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What is Machine Learning All About? 2(50)

"Machine learning is about learning, reasoning and
acting based on data."
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Outline Lecture 1 3(50)

1. Introduction and some motivation

2. Course administration
3. Probability distributions and some basic ideas

1. Exponential family
2. Properties of the Multivariate Gaussian
3. Maximum Likelihood (ML) estimation
4. Bayesian modelling
5. Robust statistics ("heavy tails")
6. Mixture of Gaussians

4. Linear Regression
1. Linear Basis Function Models
2. Maximum Likelihood and least squares
3. Bias variance trade-off
4. Shrinkage methods (Ridge regression and LASSO)
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Example 1 - Face Detection 4(50)

Viola, P. and Jones, M. Rapid Object Detection using a
Boosted Cascade of Simple Features, Proceedings of the
conference on computer vision and pattern recognition
(CVPR), Kauai, HI, USA, December 2001. Viola, P. A. and

Jones, M. J. (2004) Robust real-time face detection.
International Journal of Computer Vision, 57(2):137-154.

Based on boosting (lecture 6)

Currently implemented in real-time in most cameras, video
conferencing equipment, facebook, etc.
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Example 2 - Autonomous Helicopter Aerobatics 5(50)

Autonomous Helicopter Aerobatics through Apprenticeship
Learning, Pieter Abbeel, Adam Coates and Andrew Y. Ng.
International Journal of Robotics Research (IJRR), 2011.

Learning good controllers for tasks demonstrated by a human.
Currently a hot topic in many areas.
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Example 3 - Handwritten Digit Classification 6(50)

Input data: 16× 16
grayscale images.

Task: classify each
input image as
accurately as possible.

This data set will be
used throughout the
course.
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Data set available from
http://www-stat.stanford.edu/~tibs/ElemStatLearn/
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Example 4 - Animal Detection and Tracking (I/II) 7(50)
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Example 4 - Animal Detection and Tracking (II/II) 8(50)

Boosting (lecture
6) promising
technology for
the detection
problem.
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Course Administration 9(50)

Lecturer: Thomas Schön, www.control.isy.liu.se/~schon/

This course builds heavily on the Machine Learning course
given by Thomas Schön, Umut Orguner and Henrik Ohlsson
earlier this year at Linköping University.

7 lectures, each 3 hours (Do not cover everything)

We will try to provide examples of active research throughout
the lectures (especially connections to "our" areas)

Suggested exercises are provided for each lecture

Written exam, 2 days (48 hours). Code of honour applies as
usual

All course information, including lecture material is available
from the course home page
www.control.isy.liu.se/~schon/MLLund2011

Machine Learning

T. Schön

AUTOMATIC CONTROL
REGLERTEKNIK

LINKÖPINGS UNIVERSITET

Literature - Course Overview 10(50)

1. Linear Regression

2. Linear Classification

3. Expectation Maximization (EM)

4. Neural networks

5. Gaussian Processes

6. Support vector machines

7. Clustering

8. Approximate inference

9. Boosting

10. MCMC and sampling methods
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A Few Words About Probability Distributions 11(50)

Important in their own right.

Forms building blocks for more sophisticated probabilistic
models.

Touch upon some important statistical concepts.

See Chapter 2, Appendix B (useful summary) and Wikipedia.
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The Exponential Family 12(50)

The exponential family of distributions over x, parameterized by η,

p(x | η) = h(x)g(η) exp
(

ηTu(x)
)

Some of the members in the exponential family: Bernoulli, Beta,
Binomial, Dirichlet, Gamma, Gaussian, Gaussian-Gamma,
Gaussian-Wishart, Student’s t, Multinomial, Wishart.
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Multivariate Gaussian (I/VI) 13(50)

N (x; µ, Σ) , 1
(2π)n/2

√
det Σ

exp
(
−1

2
(x− µ)TΣ−1(x− µ)

)

Let us study a partitioned Gaussian,

x =

(
xa
xb

)
µ =

(
µa
µb

)
Σ =

(
Σaa Σab
Σba Σbb

)

with precision (information) matrix Λ = Σ−1

Λ =

(
Λaa Λab
Λba Λbb

)
=

(
Σ−1

aa + Σ−1
aa Σab∆−1

a ΣbaΣ−1
aa −Σ−1

aa Σab∆−1
a

−∆−1
a ΣbaΣ−1

aa ∆−1
a

)

where ∆a = Σbb − ΣbaΣ−1
aa Σab is the Schur complement of Σaa in Σ.
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Multivariate Gaussian (II/VI) 14(50)

Theorem (Conditioning)

Let x be Gaussian distributed and partitioned x =
(
xa xb

)T
, then

the conditional density p(xa | xb) is given by

p(xa | xb) = N (xa; µa|b, Σa|b),

µa|b = µa + ΣabΣ−1
bb (xb − µb),

Σa|b = Σaa − ΣabΣ−1
bb Σba,

which using the information (precision) matrix can be written,

µa|b = µa −Λ−1
aa Λab(xb − µb),

Σa|b = Λ−1
aa .
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Multivariate Gaussian (III/VI) 15(50)

Theorem (Marginalization)

Let x be Gaussian distributed and partitioned x =
(
xa xb

)T
, then

the marginal density p(xa) is given by

p(xa) = N (xa; µa, Σaa).
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Multivariate Gaussian (IV/VI) 16(50)

Theorem (Affine transformations)
Assume that xa, as well as xb conditioned on xa, are Gaussian
distributed

p(xa) = N (xa; µa, Σa),
p(xb | xa) = N (xb; Mxa + b, Σb|a),

where M is a matrix and b is a constant vector. The marginal density
of xb is then given by

p(xb) = N (xb; µb, Σb),
µb = Mµa + b,

Σb = Σb|a + MΣaMT.
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Multivariate Gaussian (V/VI) 17(50)

Theorem (Affine transformations, cont.)
The conditional density of xa given xb is

p(xa | xb) = N (xa; µa|b, Σa|b),

with

µa|b = Σa|b
(

MTΣ−1
b|a (xb − b) + Σ−1

a µa

)

= µa + ΣaMTΣ−1
b (xb − b−Mµa),

Σa|b =
(

Σ−1
a + MTΣ−1

b|a M
)−1

= Σa − ΣaMTΣ−1
b MΣa.
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Multivariate Gaussian (VI/VI) 18(50)

Multivariate Gaussian’s are important building blocks in more
sophisticated models.

For more details, proofs and an example where the Kalman filter is
derived using the above theorems is provided,
http://www.control.isy.liu.se/student/graduate/MachineLearning/manipGauss.pdf
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Maximum Likelihood (ML) Estimation 19(50)

The idea underlying maximum likelihood is that the parameters θ
should be chosen in such a way that the measurements {xi}N

i=1 are
as likely as possible, i.e.,

θ̂ = arg max
θ

p(x1, · · · , xN | θ).

Recall that the likelihood function is not a probability density function over θ (it is not

normalized).
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Bayesian Modelling 20(50)

All variables are modelled as random variables.

p(θ | x1, . . . , xN) ∝ p(x1, . . . , xN | θ)p(θ)
Posterior ∝ Likelihood× Prior

Provided that it makes sense from a modelling point of view it is
convenient to choose prior distributions rendering a computationally
tractable posterior distribution.

This leads to the so called conjugate priors (if the prior and the
posterior have the same functional form, the prior is said to be a
conjugate prior for the likelihood).

Again, only make use of conjugate priors if this makes sense from a
modelling point of view!
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Conjugate Priors - Example 1 (I/II) 21(50)

Let X = {xn}N
n=1 be independent identically distributed (iid)

observations of x ∼ N (µ, σ2). Assume that the variance σ2 is
known.

The likelihood is given by

p(X | µ) =
N

∏
n=1

p(xn | µ) =
1√

2πσ2
exp

(
− 1

2σ2

N

∑
n=1

(xn − µ)2

)

(1)

If we choose the prior as p(µ) = N (µ | µ0, σ2
0 ), the posterior will

also be Gaussian. Hence, this prior is a conjugate prior for the
likelihood (1).
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Conjugate Priors - Example 1 (II/II) 22(50)

The resulting posterior is

p(µ | X) = N (µB, σ2
B),

where the parameters are given by

µB =
σ2

Nσ2
0 + σ2

µ0 +
Nσ2

0

Nσ2
0 + σ2

µML,

1
σ2

B
=

1
σ2

0
+

N
σ2 .

The ML estimate of the mean is

µML =
1
N

N

∑
n=1

xn.
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Conjugate Priors – Some Examples 23(50)

Likelihood Model Parameters Conjugate Prior
Normal (known mean) Variance Inverse-Gamma
Multivariate Normal Precision Wishart
(known mean)
Multivariate Normal Covariance Inverse-Wishart
(known mean)
Multivariate Normal Mean and covariance Normal-Inverse-

Wishart
Multivariate Normal Mean and precision Normal-Wishart
Exponential Rate Gamma

Machine Learning

T. Schön

AUTOMATIC CONTROL
REGLERTEKNIK

LINKÖPINGS UNIVERSITET

Conjugate Prior is Just One of Many Possibilities! 24(50)

Note that using a conjugate prior is just one of the many possible
choices for modelling the prior! If it makes sense, use it, since it
leads to simple calculations.

Let’s have a look at an example where we do not make use of the
conjugate prior and end up in a useful and interesting result.

Linear regression models the relationship between a continuous
target variable t and an (input) variable x according to

ti = w0 + w1x1,i + w2x2,i + · · ·+ wDxD,i + εi

= wTφ(xi) + εi,

where φ(xi) =
(
1 x1,i . . . xD,i

)T
and i = 1, . . . , N.
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Conjugate Prior is Just One of Many Possibilities! 25(50)

Let εt ∼ N (0, σ2), resulting in the following likelihood

p(ti | w) = N (ti | wTφ(xi), σ2).

Let us now assume the wi to be independent and Laplacian
distributed (i.e. not conjugate prior), wi ∼ L(0, 2σ2/λ)

Def. (Laplacian distribution) L(x | a, b) = 1
2b exp

(
− |x−a|

b

)
.

The resulting MAP estimate is given by,

wMAP = arg max
w

N

∑
i=1

(ti −wTφ(xi))
2 + λ

D

∑
i=1
|wi|

Known as the LASSO and it leads to sparse estimates.

Machine Learning

T. Schön

AUTOMATIC CONTROL
REGLERTEKNIK

LINKÖPINGS UNIVERSITET

Robust Statistics 26(50)

Modelling the error as a Gaussian leads to very high sensitivity to
outliers in the data. This is due to the fact that the Gaussian assigns
very low probability to points far from the mean. The Gaussian is
said to have "thin tails".
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Two possible solutions
1. Model using a distribution with "heavy tails".
2. Outlier detection models
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Example: Heavy Tails (I/III) 27(50)

Generate N = 50 samples,

x ∼ N (0, 0.1)

Plot showing a realization
(gray histogram) and the
corresponding ML estimate
of a Gaussian (red) and a
Student’s t-distribution
(blue).
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Note that (as expected?) the red curve sits on top of the blue curve.
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Example: Heavy Tails (II/III) 28(50)

Let us now add 3 outliers
9, 9.2 and 9.5 to the data
set.

Plot showing resulting ML
estimate of a Gaussian
(red) and a Student’s
t-distribution (blue).

Clearly the Student’s
t-distribution is a better
model here! −5 0 5 10
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Example: Heavy Tails (III/III) 29(50)

Below: 400 samples from a Student’s
t-distribution and a Gaussian distribution.

Right: The corresponding pdf’s and negative
log-likelihoods.
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Outlier Detection Models 30(50)

Model the data as if it comes from a mixture of two Gaussians,

p(xi) = p(xi | ki = 0)p(ki = 0) + p(xi | ki = 1)p(ki = 1)

= N (0, σ2)p(ki = 0) +N (0, ασ2)p(ki = 1).

where α > 1, p(ki = 0) is the probability that the sample is OK and
p(ki = 1) is the probability that the sample is an outlier.

Note the similarity between these two "robustifications". The
Student’s t-distribution is an infinite mixture of Gaussians, where the
mixing is controlled by the ν-parameter. The outlier detection model
above consists of a sum of two Gaussians.
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Summary – Robust Statistics 31(50)

Do not use distributions with thin tails (non-robust) if there are
outliers present. Use more realistic robust "heavy tailed"
distribution such as the Student’s t-distribution or simply a
mixture of two Gaussians.

A nice account on robustness is available in Section 3.1 in
Triggs, B., McLauchlan, P., Hartley, R. and Fitzgibbon, A. (2000) Bundle
Adjustment - A Modern Synthesis. In: Vision algorithms: theory and practice.
Lecture Notes in Computer Science, Vol 1883. Springer, Berlin, pp 152-177.

http://dx.doi.org/10.1007/3-540-44480-7_21
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Important Message! 32(50)

Given the computational tools that we have today it can be rewarding
to resist the Gaussian convenience!!

We will try to repeat and illustrate this message throughout the
course using theory and examples.
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One Recent Example 33(50)

Student’s t-distribution (this lecture) + variational Bayes (lecture 8) for
estimation of AR-models published in this month’s issue of IEEE TSP,

Christmas, J. and Everson, R. Robust Autoregression: Student-t Innovations Using

Variational Bayes. IEEE Transactions on Signal Processing, 59(1): 48 - 57, Jan.

2011.

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5582315
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Outline Lecture 1 34(50)

4. Linear Regression

1. Linear Basis Function Models

2. Maximum Likelihood and least squares

3. Bias variance trade-off

4. Shrinkage methods (Ridge regression and LASSO)
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Commonly used Basis Functions 35(50)

In using nonlinear basis functions, y(x, w) can be a nonlinear
function in the input variable x (still linear in w).

Global (in the sense that a small change in x affects all basis
functions) basis function

1. Polynomial (see illustrative example in Section 1.1) (ex. identity
φ(x) = x)

Local (in the sense that a small change in x only affects the
nearby basis functions) basis function

1. Gaussian
2. Sigmoidal
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Linear Regression Model on Matrix Form 36(50)

It is commonly convenient to write the linear regression model

tn = wTφ(xn) + εn, n = 1, . . . , N,

where w =
(
w0 w1 . . . wM−1

)T
and

φ =
(
1 φ1(xn) . . . φM−1(xn)

)T
on matrix form

T = Φw + E,

where

T =




t1
t2
...

tN


 Φ =




φ0(x1) φ1(x1) . . . φM−1(x1)
φ0(x2) φ1(x2) . . . φM−1(x2)

...
...

. . .
...

φ0(xN) φ1(xN) . . . φM−1(xN)


 E =




ε1
ε2
...

εN
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Maximum Likelihood and Least Squares (I/IV) 37(50)

In our linear regression model,

tn = wTφ(xn) + εn,

assume that εn ∼ N (0, β−1) (i.i.d.). This results in the following
likelihood function

p(tn | w, β) = N (wTφ(xn), β−1)

Note that this is a slight abuse of notation, pw,β(tn) or p(tn; w, β) would have been better,

since w and β are both considered deterministic parameters in ML.
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Maximum Likelihood and Least Squares (II/IV) 38(50)

The available training data consisting of N input variables
X = {xi}N

i=1 and the corresponding target variables T = {ti}N
i=1.

According to our assumption on the noise, the likelihood function is
give by

p(T | w, β) =
N

∏
n=1

p(tn | w, β) =
N

∏
n=1
N (tn | wTφ(xn), β−1)

which results in the log-likelihood function

L(w, β) , ln p(t1, . . . , tn | w, β) =
N

∑
n=1

lnN (tn | wTφ(xn), β−1)

=
N
2

ln β− N
2

ln(2π)− β
N

∑
n=1

(tn −wTφ(xn))
2
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Maximum Likelihood and Least Squares (III/IV) 39(50)

The maximum likelihood problem now amounts to solving

arg max
w,β

L(w, β)

Setting the derivative ∂L
∂w = β ∑N

n=1(tn −wTφ(xn))2φ(xn)T equal to
0 gives the following ML estimate for w

ŵML = (ΦTΦ)−1ΦT
︸ ︷︷ ︸

Φ†

T,

Φ =




φ0(x1) φ1(x1) . . . φM−1(x1)
φ0(x2) φ1(x2) . . . φM−1(x2)

...
...

. . .
...

φ0(xN) φ1(xN) . . . φM−1(xN)




Note that if ΦTΦ is singular
(or close to) we can fix this
by adding λI, i.e.,

ŵRR = (ΦTΦ + λI)−1ΦTT,
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Maximum Likelihood and Least Squares (IV/IV) 40(50)

Maximizing the log-likelihood function L(w, β) w.r.t. β results in the
following estimate for β

1
β̂ML

=
1
N

N

∑
n=1

(
tn − ŵMLφ(xn)

)2

Finally, note that if we are only interested in w, the log-likelihood
function is proportional to

N

∑
n=1

(tn −wTφ(xn))
2,

which clearly shows that assuming a Gaussian noise model and
making use of Maximum Likelihood (ML) corresponds to a Least
Squares (LS) problem.
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Interpretation of the Gauss-Markov Theorem 41(50)

The least squares estimator has the smallest mean square error
(MSE) of all linear estimators with no bias, BUT there may exist a
biased estimator with lower MSE.

Two classes of potentially biased estimators

1. Subset selection methods

2. Shrinkage methods

This is intimately connected to the bias-variance trade-off

We will give a system identification example related to ridge
regression to illustrate the bias-variance trade-off.

See Section 3.2 for a slightly more abstract (but very
informative) account of the bias-variance trade-off. (this is a perfect

topic for discussions during the exercise sessions!)
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Interpretation of RR Using the SVD of Φ 42(50)

By studying the SVD of Φ it can be shown that ridge regression
projects the measurements onto the principal components of Φ and
then shrinks the coefficients of low-variance components more than
the coefficients of high-variance components.

(See Section 3.4.1. in HTF for details.)
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Bias-Variance Tradeoff - Example (I/IV) 43(50)

(Ex. 2.3 in Henrik Ohlsson’s PhD thesis) Consider a SISO system

yt =
n

∑
k=1

g0
kut−k + et, (2)

where ut denotes the input, yt denotes the output, et denotes white
noise (E {e} = 0 and E {etes} = σ2δ(t− s)) and {g0

k}n
k=1 denote

the impulse response of the system.

Recall that the impulse response is the output yt when ut = δ(t) is
used in (2), which results in

yt =

{
g0

t + et t = 1, . . . , n,
et t > n.
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Bias-Variance Tradeoff - Example (II/IV) 44(50)

The task is now to estimate the impulse response using an nth order
FIR model,

yt = wTφt + et,

where

φt =
(
ut−1 . . . ut−n

)T , w ∈ Rn

Let us use Ridge regression (RR),

ŵRR = arg min
w

‖Y−Φw‖2
2 + λwTw.

to find the parameters w.
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Bias-Variance Tradeoff - Example (III/IV) 45(50)
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Bias-Variance Tradeoff - Example (IV/IV) 46(50)

Flexible models will have a low bias and high variance and more
“restricted” models will have high bias and low variance.

The model with the best predictive capabilities is the one which
strikes the best tradeoff between bias and variance.

Recent contributions on impulse response identification using
regularization, see

Pillonetto, G. and De Nicolao, G. A new kernel-based approach for linear system

identification. Automatica, 46(1):81-93, January 2010.

Chen, T., Ohlsson, H and Ljung, L. On the Estimation of Transfer Functions,

Regularizations and Gaussian Processes - Revisited. In Proceedings of the 18th

IFAC World Congress, Milan, Italy, September 2011. (accepted for publication)
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Lasso 47(50)

The Lasso was introduced during lecture 1 as the MAP estimate
when a Laplacian prior is assigned to the parameters. Alternatively
we can motivate the Lasso as the solution to

min
w

∑N
n=1

(
tn −wTφ(xn)

)2

s.t. ∑M−1
j=0 |wj| ≤ η

which using a Lagrange multiplier λ can be stated

min
w

N

∑
n=1

(
tn −wTφ(xn)

)2
+ λ

M−1

∑
j=0
|wj|

The difference to ridge regression is simply that Lasso make use of
the `1-norm ∑M−1

j=0 |wj|, rather than the `2-norm ∑M−1
j=0 w2

j used in
ridge regression in shrinking the parameters.
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Graphical Illustration of Lasso and RR 48(50)

Lasso Ridge Regression (RR)

The circles are contours of the least squares cost function (LS
estimate in the middle). The constraint regions are shown in gray
|w0|+ |w1| ≤ η (Lasso) and w2

0 + w2
1 ≤ η (RR). The shape of the

constraints motivates why Lasso often leads to sparseness.
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Implementing Lasso 49(50)

The `1-regularized least squares problem (lasso)

min
w
‖T−Φw‖2

2 + λ‖w‖1 (3)

YALMIP code solving (3). Download: http://users.isy.liu.se/johanl/yalmip/

w=sdpvar (M, 1 ) ;
ops=sdpse t t i ngs ( ’ verbose ’ , 0 ) ;
solvesdp ( [ ] , ( T−Phi∗w) ’∗ ( T−Phi∗w) + lambda∗norm (w, 1 ) , ops )

CVX code solving (3). Download: http://cvxr.com/cvx/

cvx_begin
v a r i a b l e w(M)
minimize ( ( T−Phi∗w) ’∗ ( y−Phi∗w) + lambda∗norm (w, 1 ) )
cvx_end

A MATLAB package dedicated to `1-regularized least squares
problems is l1_ls. Download: http://www.stanford.edu/~boyd/l1_ls/
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A Few Concepts to Summarize Lecture 1 50(50)

Supervised learning: The data consists of both input and output signals (e.g., regressions
and classification).

Unsupervised learning: The data consists of output signals only (e.g., clustering).

Reinforcement learning: Finding suitable actions (control signals) in a given situation in order
to maximize a reward. (Very similar to control theory)

Conjugate prior: If the posterior distribution is in the same family as the prior distribution, the
prior and posterior are conjugate distributions and the prior is called a conjugate prior for the
likelihood.

Maximum likelihood: Choose the parameters such that the observations are as likely as
possible.

Linear regression: Models the relationship between a continuous target variable t and a
possibly nonlinear function φ(x) of the input variables.

Maximum a Posteriori (MAP): A point estimate obtained by maximizing the posterior
distribution. Corresponds to a mode of the posterior distribution.

Ridge regression: An `2-regularized least squares problem used to solve the linear
regression problem resulting in potentially biased estimates. A.k.a. Tikhonov regularization.

Lasso: An `1-regularized least squares problem used to solve the linear regression problem
resulting in potentially biased estimates. The Lasso typically produce sparse estimates.
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