The Basic Example Solved with Variational Bayesian Inference

Umut Orguner

March 3, 2011

We consider the following scalar linear system.

$$
\begin{gather*}
x_{k+1}=\theta x_{k}+v_{k} \tag{1}\\
y_{k}=0.5 x_{k}+e_{k} \tag{2}
\end{gather*}
$$

where

- $x_{k} \in \mathbb{R}$ is the state variable with initial distribution $x_{0} \sim \mathcal{N}\left(x_{0} ; \bar{x}_{0}, \Sigma_{0}\right)$.
- $y_{k} \in \mathbb{R}$ is the measurement.
- θ is an unknown parameter with prior distribution $\theta \sim \mathcal{N}\left(\theta ; 0, \sigma_{\theta}^{2}\right)$
- The white process noise $v_{k} \in \mathbb{R}$ and white measurement noise $e_{k} \in \mathbb{R}$ are distributed as

$$
\left[\begin{array}{l}
v_{k} \tag{3}\\
e_{k}
\end{array}\right] \sim \mathcal{N}\left(\left[\begin{array}{c}
v_{k} \\
e_{k}
\end{array}\right] ;\left[\begin{array}{l}
0 \\
0
\end{array}\right],\left[\begin{array}{cc}
\sigma_{v}^{2} & 0 \\
0 & \sigma_{e}^{2}
\end{array}\right]\right)
$$

The aim is to find a possibly approximate estimate of the posterior distribution $p\left(\theta, x_{0: N} \mid y_{0: N}\right)$.
There is no exact formula for this posterior distribution. in the variational Bayesian inference we make the approximation

$$
\begin{equation*}
p\left(\theta, x_{0: N} \mid y_{0: N}\right) \approx q\left(\theta, x_{0: N}\right) \triangleq q_{\theta}(\theta) q_{x}\left(x_{0: N}\right) \tag{4}
\end{equation*}
$$

It is known that, in the iterative scheme of minimizing $\operatorname{KL}\left(q\left(\theta, x_{0: N}\right) \| p\left(\theta, x_{0: N} \mid y_{0: N}\right)\right)$, i.e., variational Bayes, one gets the following identities.

$$
\begin{align*}
\log q_{\theta}(\theta) & =E_{q_{x}}\left[\log p\left(y_{0: N}, x_{0: N}, \theta\right)\right]+\text { const. } \tag{5}\\
\log q_{x}\left(x_{0: N}\right) & =E_{q_{\theta}}\left[\log p\left(y_{0: N}, x_{0: N}, \theta\right)\right]+\text { const. } \tag{6}
\end{align*}
$$

We can write the joint density $p\left(y_{0: N}, x_{0: N}, \theta\right)$ as follows.

$$
\begin{align*}
p\left(y_{0: N}, x_{0: N}, \theta\right) & =p\left(y_{0: N} \mid x_{0: N}\right) p\left(x_{1: N} \mid x_{0: N-1}, \theta\right) p\left(x_{0}\right) p(\theta) \tag{7}\\
& =\prod_{i=0}^{N} p\left(y_{i} \mid x_{i}\right) \prod_{i=1}^{N} p\left(x_{i} \mid x_{i-1}, \theta\right) p\left(x_{0}\right) p(\theta) \tag{8}\\
& =\prod_{i=0}^{N} \mathcal{N}\left(y_{i} ; 0.5 x_{i}, \sigma_{e}^{2}\right) \prod_{i=1}^{N} \mathcal{N}\left(x_{i} ; \theta x_{i-1}, \sigma_{v}^{2}\right) \mathcal{N}\left(x_{0} ; \bar{x}_{0}, \sigma_{0}^{2}\right) \mathcal{N}\left(\theta ; 0, \sigma_{\theta}^{2}\right) \tag{9}
\end{align*}
$$

Taking the logarithm of both sides, we get.
$\log p\left(y_{0: N}, x_{0: N}, \theta\right)=\sum_{i=0}^{N}-\frac{0.5}{\sigma_{e}^{2}}\left(y_{i}-0.5 x_{i}\right)^{2}+\sum_{i=1}^{N}-\frac{0.5}{\sigma_{v}^{2}}\left(x_{i}-\theta x_{i-1}\right)^{2}-\frac{0.5}{\sigma_{0}^{2}}\left(x_{0}-\bar{x}_{0}\right)^{2}-\frac{0.5}{\sigma_{\theta}^{2}} \theta^{2}$

+ const.
where we included the terms that do not involve any variables into the constant term.
- Calculation of $p_{\theta}(\theta)$:

$$
\begin{align*}
\log q_{\theta}(\theta) & =E_{q_{x}}\left[\log p\left(y_{0: N}, x_{0: N}, \theta\right)\right]+\text { const. } \tag{11}\\
& =E_{q_{x}}\left[\log p\left(x_{1: N} \mid x_{0: N-1}, \theta\right)+\log p(\theta)\right]+\text { const. } \tag{12}\\
& =E_{q_{x}}\left[\sum_{i=1}^{N}-\frac{0.5}{\sigma_{v}^{2}}\left(x_{i}-\theta x_{i-1}\right)^{2}+\log p(\theta)\right]+\text { const. } \tag{13}\\
& =E_{q_{x}}\left[\sum_{i=1}^{N}-\frac{0.5}{\sigma_{v}^{2}}\left(x_{i}-\theta x_{i-1}\right)^{2}\right]+\log p(\theta)+\text { const. } \tag{14}\\
& =\sum_{i=1}^{N}-\frac{0.5}{\sigma_{v}^{2}} E_{q_{x}}\left(x_{i}-\theta x_{i-1}\right)^{2}+\log p(\theta)+\text { const. } \tag{15}\\
& =\sum_{i=1}^{N}\left[-\frac{0.5}{\sigma_{v}^{2}}\left(-2 \theta \overline{x_{i} x_{i-1}}+\theta^{2} \overline{x_{i-1}^{2}}\right)\right]+\log p(\theta)+\text { const. } \tag{16}\\
& =\sum_{i=1}^{N}\left[-\frac{0.5}{\sigma_{v}^{2} / \overline{x_{i-1}^{2}}}\left(\theta-\frac{\overline{x_{i} x_{i-1}}}{\overline{x_{i-1}^{2}}}\right)^{2}\right]+\log p(\theta)+\text { const. } \tag{17}\\
& =\sum_{i=1}^{N} \log \mathcal{N}\left(\theta ; \frac{\overline{x_{i} x_{i-1}}}{\overline{x_{i-1}^{2}}}, \sigma_{v}^{2} / \overline{x_{i-1}^{2}}\right)+\log \mathcal{N}\left(\theta ; 0, \sigma_{\theta}^{2}\right)+\text { const. } \tag{18}
\end{align*}
$$

where only the terms in (10) depending on only θ are kept and the rest are included into the constant. The terms $\overline{x_{i} x_{i-1}}$ and $\overline{x_{i-1}^{2}}$ are defined as

$$
\begin{equation*}
\overline{x_{i} x_{i-1}} \triangleq E_{q_{x}}\left(x_{i} x_{i-1}\right) \quad \text { and } \quad \overline{x_{i-1}^{2}} \triangleq E_{q_{x}}\left(x_{i-1}^{2}\right) \tag{19}
\end{equation*}
$$

Now, we can write $q_{\theta}(\theta)$ based on (18) as

$$
\begin{align*}
q_{\theta}(\theta) & \propto \prod_{i=1}^{N} \mathcal{N}\left(\theta ; \frac{\overline{x_{i} x_{i-1}}}{\overline{x_{i-1}^{2}}}, \sigma_{v}^{2} \overline{x_{i-1}^{2}}\right) \mathcal{N}\left(\theta ; 0, \sigma_{\theta}^{2}\right) \tag{20}\\
& =\mathcal{N}(\theta ; \bar{\theta}, \operatorname{Var}(\theta))) \tag{21}
\end{align*}
$$

where

$$
\begin{align*}
\operatorname{Var}(\theta) & =\left(\sum_{i=1}^{N} \frac{\overline{x_{i-1}^{2}}}{\sigma_{v}^{2}}+\frac{1}{\sigma_{\theta}^{2}}\right)^{-1} \tag{22}\\
\bar{\theta} & \triangleq \operatorname{Var}(\theta) \sum_{i=1}^{N} \frac{\overline{x_{i} x_{i-1}}}{\sigma_{v}^{2}} \tag{23}
\end{align*}
$$

- Calculation of $p_{x}\left(x_{0: N}\right)$:

$$
\begin{align*}
\log q_{x}\left(x_{0: N}\right)= & E_{q_{\theta}}\left[\log p\left(y_{0: N}, x_{0: N}, \theta\right)\right]+\text { const. } \tag{24}\\
= & E_{q_{\theta}}\left[\log p\left(y_{0: N} \mid x_{0: N}\right)+\log p\left(x_{1: N} \mid x_{0: N-1}, \theta\right)+\log p\left(x_{0}\right)\right]+\text { const. } \tag{25}\\
= & \log p\left(y_{0: N} \mid x_{0: N}\right)+E_{q_{\theta}}\left[\log p\left(x_{1: N} \mid x_{0: N-1}, \theta\right)\right]+\log p\left(x_{0}\right)+\text { const. } \tag{26}\\
= & \log p\left(y_{0: N} \mid x_{0: N}\right)+E_{q_{\theta}}\left[\sum_{i=0}^{N}-\frac{0.5}{\sigma_{v}^{2}}\left(x_{i}-\theta x_{i-1}\right)^{2}\right]+\log p\left(x_{0}\right)+\text { const. } \tag{27}\\
= & \log p\left(y_{0: N} \mid x_{0: N}\right)+\sum_{i=1}^{N}\left[-\frac{0.5}{\sigma_{v}^{2}}\left(x_{i}-\bar{\theta} x_{i-1}\right)^{2}-\frac{0.5}{\sigma_{v}^{2}} \operatorname{Var}(\theta) x_{i-1}^{2}\right] \\
& +\log p\left(x_{0}\right)+\text { const. } \tag{28}\\
= & \log p\left(y_{0: N} \mid x_{0: N}\right)+\sum_{i=1}^{N}\left[\log \mathcal{N}\left(x_{i} ; \bar{\theta} x_{i-1}, \sigma_{v}^{2}\right)+\log \mathcal{N}\left(x_{i-1} ; 0, \sigma_{v}^{2} / \operatorname{Var}(\theta)\right)\right] \\
& +\log p\left(x_{0}\right)+\operatorname{const.} \tag{29}\\
= & \log p\left(y_{0: N} \mid x_{0: N}\right)+\log p\left(x_{1: N} \mid x_{0: N-1}, \bar{\theta}\right)+\sum_{i=1}^{N} \log \mathcal{N}\left(x_{i-1} ; 0, \sigma_{v}^{2} / \operatorname{Var}(\theta)\right) \\
& +\log p\left(x_{0}\right)+\operatorname{const.} \tag{30}
\end{align*}
$$

where only the terms in (10) depending on only $x_{0: N}$ are kept and the rest are included into the constant. The terms $\bar{\theta}$ and $\operatorname{Var} \theta$ are

$$
\begin{align*}
\bar{\theta} & =E_{q_{\theta}}(\theta) \tag{31}\\
\operatorname{Var}(\theta) & =E_{q_{\theta}}\left((\theta-\bar{\theta})^{2}\right) \tag{32}
\end{align*}
$$

which are equivalent to those defined in the calculation of $q_{\theta}(\theta)$. Now, we can write $q_{x}\left(x_{0: N}\right)$ as

$$
\begin{equation*}
q_{x}\left(x_{0: N}\right) \propto p\left(y_{0: N} \mid x_{0: N}\right) p\left(x_{1: N} \mid x_{0: N-1}, \bar{\theta}\right) \prod_{i=0}^{N-1} \mathcal{N}\left(x_{i} ; 0, \sigma_{v}^{2} / \operatorname{Var}(\theta)\right) p\left(x_{0}\right) \tag{33}
\end{equation*}
$$

in which all of the terms are Gaussian. The densities $\prod_{i=1}^{N} \mathcal{N}\left(x_{i-1} ; 0, \sigma_{v}^{2} / \operatorname{Var}(\theta)\right)$ must be interpreted as a pseudo likelihood which provides extra measurements defined as

$$
\begin{equation*}
\tilde{y}_{k}=0=x_{k}+\tilde{e}_{k} \tag{34}
\end{equation*}
$$

for $k=0, \ldots, N-1$ where $\tilde{e}_{k} \sim \mathcal{N}\left(\tilde{e}_{k} ; 0, \sigma_{v}^{2} / \operatorname{Var}(\theta)\right)$. The final density estimate is written as

$$
\begin{equation*}
q_{x}\left(x_{0: N}\right)=p\left(x_{0: N} \mid y_{0: N}, \tilde{y}_{0: N-1}, \bar{\theta}\right) \tag{35}
\end{equation*}
$$

which is a Gaussian density that can be calculated by running a Kalman smoother on the data $y_{0: N}$ and $\tilde{y}_{0: N-1}$ using the parameter estimate $\bar{\theta}$ in the state model.

