior distribution that controls the distribution of the parameters of the model.

Classification: The goal of classification is to assign an input vector x to one of K classes, $C_{k,k} = 1, \ldots, K$.

Discriminant: A discriminant is a function that takes an input *x* and assigns it to one of *K* classes.

Generative models: Approaches that model the distributions of both the inputs and the outputs are known as generative models. In classification this amounts to modelling the class-conditional densities $p(x | C_k)$, as well as the prior densities $p(C_k)$. The reason for the name is the fact that using these models we can generate new samples in the input space.

Discriminative models: Approaches that models the posterior probability directly are referred to as discriminative models.

Logistic Regression: Discriminative model that makes direct use of a generalized linear model in the form of a logistic sigmoid to solve the classification problem.

Laplace approximation: A local approximation method that finds the mode of the posterior distribution and then fits a Gaussian centered at that mode.

