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Introduction: sensors

Magnetometers

Accelerometers
Gyroscopes

Inertial sensors

Inertial sensors and magnetometers are widely used for orientation
estimation.
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Introduction: magnetometer calibration

Magnetometers can be used in combination with inertial sensors to
estimate the sensor’s orientation provided that the magnetometer is

properly calibrated.

The magnetometer needs to be calibrated for
1. magnetometer sensor errors,
2. presence of magnetic material rigidly attached to the sensor,
3. misalignment between magnetometer and inertial sensor axes.
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Introduction: magnetometer calibration data
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Magnetometer calibration algorithm

Magnetometer calibration algorithm
1. Rigidly mount the magnetometer and the inertial sensors on the

platform to be used.
2. Rotate the assembly to collect inertial and magnetometer

measurements.

⇒ Uncalibrated magnetometer measurements
⇒ Wrong orientation estimates

3. Estimate the calibration parameters
1. Obtain an initial estimate of the parameters.
2. Obtain a maximum likelihood estimate of the parameters.

4. Use the estimated calibration parameters together with the
magnetometer measurements.

⇒ Calibrated magnetometer measurements
⇒ Correct orientation estimates
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Contributions

Derived a magnetometer calibration algorithm by solving a maximum
likelihood problem.
Validated the algorithm using experimental data showing that it works
and leads to improved heading estimates even in the presence of large
disturbances.
Performed an identifiability analysis to quantify how much rotation
that is needed to be able to solve the calibration problem.
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Problem formulation

State-space model with unknown states (xt) and parameters (θ)

xt+1 = ft(xt , ut , θ) + B(xt)vt(θ)

yt = ht(xt , θ) + et(θ)
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Problem formulation

State-space model with unknown states (xt) and parameters (θ)

xt+1 = ft(xt , yω,t , θ) + B(xt)vω,t(θ)
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Measurement model:

accelerometer measurement model

• assumes that the sensor’s acceleration is approximately zero.

magnetometer measurement model

• assumes that the magnetometer measurements can be calibrated using
a calibration matrix D and offset vector o
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Problem formulation

State-space model with unknown states (xt) and parameters (θ)

xt+1 = ft(xt , yω,t , θ) + B(xt)vω,t(θ)

ya,t = Rbn
t (an

t − gn) + ea,t ≈ −Rbn
t gn + ea,t

ym,t = DRbn
t mn + o + em,t

where

yω,t = ωt + bω + eω,t

eω,t ∼ N (0,Σω)

ea,t ∼ N (0,Σa)

em,t ∼ N (0,Σm)
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Maximum likelihood estimate

Compute a maximum likelihood estimate of the unknown parameters,

θ̂ML = argmax
θ∈Θ

pθ(y1:N)

≈ argmin
θ∈Θ

1
2

N∑
t=1

‖yt − ŷt|t−1(θ)‖2
S−1
t (θ)

+ log det St(θ)

where ŷt|t−1 and St are the predicted measurement and the residual
covariance from an extended Kalman filter.
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Initial estimate

The maximum likelihood problem is non-convex and needs proper
initialization.

θ = {D, o,mn, δω,Σω,Σa,Σm}

1. Obtain initial sensor
characteristics.

2. Ellipse fitting (to a unit sphere).
3. Determine the rotation of the

ellipse to align the
magnetometer and inertial
sensor axes.
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Magnetometer calibration algorithm

Magnetometer calibration algorithm
1. Rigidly mount the magnetometer and the inertial sensors on the

platform to be used.
2. Rotate the assembly to collect inertial and magnetometer

measurements.
⇒ Uncalibrated magnetometer measurements
⇒ Wrong orientation estimates

3. Estimate the calibration parameters
1. Obtain an initial estimate of the parameters.
2. Obtain a maximum likelihood estimate of the parameters.

4. Use the estimated calibration parameters together with the
magnetometer measurements.
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Experimental setup

Inertial measurement unit (inertial sensors + magnetometer)

Magnetic disturbance

The IMU is placed in a block that can be put in orientations differing 90
degrees from each other.
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Experimental results
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Resulting orientation (heading) error
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Conclusions

Developed a magnetometer calibration algorithm which calibrates a
magnetometer in combination with inertial sensors to obtain better
orientation estimates.
It corrects for
• magnetometer sensor errors,
• presence of magnetic material rigidly attached to the sensor,
• misalignment between magnetometer and inertial sensor axes.

We applied the algorithm to real data, showing that improved heading
estimates are obtained.
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Inertial motion capture

17 inertial measurement units containing:
Accelerometers
Gyroscopes

+ Biomechanical model

Inertial sensors
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Inertial motion capture

17 inertial measurement units containing:
Accelerometers
Gyroscopes
Magnetometers

+ Biomechanical model

Inertial sensors

Assuming that the body segments are connected to each other,
the relative position and orientation of the body is observable

(if the subject is not standing completely still).
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Problem formulation

We solve the motion capture problem by solving a maximum a posteriori
(MAP) problem

min
z={x1:N ,θ}

− log p(x1 | y1)− log p(θ)︸ ︷︷ ︸
initial state + prior

−
N∑
t=2

log p(xt | xt−1, θ)︸ ︷︷ ︸
dynamic model

−
N∑
t=1

log p(yt | xt , θ)︸ ︷︷ ︸
biomechanical/sensor model

s.t. cbio(z) = 0︸ ︷︷ ︸
biomechanical model
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Problem formulation

We solve the motion capture problem by solving a maximum a posteriori
(MAP) problem
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− log p(x1 | y1)− log p(θ)︸ ︷︷ ︸
initial state + prior

−
N∑
t=2
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x1:N : time-varying states such as the sensor positions, velocities and orien-
tations, the body segment positions and orientations.
θ: constant model parameters such as sensor biases.
y1:N : inertial measurements.
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Problem formulation

We solve the motion capture problem by solving a maximum a posteriori
(MAP) problem

min
z={x1:N ,θ}

− log p(x1 | y1)− log p(θ)︸ ︷︷ ︸
initial state + prior

−
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log p(xt | xt−1, θ)︸ ︷︷ ︸
dynamic model

−
N∑
t=1

log p(yt | xt , θ)︸ ︷︷ ︸
biomechanical/sensor model
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cbio(z): constraints imposed by the biomechanical model.

⇒ A constrained nonlinear least-squares problem.

Solve this as a batch problem using standard solvers.
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Biomechanical model - strategy

The body segments are connected at
the joints.

⇒ constraint

The position and orientation of the
sensors on the body is approximately
constant.
⇒ objective function

Some joints are restricted in their
rotational freedom (optional).
⇒ objective function

The positions and orientations of the sensors on the body are assumed to be
known but it is possible to extend the algorithm to estimate these as well.
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