A Voyage to Africa by Mr Swift

Geolocation using light levels

Niklas Wahlström ¹
Fredrik Gustafsson ¹
Susanne Åkesson ²

¹Division of Automatic Control
Linköping University

²Centre for Animal Movement Research
Department of Biology
Lund University
Mr Swift

- Common swift, *Apus apus*. Weight: 40 g
- Equipped with light logger (light sensor, battery, memory, clock). Weight: 2g
- Released on Aug. 5, 2010, found 298 days later

We want to track Mr Swift!
State of the art:

- Compute time for sunrise and sunset
- For each time instance convert to
 - Midday (gives longitude)
 - Day length (gives latitude)
Light levels

Nonlinear filtering solution

- Measurement update at each sunrise and sunset
- Motion model with two modes (stationary and migration mode).
- Solve with a marginalized particle filter.
Contribution

- Light levels localizing animals has been used since the 80’s
- Nonlinear statistical filtering has also been used for a while.
- Not much has been done combining the two.

Contribution:

Using light levels in a statistical filtering framework.
Light intensity data

- Sampling time: 10 minutes.
- Resolution: 6 bits \(2^6 = 64\) values
- Saturated for both low and high values.
Light intensity data

Some problems

- The event will shift several minutes depending on the threshold.
- Will also depend on weather conditions and geographic environment.
Light intensity data

More problems

- If the bird is hidden during sunrise and/or sunset, it might cause missing data.
Sunrise and sunset

Niklas Wahlström, Fredrik Gustafsson, Susanne Åkesson
A Voyage to Africa by Mr Swift
The data

Sunrise and sunset events

This work

Trajectory

Light intensity data
The data

Sunrise and sunset events

Light intensity data

This work

Future work

Trajectory
The likelihood - Summer solstice

Daylight map, 21-Jun-2011 06:00:00

Likelihood, sunrise, 21-Jun-2011 06:00:00
Likelihood, sunset, 21-Jun-2011 18:00:00
The likelihood - Autumn equinox

Daylight map, 21–Sep–2011 06:00:00

Likelihood, sunrise, 21–Sep–2011 06:00:00
Likelihood, sunset, 21–Sep–2011 18:00:00
Measurement update - sunrise.
Time: 05-Aug-2010 03:04:00
Measurement update - sunset.
Time: 05-Aug-2010 19:11:00
Measurement update - sunrise.
Time: 06-Aug-2010 03:09:00
Measurement update - sunset.
Time: 06-Aug-2010 18:47:00
Niklas Wahlström, Fredrik Gustafsson, Susanne Åkesson
A Voyage to Africa by Mr Swift
Animation
The Voyage

Niklas Wahlström, Fredrik Gustafsson, Susanne Åkesson
A Voyage to Africa by Mr Swift
The Voyage

Niklas Wahlström, Fredrik Gustafsson, Susanne Åkesson
A Voyage to Africa by Mr Swift
The estimated mode

0: Stationary mode, 1: Migration mode

08/05 09/23 Sep. Equinox
12/21 Dec. Solstice
03/20 Mar. Equinox
05/29

Niklas Wahlström, Fredrik Gustafsson, Susanne Åkesson
A Voyage to Africa by Mr Swift
Comparison

Latitude

Our solution
Existing solution

09/03 09/13 09/23 10/03

Degree [°]

0 50

−50

09/03 09/13 09/23 10/03

Degree [°]

0 50

−50

Niklas Wahlström, Fredrik Gustafsson, Susanne Åkesson
A Voyage to Africa by Mr Swift
Summary and future work

Summary

- Tracking using light levels
- Measurement update at each sunrise and sunset
- Applied on real world data

Future work

- Do smoothing
- Process light intensity data, handle missing data, false alarms etc.
- Validate on data with ground truth (GPS mounted on heavier birds)