

Hinting at the potential – system identification (II/IV)5(24)

Consider the blind problem,

The **task** is to learn the parameters of the linear system \mathcal{L} and find the nonlinearity $h(\cdot)$ (entire function has to be learned) based only on the output measurements $y_{1:T} \triangleq \{y_1, \dots, y_T\}$.

We do not impose any assumption on the nonlinearity and allow for colored noises.

Hinting at the potential – system identification (IV/IV)

Hinting at the potential – system identification (III/IV) $_{6(24)}$

Using a PMCMC method (introduced in Part 4) we can compute the posterior distribution $p(\theta \mid y_{1:T})$, where θ contains the unknown parameters and the unknown measurement function.

Key theory that allowed us to do this:

• Particle MCMC (Part 4)

Part 1 - Introduction and strategies for state and parameter inference

Thomas Schön

7(24)

- Particle smoothing/ backward simulation (Part 3)
- Gaussian processes (Not covered in this course)

Details of this particular example are available in

Fredrik Lindsten, Thomas B. Schön and Michael I. Jordan, A semiparametric Bayesian approach to Wiener system identification. Proceedings of the 16th IFAC Symposium on System Identification (SYSID), Brussels, Belgium, July, 2012.

Given the computational tools that we have today it can be rewarding to resist the linear Gaussian convenience!!

Thomas Schön Part 1 - Introduction and strategies for state and parameter inference

AUTOMATIC CONTROL

LINKÖPINGS UNIVERSITET

REGLERTEKNIK

The aim of this course 9(24)	Outline of the course 10(24)
 The aim of this course is to provide an introduction to the theory and application of (new) computational methods for inference in dynamical systems. The key computational methods we refere to are, Sequential Monte Carlo (SMC) methods (e.g., particle filters and particle smoothers) for nonlinear state inference problems. Expectation maximisation (EM) and Markov chain Monte Carlo (MCMC) methods for nonlinear system identification. Course home page: http://users.isy.liu.se/rt/schon/course_CIDSkth.html 	 Part 1 Modelling and strategies for inferring states and parameters a) Modelling dynamical systems using SSMs b) Strategies for state inference Part 2 EM and MCMC introduced by learning LGSS models a) Maximum likelihood (ML) learning using Expectation Maximisation (EM) b) Bayesian learning using Gibbs sampling (MCMC) Part 3 Sequential Monte Carlo (SMC) a) Basic sampling (rejection sampling, importance sampling) b) Particle filter (PF) c) Particle smoother (PS) Part 4 Learning nonlinear dynamical models a) Maximum likelihood learning using EM and PS b) Bayesian learning using particle MCMC (PMCMC)
Thomas Schön AUTOMATIC CONTROL Part 1 - Introduction and strategies for state and parameter inference AUTOMATIC CONTROL LINKÖPINGS UNIVERSITET	Thomas Schön AUTOMATIC CONTROL Part 1 - Introduction and strategies for state and parameter inference LINKÖPINGS UNIVERSITET
Outline - Part 1 11(24)	1. Representing an SSM using pdf's 12(24)
 Modelling dynamical systems a) Nonlinear state space model (SSM) b) Linear Gaussian state space (LGSS) model c) Conditionally linear Gaussian state space (CLGSS) model Strategies for state inference a) Forward computations b) Backward computations 	Definition (State space model (SSM)) A state space model (SSM) consists of a Markov process $\{x_t\}_{t\geq 1}$ and a measurement process $\{y_t\}_{t\geq 1}$, related according to $x_{t+1} \mid x_t \sim f_{\theta,t}(x_{t+1} \mid x_t, u_t),$ $y_t \mid x_t \sim h_{\theta,t}(y_t \mid x_t, u_t),$ $x_1 \sim \mu_{\theta}(x_1),$ where $x_t \in \mathbb{R}^{n_x}$ denotes the state, $u_t \in \mathbb{R}^{n_u}$ denotes a known deterministic input signal, $y_t \in \mathbb{R}^{n_y}$ denotes the observed measurement and $\theta \in \Theta \subseteq \mathbb{R}^{n_\theta}$ denotes any unknown (static) parameters.
Thomas Schön	Thomas Schön

2. Representing SSM using difference equations 13(2)

3. Representing SSM using a graphical model (I/II) 14(24)

In engineering literature, the SSM is often written in terms of a difference equation and an accompanying measurement equation,

$$\begin{aligned} x_{t+1} &= \widetilde{f}_{\theta,t}(x_t, u_t) + v_{\theta,t}, \\ y_t &= \widetilde{h}_{\theta,t}(x_t, u_t) + e_{\theta,t}, \end{aligned}$$

Thomas Schön Part 1 - Introduction and strategies for state and parameter inference

3. Representing SSM using a graphical model (II/II) 15(24)

A Bayesian network directly describes how the joint distribution of all the involved variables (here $p(x_{1:T}, y_{1:T})$) is decomposed into a product of factors,

$$p(x_{1:T}, y_{1:T}) = \prod_{t=1}^{T} p(x_t \mid pa(x_t)) \prod_{t=1}^{T} p(y_t \mid pa(y_t)),$$

where $pa(x_t)$ denotes the set of parents to x_t .

$$p(x_{t:T}, y_{1:T}) = \mu(x_1) \prod_{t=1}^{T-1} f_{\theta,t}(x_{t+1} \mid x_t) \prod_{t=1}^{T} h_{\theta,t}(y_t \mid x_t).$$

Graphical models offers a powerful framework for modeling, inference and learning,

Bishop, C. M. (2006). Pattern Recognition and Machine Learning. Springer.

Koller, D. and Friedman, N. (2009). Probabilistic Graphical Models: Principles and Techniques. MIT Press.

AUTOMATIC CONTROL

LINKÖPINGS UNIVERSITET

REGLERTEKNIK

Figure: Graphical model for the SSM. Each stochastic variable is encoded using a node, where the nodes that are filled (gray) corresponds to variables that are observed and nodes that are not filled (white) are latent variables. The arrows pointing to a certain node encodes which variables the corresponding node are conditioned upon.

The SSM is an instance of a graphical model called **Bayesian network**, or **belief network**.

Thomas Schön Part 1 - Introduction and strategies for state and parameter inference

AUTOMATIC CONTROL REGLERTEKNIK LINKÖPINGS UNIVERSITET

16(24)

The LGSS model

Definition (Linear Gaussian State Space (LGSS) model)

The time invariant linear Gaussian state space (LGSS) model is defined by

$$x_{t+1} = Ax_t + Bu_t + v_t,$$

$$y_t = Cx_t + Du_t + e_t,$$

where $x_t \in \mathbb{R}^{n_x}$ denotes the state, $u_t \in \mathbb{R}^{n_u}$ denotes the known input signal and $y_t \in \mathbb{R}^{n_y}$ denotes the observed measurement. The initial state and the noise are distributed according to

Thomas Schön Part 1 - Introduction and strategies for state and parameter inference

Notation for Gaussian (Normal) variables 17(24)	CLGSS model 18(24)
The pdf of a Gaussian variable is denoted $\mathcal{N}(x \mid \mu, \Sigma)$, i.e., $\mathcal{N}(x \mid \mu, \Sigma) \triangleq \frac{1}{(2\pi)^{n/2}\sqrt{\det \Sigma}} \exp\left(-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)\right)$ See the appendix of the lecture notes for basic theorems needed in manipulating Gaussian variables.	Definition (Conditionally linear Gaussian state space (CLGSS) model) Assume that the state x_t of an SSM can be partitioned according to $x_t = (s_t^T \ z_t^T)^T$. The SSM is then a CLGSS model if the conditional process $\{z_t \mid s_{1:t}\}_{t \ge 1}$ is described by an LGSS model. Conditioned on part of the state vector, the rest of the state behaves like an LGSS model. This can be exploited in deriving inference algorithms! The z_t -process is conditionally linear, motivating the name <i>linear</i> state for z_t and <i>nonlinear state</i> for s_t .
Thomas Schön Part 1 - Introduction and strategies for state and parameter inference	Thomas Schön REGLERTEKNIK Part 1 - Introduction and strategies for state and parameter inference
SLGSS model (I/II) 19(24)	SLGSS model (II/II) 20(24)
$\begin{array}{l} \textbf{Definition (Switching linear Gaussian state space (SLGSS))} \\ \textbf{The SLGSS model is defined according to} \\ & z_{t+1} = A^{s_t} z_t + B^{s_t} u_t + v^{s_t}, \\ & y_t = C^{s_t} z_t + D^{s_t} u_t + e^{s_t}, \\ & s_t \sim p(s_t \mid s_{t-1}, z_{t-1}), \\ \textbf{where } z_t \in \mathbb{R}^{n_x} \text{ denotes the state, } s_t \in \{1, \ldots, S\} \text{ denotes the switching variable, } u_t \in \mathbb{R}^{n_u} \text{ denotes the known input signal and} \\ & y_t \in \mathbb{R}^{n_y} \text{ denotes the observed measurement. The initial state } x_1 \\ & \text{and the noise are distributed according to} \\ & \left(\begin{matrix} x_1 \\ v^{s_t} \\ e^{s_t} \end{matrix} \right) \sim \mathcal{N} \left(\begin{pmatrix} \mu \\ \bar{v}^{s_t} \\ \bar{e}^{s_t} \end{pmatrix}, \begin{pmatrix} P_1 & 0 & 0 \\ 0 & Q^{s_t} & S^{s_t} \\ 0 & (S^{s_t})^{T} & R^{s_t} \end{pmatrix} \right). \end{array}$	$s_1 \xrightarrow{S_2} \xrightarrow{S_3} \xrightarrow{S_1} \xrightarrow{S_1} \xrightarrow{S_1} \xrightarrow{T_1} \xrightarrow{T_2} \xrightarrow{T_2} \xrightarrow{T_3} \xrightarrow{T_2} \xrightarrow{T_3} T$
Thomas Schön AUTOMATIC CONTROL REGLERTEKNIK	AUTOMATIC CONTROL REGLERTERNIK

