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Introduction: nonlinear state space models

Nonlinear state space models (SSMs)

xt+1 = fθ(xt, vt),

yt = gθ(xt, et),

xt: latent state variables at time t
yt: measurements at time t
fθ(·), gθ(·): (nonlinear) dynamic and measurement model
θ: parameters
vt, et: process and measurement noise
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Introduction: ML estimation

Maximum likelihood (ML) estimates of parameters in nonlinear SSMs

θ̂ML = argmax
θ

`θ(y1:N )

θ̂ML: ML estimate of θ
`θ(y1:N ): log-likelihood of the measurements y1:N
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Introduction: Newton methods

Estimating θ using Newton methods. Iteratively update:

θk+1 = θk − εk
[
H(θk)

]−1[
G(θk)

]
,

G(θk): gradient of `θ(y1:N )
H(θk): Hessian of `θ(y1:N )
εk: Step size at iteration k



3 / 16

Introduction: Newton methods

Estimating θ using Newton methods. Iteratively update:

θk+1 = θk − εk
[
H(θk)

]−1[
G(θk)

]
,

G(θk): gradient of `θ(y1:N )

H(θk): Hessian of `θ(y1:N )
εk: Step size at iteration k



3 / 16

Introduction: Newton methods

Estimating θ using Newton methods. Iteratively update:

θk+1 = θk − εk
[
H(θk)

]−1[
G(θk)

]
,

G(θk): gradient of `θ(y1:N )
H(θk): Hessian of `θ(y1:N )

εk: Step size at iteration k



3 / 16

Introduction: Newton methods

Estimating θ using Newton methods. Iteratively update:

θk+1 = θk − εk
[
H(θk)

]−1[
G(θk)

]
,

G(θk): gradient of `θ(y1:N )
H(θk): Hessian of `θ(y1:N )
εk: Step size at iteration k



4 / 16

Problem description

• In nonlinear SSMs, the log-likelihood `θ(y1:N ), the gradient
G(θk) and the Hessian H(θk) can not be computed analytically.

⇒ Approximations are needed.
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Contributions

• Use Fisher’s identity to estimate the gradient and Hessian /
Extend the approach from Segal and Weinstein (1989)1 to
nonlinear SSMs.

• This allows us to do Newton optimization in nonlinear SSMs.

• It requires approximation of the log-likelihood and of the
smoothing problem.

• We explore two approximation methods: based on linearization
and based on sampling.

• Show the workings of the methods on simulated data from two
simple nonlinear SSMs.

1 Segal, M. and Weinstein, E. (1989). A new method for evaluating the log-likelihood gradient, the
Hessian, and the Fisher information matrix for linear dynamic systems. IEEE Transactions on Information
Theory, 35(3), 682 − 687.
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Computing G(θk) and H(θk)
Fisher’s identity:

G(θk) = ∂
∂θ `θ(y1:N )

∣∣
θ=θk

=

∫
∂
∂θ log pθ(x1:N , y1:N )

∣∣
θ=θk

pθ(x1:N |y1:N ) dx1:N

Ĥ(θk) =
1

N

[
G(θk)

][
G(θk)

]>
−

N∑
t=1

[
Gt(θk)

][
Gt(θk)

]>
pθ(x1:N , y1:N ) = pθ(x1)

N−1∏
t=1

fθ(xt+1|xt)
N∏
t=1

gθ(yt|xt),

ξθk (xt+1:t) , ∂
∂θ

log fθ(xt+1|xt)
∣∣
θ=θk

+ ∂
∂θ

log gθ(yt|xt)
∣∣
θ=θk

Estimate the two-step joint smoothing distribution!
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Ĥ(θk) =
1

N

[
G(θk)

][
G(θk)

]>
−

N∑
t=1

[
Gt(θk)

][
Gt(θk)

]>

pθ(x1:N , y1:N ) = pθ(x1)

N−1∏
t=1

fθ(xt+1|xt)
N∏
t=1

gθ(yt|xt),

ξθk (xt+1:t) , ∂
∂θ

log fθ(xt+1|xt)
∣∣
θ=θk

+ ∂
∂θ

log gθ(yt|xt)
∣∣
θ=θk

Estimate the two-step joint smoothing distribution!



6 / 16

Computing G(θk) and H(θk)
Fisher’s identity:

G(θk) = ∂
∂θ `θ(y1:N )

∣∣
θ=θk

=

N∑
t=1

∫
ξθk(xt+1:t)pθk(xt+1:t|y1:N ) dxt+1:t ,

N∑
t=1

Gt(θk)

Ĥ(θk) =
1

N

[
G(θk)

][
G(θk)

]>
−

N∑
t=1

[
Gt(θk)

][
Gt(θk)

]>

pθ(x1:N , y1:N ) = pθ(x1)

N−1∏
t=1

fθ(xt+1|xt)
N∏
t=1

gθ(yt|xt),

ξθk (xt+1:t) , ∂
∂θ

log fθ(xt+1|xt)
∣∣
θ=θk

+ ∂
∂θ

log gθ(yt|xt)
∣∣
θ=θk

Estimate the two-step joint smoothing distribution!



6 / 16

Computing G(θk) and H(θk)
Fisher’s identity:

G(θk) = ∂
∂θ `θ(y1:N )

∣∣
θ=θk

=

N∑
t=1

∫
ξθk(xt+1:t)pθk(xt+1:t|y1:N ) dxt+1:t ,

N∑
t=1

Gt(θk)
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Algorithm
Newton method for ML parameter estimation

1. Set k = 0

2. while exit condition is not satisfied do
1. Run an algorithm to estimate the log-likelihood ̂̀(θk), its gradient
Ĝ(θk) and its Hessian Ĥ(θk).

2. Determine εk.
3. Apply the Newton update to obtain θk+1.
4. Set k = k + 1.

end while
3. Set θ̂ML = θk.

Linearization approximation Sampling approximation

Estimate ̂̀(θk) using an EKF.
Estimate Ĝ(θk), Ĥ(θk) using Gauss-
Newton optimization.

Estimate Ĝ(θk), Ĥ(θk) using a particle
smoother.

Determine εk using a line search. Use a pre-defined schedule for εk.
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Linearization approximation

• Use extended Kalman filter to estimate ̂̀(θk).
• Compute the smoothed state estimates and covariances by
solving the optimization problem

x̂t|N = argmax
x1:N

pθk(x1:N , y1:N ).

using a standard Gauss-Newton solver.
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Sampling approximation: particle smoother

Fixed lag smoother Forward filter backward simu-
lator

Assumes that the SSM forgets
about its past within a few time
steps

Can be seen as the particle ap-
proximation of the Rauch-Tung-
Striebel smoother

Fast (for a particle method) Slow
Less accurate and biased Accurate

More information: Dahlin, J. (2014). Sequential
Monte Carlo for inference in nonlinear state space
models. Licentiate’s thesis no. 1652, Linköping Uni-
versity, Linköping, Sweden.

More information: Lindsten, F. and Schön, T. B.
(2013). Backward simulation methods for Monte
Carlo statistical inference. In Foundations and
Trends in Machine Learning, volume 6, 1–143.
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Algorithm
Newton method for ML parameter estimation

1. Set k = 0

2. while exit condition is not satisfied do
1. Run an algorithm to estimate the log-likelihood ̂̀(θk), its gradient
Ĝ(θk) and its Hessian Ĥ(θk).

2. Determine εk.
3. Apply the Newton update to obtain θk+1.
4. Set k = k + 1.

end while
3. Set θ̂ML = θk.

Linearization approximation Sampling approximation

Estimate ̂̀(θk) using an EKF.
Estimate Ĝ(θk), Ĥ(θk) using Gauss-
Newton optimization.

Estimate Ĝ(θk), Ĥ(θk) using a particle
smoother.

Determine εk using a line search. Use a pre-defined schedule for εk.
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Estimate Ĝ(θk), Ĥ(θk) using Gauss-
Newton optimization.
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Simulation results: SSM1
1 000 data points, 100 data sets

xt+1 = arctanxt + vt, vt ∼ N (0, 1),

yt = θ1xt + θ2 + et, et ∼ N (0, 0.12).

Parameters only in the linear part of the SSM.
⇒ The linearization approach works very well.

Alg. Bias (·10−4) MSE (·10−4)

θ1 θ2 θ1 θ2

Linearization 10 10 1 10
Sampling (FL) 38 -214 2 16
Sampling (FFBSi) 31 53 1 11
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Simulation results: SSM2
1 000 data points, 100 data sets

xt+1 = θ1 arctanxt + vt, vt ∼ N (0, 1)

yt = θ2xt + et, et ∼ N (0, 0.12),

Parameters also in the nonlinear part of the SSM.
⇒ The linearization approach needs more approximations.

Alg. Bias (·10−4) MSE (·10−4)

θ1 θ2 θ1 θ2

Linearization 284 -55 28 2
Sampling (FL) 53 35 24 2
Sampling (FFBSi) 55 31 24 2
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Sampling (FL) 53 35 24 2
Sampling (FFBSi) 55 31 24 2
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Conclusions

• We studied the problem of ML parameter estimation in nonlinear
SSMs using Newton methods.

• We determine the gradient and Hessian of the log-likelihood
using Fisher’s identity in combination with an algorithm to
obtain smoothed state estimates.

• We approximate the log-likelihood and its gradient and Hessian
using linearizations and using sampling methods.

• The linearization approach is computationally cheap. However,
the quality of its estimates highly depends on the structure of
the SSM.
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Future work

• Study the quality of the estimates for a wider range of nonlinear
models.

• Compare the method from this work to a solution based on
expectation maximization.

• Study optimization problems where noisy estimates of the
gradient and the Hessian are provided by a particle smoother.

For more information: Manon Kok, Johan Dahlin, Thomas B. Schön and Adrian Wills, Newton-based
maximum likelihood estimation in nonlinear state space models. Proceedings of the 17th IFAC Symposium

on System Identification, Beijing, China, October 2015.
Source code, data, slides and paper online on

http://users.isy.liu.se/en/rt/manko/research.html

http://users.isy.liu.se/en/rt/manko/research.html
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Thank you for your attention!

Questions?

This work is supported by CADICS, a
Linnaeus Center, and by the project

Probabilistic modeling of dynamical systems
(Contract number: 621-2013-5524), both
funded by the Swedish Research Council

(VR).


