

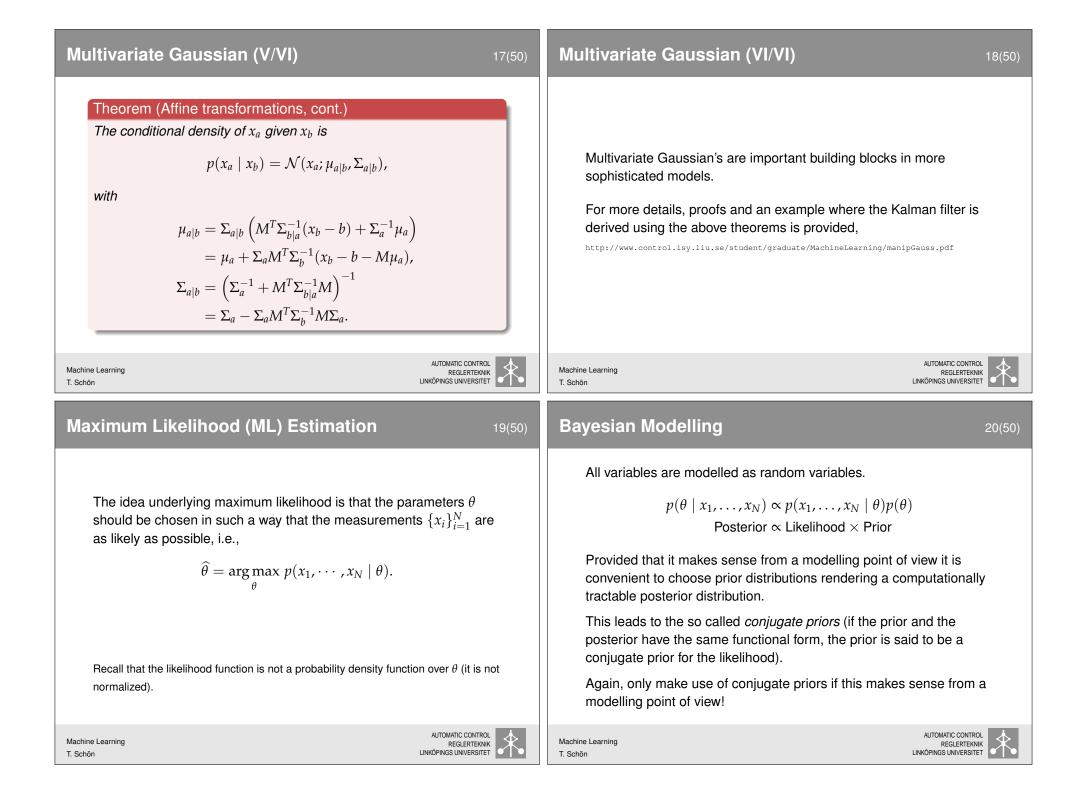
Example 2 - Autonomous Helicopter Aerobatics 5(50)	Example 3 - Handwritten Digit Classification 6(50)
Image: Second	 Input data: 16 × 16 grayscale images. Task: classify each input image as accurately as possible. This data set will be used throughout the course. Data set available from http://www-stat.stanford.edu/~tibs/ElemStatLearn/
Machine Learning AUTOMATIC CONTROL REGLERTEKNIK T. Schön LINKÖPINGS UNIVERSITET	Machine Learning AUTOMATIC CONTROL REGLERTEKNIK T. Schön LINKÖPINGS UNIVERSITET
Example 4 - Animal Detection and Tracking (I/II) 7(50)	Example 4 - Animal Detection and Tracking (II/II) 8(50)
Volvo förnyar system	
<section-header><section-header><text><text><text><text><text><text><text><text><text><text><text><text><text><text><text><text><text><text><text><text></text></text></text></text></text></text></text></text></text></text></text></text></text></text></text></text></text></text></text></text></section-header></section-header>	We understand with the stand of the stand

Course Administration	9(50) Literature - Course Overview	10(50)
 Lecturer: Thomas Schön, www.control.isy.liu.se/~schon/ This course builds heavily on the Machine Learning course given by Thomas Schön, Umut Orguner and Henrik Ohlsson earlier this year at Linköping University. 7 lectures, each 3 hours (Do not cover everything) We will try to provide examples of active research throughout the lectures (especially connections to "our" areas) Suggested exercises are provided for each lecture Written exam, 2 days (48 hours). Code of honour applies as usual All course information, including lecture material is available from the course home page www.control.isy.liu.se/~schon/MLLund2011 	 Linear Regression Linear Classification Expectation Maximization (EM) Neural networks Gaussian Processes Support vector machines Clustering Approximate inference Boosting MCMC and sampling methods 	l Learning
AUTOMATIC CONTROL Machine Learning REGLERTEKNIK T. Schön LINKÖPINGS UNIVERSITET	Automatic Machine Learning REGLE T. Schön Linköpings unit	CONTROL ERTEKNIK VERSITET
A Few Words About Probability Distributions	1(50) The Exponential Family	12(50)
	The exponential family of distributions over \boldsymbol{x} , parameterized by	<i>'</i> η,
 Important in their own right. Forms building blocks for more sophisticated probabilistic models. 	$p(\mathbf{x} \mid \boldsymbol{\eta}) = h(\mathbf{x})g(\boldsymbol{\eta})\exp\left(\boldsymbol{\eta}^{T}u(\mathbf{x})\right)$	
Touch upon some important statistical concepts.	Some of the members in the exponential family: Bernoulli, Beta Binomial, Dirichlet, Gamma, Gaussian, Gaussian-Gamma, Gaussian-Wishart, Student's t, Multinomial, Wishart.	ι,
See Chapter 2, Appendix B (useful summary) and Wikipedia.		
AUTOMATIC CONTROL Machine Learning REGLERTEKNIK T. Schön LINKÖPINGS UNIVERSITET	Machine Learning AutoMatic of T. Schön Linköpings unr	ERTEKNIK 🔀

Multivariate Gaussian (I/VI)

Let us study a partitioned Gaussian,

$$x = \begin{pmatrix} x_a \\ x_b \end{pmatrix}$$
 $\mu = \begin{pmatrix} \mu_a \\ \mu_b \end{pmatrix}$ $\Sigma = \begin{pmatrix} \Sigma_{aa} & \Sigma_{ab} \\ \Sigma_{ba} & \Sigma_{bb} \end{pmatrix}$


with precision (information) matrix $\Lambda = \Sigma^{-1}$ which using the information (precision) matrix can be written, $\Lambda = \begin{pmatrix} \Lambda_{aa} & \Lambda_{ab} \\ \Lambda_{ba} & \Lambda_{bb} \end{pmatrix} = \begin{pmatrix} \Sigma_{aa}^{-1} + \Sigma_{aa}^{-1} \Sigma_{ab} \Delta_a^{-1} \Sigma_{ba} \Sigma_{aa}^{-1} & -\Sigma_{aa}^{-1} \Sigma_{ab} \Delta_a^{-1} \\ -\Delta_a^{-1} \Sigma_{ba} \Sigma_{aa}^{-1} & \Delta_a^{-1} \end{pmatrix}$ $\mu_{a|b} = \mu_a - \Lambda_{aa}^{-1} \Lambda_{ab} (x_b - \mu_b),$ $\Sigma_{a|h} = \Lambda_{aa}^{-1}$. where $\Delta_a = \Sigma_{bb} - \Sigma_{ba} \Sigma_{aa}^{-1} \Sigma_{ab}$ is the Schur complement of Σ_{aa} in Σ_{ab} . AUTOMATIC CONTROL AUTOMATIC CONTROL Machine Learning Machine Learning REGLERTEKNIK REGLERTEKNIK LINKÖPINGS UNIVERSITET T. Schön LINKÖPINGS UNIVERSITET T Schön Multivariate Gaussian (III/VI) Multivariate Gaussian (IV/VI) Theorem (Affine transformations) Assume that x_a , as well as x_b conditioned on x_a , are Gaussian distributed Theorem (Marginalization) $p(x_a) = \mathcal{N}(x_a; u_a, \Sigma_a),$ Let *x* be Gaussian distributed and partitioned $x = \begin{pmatrix} x_a & x_b \end{pmatrix}^T$, then $p(x_h \mid x_a) = \mathcal{N}(x_h; Mx_a + b, \Sigma_{h|a}),$ the marginal density $p(x_a)$ is given by where M is a matrix and b is a constant vector. The marginal density $p(x_a) = \mathcal{N}(x_a; \mu_a, \Sigma_{aa}).$ of x_h is then given by $p(x_h) = \mathcal{N}(x_h; \mu_h, \Sigma_h),$ $u_h = M u_a + b$, $\Sigma_h = \Sigma_{h|a} + M \Sigma_a M^T.$ AUTOMATIC CONTROL AUTOMATIC CONTROL Machine Learning Machine Learning REGLERTEKNIK REGLERTEKNIK LINKÖPINGS UNIVERSITET LINKÖPINGS UNIVERSITET T. Schön T. Schön

Theorem (Conditioning)

Multivariate Gaussian (II/VI)

Let *x* be Gaussian distributed and partitioned $x = \begin{pmatrix} x_a & x_b \end{pmatrix}^T$, then the conditional density $p(x_a \mid x_b)$ is given by

$$egin{aligned} & \mu(x_a \mid x_b) = \mathcal{N}(x_a; \mu_{a|b}, \Sigma_{a|b}), \ & \mu_{a|b} = \mu_a + \Sigma_{ab} \Sigma_{bb}^{-1}(x_b - \mu_b), \ & \Sigma_{a|b} = \Sigma_{aa} - \Sigma_{ab} \Sigma_{bb}^{-1} \Sigma_{ba}, \end{aligned}$$

Conjugate Priors - Example 1 (I/II)

Let $X = \{x_n\}_{n=1}^N$ be independent identically distributed (iid) observations of $x \sim \mathcal{N}(\mu, \sigma^2)$. Assume that the variance σ^2 is known.

The likelihood is given by

$$p(X \mid \mu) = \prod_{n=1}^{N} p(x_n \mid \mu) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{1}{2\sigma^2} \sum_{n=1}^{N} (x_n - \mu)^2\right)$$
(1)

If we choose the prior as $p(\mu) = \mathcal{N}(\mu \mid \mu_0, \sigma_0^2)$, the posterior will also be Gaussian. Hence, this prior is a conjugate prior for the likelihood (1).

Machine Learning T. Schön

Conjugate Priors – Some Examples

Likelihood	Model Parameters	Conjugate Prior
Normal (known mean)	Variance	Inverse-Gamma
Multivariate Normal	Precision	Wishart
(known mean)		
Multivariate Normal	Covariance	Inverse-Wishart
(known mean)		
Multivariate Normal	Mean and covariance	Normal-Inverse-
		Wishart
Multivariate Normal	Mean and precision	Normal-Wishart
Exponential	Rate	Gamma

Conjugate Priors - Example 1 (II/II)

The resulting posterior is

$$p(\mu \mid X) = \mathcal{N}(\mu_B, \sigma_B^2),$$

where the parameters are given by

$$\begin{split} \mu_B &= \frac{\sigma^2}{N\sigma_0^2 + \sigma^2} \mu_0 + \frac{N\sigma_0^2}{N\sigma_0^2 + \sigma^2} \mu_{ML},\\ \frac{1}{\sigma_B^2} &= \frac{1}{\sigma_0^2} + \frac{N}{\sigma^2}. \end{split}$$

The ML estimate of the mean is

$$\mu_{ML} = \frac{1}{N} \sum_{n=1}^{N} x_n.$$

Machine Learning

AUTOMATIC CONTROL REGLERTEKNIK LINKÖPINGS UNIVERSITET

T. Schön

Conjugate Prior is Just One of Many Possibilities! 24(50)

Note that using a conjugate prior is just one of the many possible choices for modelling the prior! If it makes sense, use it, since it leads to simple calculations.

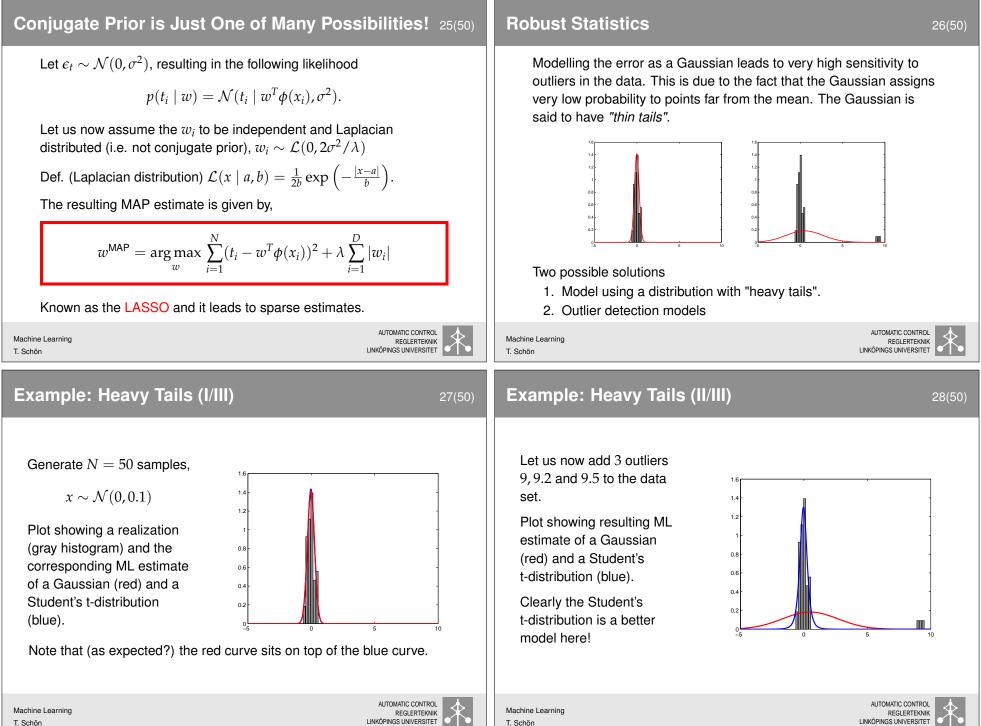
Let's have a look at an example where we do not make use of the conjugate prior and end up in a useful and interesting result.

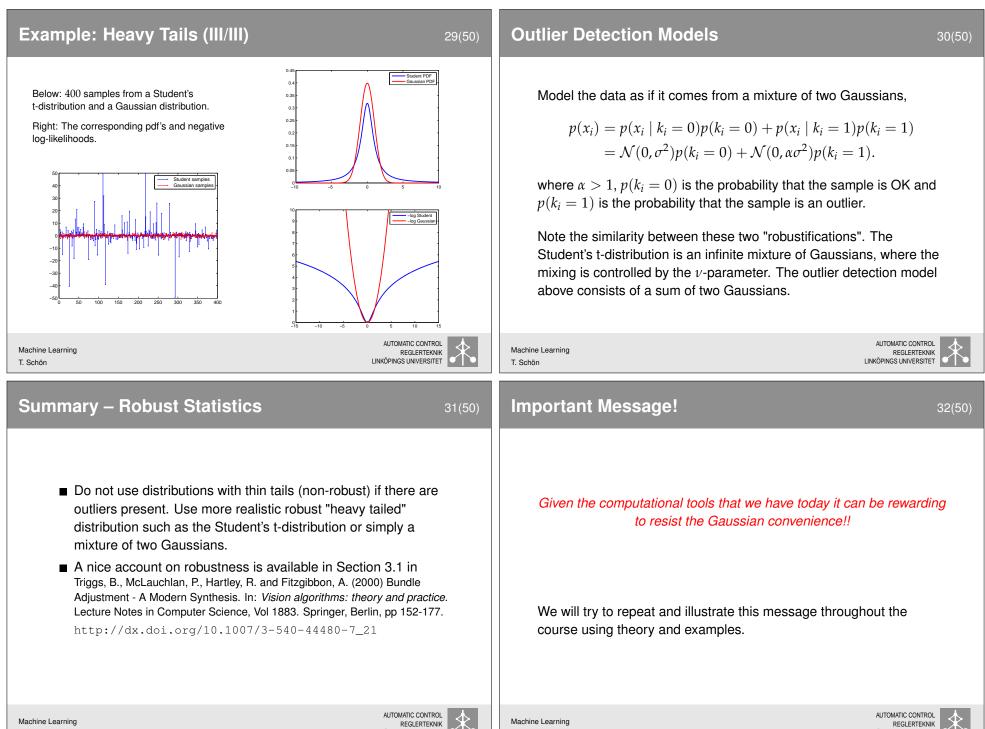
Linear regression models the relationship between a continuous target variable t and an (input) variable x according to

$$t_i = w_0 + w_1 x_{1,i} + w_2 x_{2,i} + \dots + w_D x_{D,i} + \epsilon_i$$

= $w^T \phi(x_i) + \epsilon_i$,

where
$$\phi(x_i) = \begin{pmatrix} 1 & x_{1,i} & \dots & x_{D,i} \end{pmatrix}^T$$
 and $i = 1, \dots, N$.


AUTOMATIC CONTROL REGLERTEKNIK LINKÖPINGS UNIVERSITET



AUTOMATIC CONTROL

REGLERTEKNIK LINKÖPINGS UNIVERSITET 22(50)

Dne Recent Example	33(50) Outline Lecture 1	34(50)
Student's t-distribution (this lecture) + variational Bayes (lecturestimation of AR-models published in this month's issue of IE Christmas, J. and Everson, R. Robust Autoregression: Student-t Innovation Variational Bayes. <i>IEEE Transactions on Signal Processing</i> , 59(1): 48 - 57 2011. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5582315	EEE TSP, 1. Linear Basis Function Models ons Using 2. Maximum Likelihood and lease	t squares
achine Learning	AATIC CONTROL REGLERTEKNIK S UNIVERSITET	AUTOMATIC CONTROL REGLERTERNIK LINKÖPINGS UNIVERSITET
Commonly used Basis Functions	35(50) Linear Regression Model on	n Matrix Form 36(50)
Commonly used Basis Functions In using nonlinear basis functions, $y(x, w)$ can be a nonlinear function in the input variable x (still linear in w). Global (in the sense that a small change in x affects all functions) basis function 1. Polynomial (see illustrative example in Section 1.1) (ex. $\phi(x) = x$) Local (in the sense that a small change in x only affects nearby basis functions) basis function 1. Gaussian 2. Sigmoidal	It is commonly convenient to write the transformation $t_n = w^T \phi(x_n) + \epsilon_{n,n}$ where $w = (w_0 w_1 \dots w_{M-1})$ $\phi = (1 \phi_1(x_n) \dots \phi_{M-1}(x_n))$ identity $T = \Phi_1$ where	the linear regression model , $n=1,\ldots,N,$ $\Big)^T$ and $\Big)^T$ on matrix form

In our linear regression model,

$$t_n = w^T \phi(x_n) + \epsilon_n,$$

assume that $\epsilon_n \sim \mathcal{N}(0, \beta^{-1})$ (i.i.d.). This results in the following likelihood function

$$p(t_n \mid w, \beta) = \mathcal{N}(w^T \phi(x_n), \beta^{-1})$$

Note that this is a slight abuse of notation, $p_{w,\beta}(t_n)$ or $p(t_n; w, \beta)$ would have been better, since w and β are both considered deterministic parameters in ML.

Machine Learning T. Schön

T. Schön

Maximum Likelihood and Least Squares (III/IV)

The maximum likelihood problem now amounts to solving

$$\underset{w,\beta}{\arg\max} L(w,\beta)$$

Setting the derivative $\frac{\partial L}{\partial w} = \beta \sum_{n=1}^{N} (t_n - w^T \phi(x_n))^2 \phi(x_n)^T$ equal to 0 gives the following ML estimate for w

$$\widehat{w}^{\mathsf{ML}} = \underbrace{(\Phi^{T} \Phi)^{-1} \Phi^{T}}_{\Phi^{\dagger}} T,$$

$$\Phi = \begin{pmatrix} \phi_{0}(x_{1}) & \phi_{1}(x_{1}) & \dots & \phi_{M-1}(x_{1}) \\ \phi_{0}(x_{2}) & \phi_{1}(x_{2}) & \dots & \phi_{M-1}(x_{2}) \\ \vdots & \vdots & \ddots & \vdots \\ \phi_{0}(x_{N}) & \phi_{1}(x_{N}) & \dots & \phi_{M-1}(x_{N}) \end{pmatrix} \qquad \begin{array}{l} \text{Note that if } \Phi^{T} \Phi \text{ is singular} \\ \text{(or close to) we can fix this} \\ \text{by adding } \lambda I, \text{ i.e.,} \\ \widehat{w}^{\mathsf{RR}} = (\Phi^{T} \Phi + \lambda I)^{-1} \Phi^{T} T \\ \widehat{w}^{\mathsf{RR}} = (\Phi^{T} \Phi + \lambda I)^{-1} \Phi^{T} T \\ \text{Machine Learning} \end{array}$$

The available training data consisting of N input variables $X = \{x_i\}_{i=1}^N$ and the corresponding target variables $T = \{t_i\}_{i=1}^N$.

According to our assumption on the noise, the likelihood function is give by

$$p(T \mid w, \beta) = \prod_{n=1}^{N} p(t_n \mid w, \beta) = \prod_{n=1}^{N} \mathcal{N}(t_n \mid w^T \phi(x_n), \beta^{-1})$$

which results in the log-likelihood function

$$L(w,\beta) \triangleq \ln p(t_1,\ldots,t_n \mid w,\beta) = \sum_{n=1}^N \ln \mathcal{N}(t_n \mid w^T \phi(x_n),\beta^{-1})$$
$$= \frac{N}{2} \ln \beta - \frac{N}{2} \ln(2\pi) - \beta \sum_{n=1}^N (t_n - w^T \phi(x_n))^2$$

Machine Learning T. Schön

37(50)

AUTOMATIC CONTROL

REGLERTEKNIK LINKÖPINGS UNIVERSITET

39(50)

this

 $\Phi^T T$

LINKÖPINGS UNIVERSITET

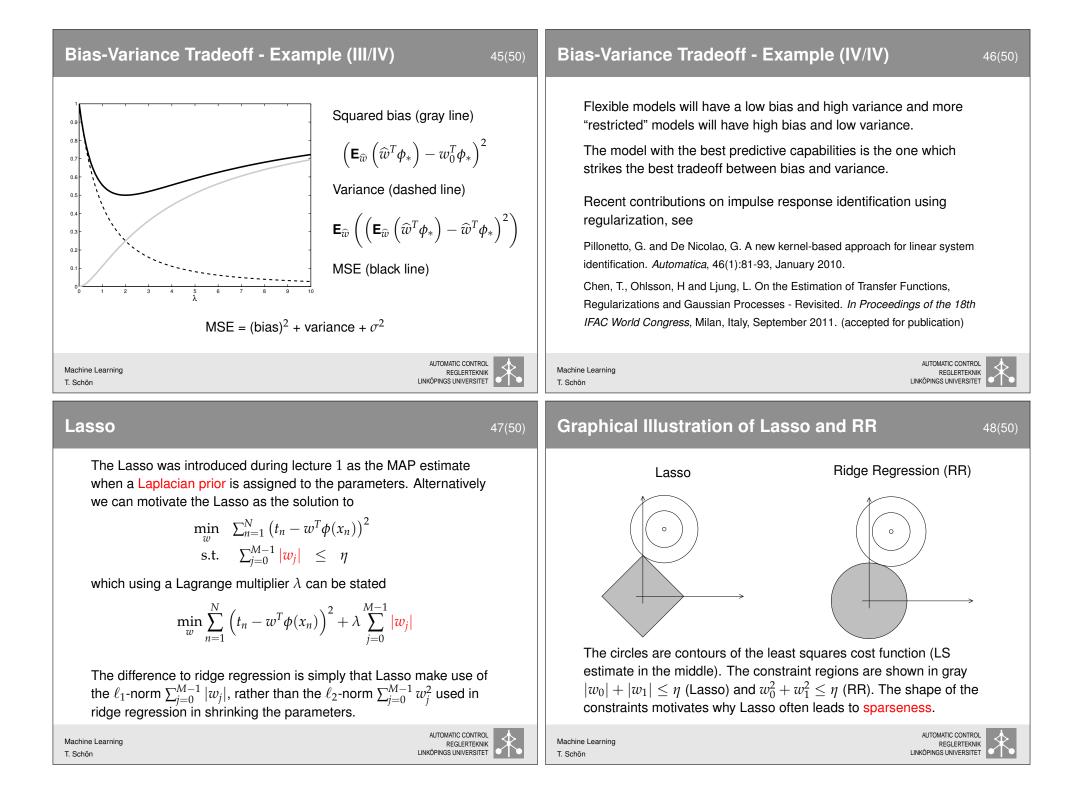
AUTOMATIC CONTROL REGLERTEKNIK LINKÖPINGS UNIVERSITET

Maximum Likelihood and Least Squares (IV/IV)

Maximizing the log-likelihood function $L(w, \beta)$ w.r.t. β results in the following estimate for β

$$\frac{1}{\widehat{\beta}^{\mathsf{ML}}} = \frac{1}{N} \sum_{n=1}^{N} \left(t_n - \widehat{w}^{\mathsf{ML}} \phi(x_n) \right)^2$$

Finally, note that if we are only interested in w, the log-likelihood function is proportional to


$$\sum_{n=1}^{N} (t_n - w^T \phi(x_n))^2$$

which clearly shows that assuming a Gaussian noise model and making use of Maximum Likelihood (ML) corresponds to a Least Squares (LS) problem.

Machine Learning T. Schön

Interpretation of the Gauss-Markov Theorem	41(50)	Interpretation of RR Using the SVD of Φ 42(5
The least squares estimator has the smallest mean square erro (MSE) of all linear estimators with no bias, BUT there may exist biased estimator with lower MSE. Two classes of potentially biased estimators 1. Subset selection methods 2. Shrinkage methods		By studying the SVD of Φ it can be shown that ridge regression projects the measurements onto the principal components of Φ and then shrinks the coefficients of low-variance components more than the coefficients of high-variance components.
 This is intimately connected to the bias-variance trade-off We will give a system identification example related to ridg regression to illustrate the bias-variance trade-off. See Section 3.2 for a slightly more abstract (but very informative) account of the bias-variance trade-off. (this is a p topic for discussions during the exercise sessions!) 		(See Section 3.4.1. in HTF for details.)
Automatic c Machine Learning REGLE T. Schön LINKÖPINGS UNIV		Machine Learning AUTOMATIC CONTROL T. Schön LINKÖPINGS UNIVERSITET
Bias-Variance Tradeoff - Example (I/IV)	43(50)	Bias-Variance Tradeoff - Example (II/IV) 44(5
(Ex. 2.3 in Henrik Ohlsson's PhD thesis) Consider a SISO syste $y_t = \sum_{k=1}^n g_k^0 u_{t-k} + e_t,$	em (2)	The task is now to estimate the impulse response using an <i>n</i> th order FIR model, $y_t = w^T \phi_t + e_t$,
where u_t denotes the input, y_t denotes the output, e_t denotes we noise (E { e } = 0 and E { e_te_s } = $\sigma^2\delta(t-s)$) and { g_k^0 } $_{k=1}^n$ denotes the impulse response of the system.		where $\phi_t = egin{pmatrix} u_{t-1} & \ldots & u_{t-n} \end{pmatrix}^T$, $w \in \mathbb{R}^n$
	t) ic	
Recall that the <i>impulse response</i> is the output y_t when $u_t = \delta(t)$ used in (2), which results in		Let us use Ridge regression (RR), $\widehat{w}^{RR} = \arg\min X = \Phi \pi w^{T} \pi w$
	1) 15	Let us use Ridge regression (RR), $\widehat{w}^{RR} = \arg\min_{w} Y - \Phi w _{2}^{2} + \lambda w^{T} w.$ to find the parameters w .

Implementing Lasso	49(50)	A Few Concepts to Summarize Lecture 1 50(50)
The ℓ_1 -regularized least squares problem (lasso)		Supervised learning: The data consists of both input and output signals (e.g., regressions and classification).
$\min_{w} \ T - \Phi w\ _2^2 + \lambda \ w\ _1$	(3)	Unsupervised learning: The data consists of output signals only (e.g., clustering).
w " " " " "		Reinforcement learning: Finding suitable actions (control signals) in a given situation in order to maximize a reward. (Very similar to control theory)
<pre>YALMIP code solving (3). Download: http://users.isy.liu.se/johan: w=sdpvar(M,1); ops=sdpsettings('verbose',0);</pre>	l/yalmip/	Conjugate prior: If the posterior distribution is in the same family as the prior distribution, the prior and posterior are <i>conjugate distributions</i> and the prior is called a conjugate prior for the likelihood.
solvesdp([],(T-Phi*w)'*(T-Phi*w) + lambda*norm(w,1),ops)		Maximum likelihood: Choose the parameters such that the observations are as likely as possible.
CVX code solving (3). Download: http://cvxr.com/cvx/		Linear regression: Models the relationship between a continuous target variable t and a possibly nonlinear function $\phi(x)$ of the input variables.
cvx_begin variable w(M) minimize((T—Phi*w)'*(v—Phi*w) + lambda*norm(w.1))		Maximum a Posteriori (MAP): A point estimate obtained by maximizing the posterior distribution. Corresponds to a mode of the posterior distribution.
cvx_end		Ridge regression: An ℓ_2 -regularized least squares problem used to solve the linear regression problem resulting in potentially biased estimates. A.k.a. Tikhonov regularization.
A MATLAB package dedicated to ℓ_1 -regularized least squares problems is 11_1s. Download: http://www.stanford.edu/~boyd/l1_ls		Lasso: An ℓ_1 -regularized least squares problem used to solve the linear regression problem resulting in potentially biased estimates. The Lasso typically produce sparse estimates.
Machine Learning AUTOMAI RE T. Schön LINKÖPINGSI		Machine Learning AUTOMATIC CONTROL REGLERTEKNIK I.NKÖPINGS UNIVERSITET