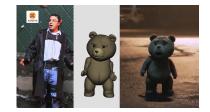


**Linköping University** 






UPPSALA UNIVERSITET An optimization-based approach to human body motion capture using inertial sensors TAR 2015: Technically Assisted Rehabilitation, Berlin, Germany, 12-13 March 2015

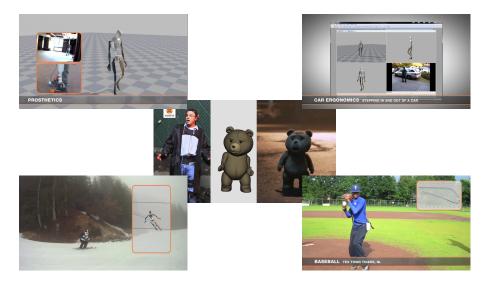
Manon Kok<sup>1</sup>, Jeroen D. Hol<sup>2</sup> and Thomas B. Schön<sup>3</sup>

<sup>1</sup>Linköping University, Sweden <sup>2</sup>Xsens Technologies, the Netherlands <sup>3</sup>Uppsala University, Sweden

#### Applications of inertial motion capture






#### Applications of inertial motion capture





#### Applications of inertial motion capture





#### Inertial motion capture





#### Inertial motion capture





#### 17 sensors placed on the body



Estimate the relative position and orientation of body segments.





#### 17 sensors placed on the body



Estimate the relative position and orientation of body segments.

Possibly also estimate the body's absolute position.







#### 17 sensors placed on the body



# Estimate the relative position and orientation of body segments.

Possibly also estimate the body's absolute position.





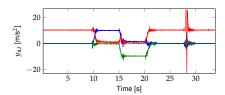


#### $17\ {\rm sensors}\ {\rm placed}\ {\rm on}\ {\rm the}\ {\rm body}$



- AccelerometersGyroscopesInertial sensors
- Magnetometers



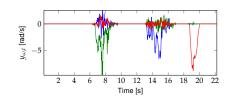

## Inertial measurement units



- Accelerometers
   Gyroscopes
   Inertial sensors
- Magnetometers

Accelerometer measures:

- Sensor's acceleration ⇒ Change in position
- Direction of gravity
   ⇒ Inclination




### Inertial measurement units



Gyroscope measures:

■ Sensor's angular velocity ⇒ Change in orientation



- Accelerometers
  Gyroscopes
  Inertial sensors
- Magnetometers

## Inertial measurement units



- Accelerometers
  Gyroscopes
  Inertial sensors
- Magnetometers

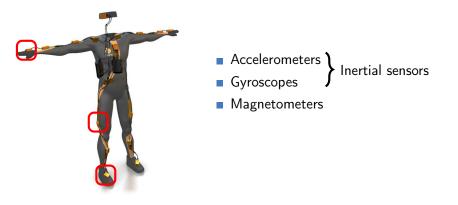
Magnetometer measures:

■ The local magnetic field ⇒ Heading (provided that magnetic field is not disturbed)



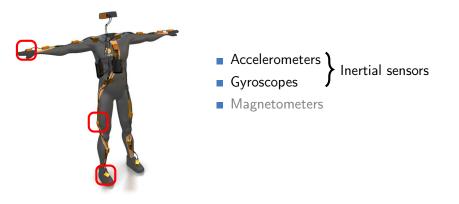


- AccelerometersGyroscopesInertial sensors
- Magnetometers




Inertial sensors and magnetometers are often used for orientation estimation. They also provide information about the change in position.

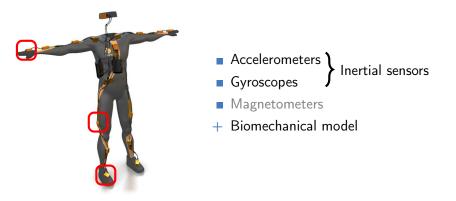








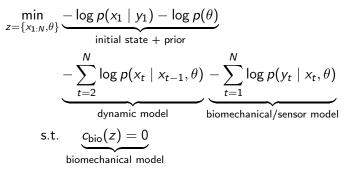

# The magnetic field at the different sensor locations is typically different.





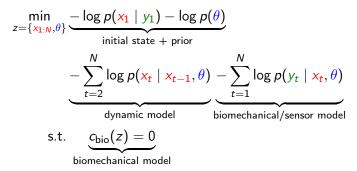

# The magnetic field at the different sensor locations is typically different.

Manon Kok






Assuming that the body segments are connected to each other, the *relative* position and orientation of the body is observable (if the subject is not standing completely still).



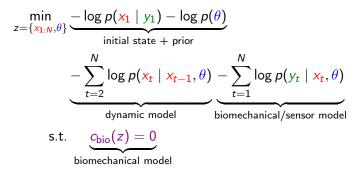

We solve the motion capture problem by solving a *maximum a posteriori* (MAP) problem





We solve the motion capture problem by solving a *maximum a posteriori* (MAP) problem

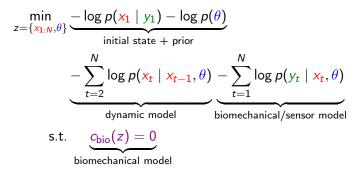



 $x_{1:N}$ : time-varying states such as the sensor positions, velocities and orientations, the body segment positions and orientations.

 $\theta$ : constant model parameters such as sensor biases.

 $y_{1:N}$ : inertial measurements.



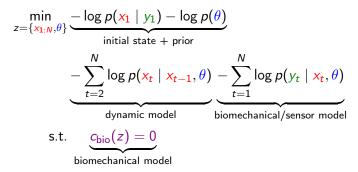

We solve the motion capture problem by solving a *maximum a posteriori* (MAP) problem



 $c_{\text{bio}}(z)$ : constraints imposed by the biomechanical model.



We solve the motion capture problem by solving a *maximum a posteriori* (MAP) problem




 $c_{\text{bio}}(z)$ : constraints imposed by the biomechanical model.

 $\Rightarrow$  A constrained nonlinear weighted least-squares problem.



We solve the motion capture problem by solving a *maximum a posteriori* (MAP) problem



 $c_{\text{bio}}(z)$ : constraints imposed by the biomechanical model.  $\Rightarrow$  A constrained nonlinear weighted least-squares problem. Solve this as a batch problem using standard solvers.





The body segments are connected at the joints.





The body segments are connected at the joints. ⇒ constraint





The body segments are connected at the joints.  $\Rightarrow$  constraint

The position and orientation of the sensors on the body is approximately constant.





The body segments are connected at the joints.  $\Rightarrow$  constraint

The position and orientation of the sensors on the body is approximately constant.

 $\Rightarrow$  objective function





The body segments are connected at the joints.  $\Rightarrow$  constraint

The position and orientation of the sensors on the body is approximately constant.

 $\Rightarrow$  objective function

Some joints are restricted in their rotational freedom (optional).





The body segments are connected at the joints.  $\Rightarrow$  constraint

The position and orientation of the sensors on the body is approximately constant.

 $\Rightarrow$  objective function

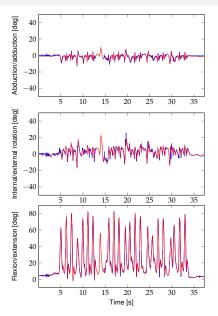
Some joints are restricted in their rotational freedom (optional).  $\Rightarrow$  objective function

#### Experimental setup





#### Experimental setup

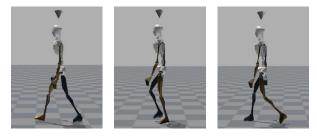





#### Markers for an optical reference system

### Knee joint angle estimates






Angle between the sensors on the upper and lower leg while walking.

Blue: Optical reference Red: Estimates from our algorithm



#### Results using our algorithm.





#### Show movie



- We estimate the body's relative position and orientation using inertial sensors placed on multiple body segments.
- We obtain the estimates by solving a constrained optimization problem, where we make use of a biomechanical model.
- Our algorithm is shown to result in accurate joint angle estimates as compared to an optical reference system.





#### More information:

- The extended abstract for the conference.
- Manon Kok, Jeroen Hol and Thomas Schön, An optimization-based approach to human body motion capture using inertial sensors. Proceedings of the 19th World Congress of the International Federation of Automatic Control, 2014.

http://users.isy.liu.se/en/rt/manko/



## Thank you for your attention!

#### Questions?



funded by the BALANCE BALANCE

This work is supported by MC Impulse, a European Commission, FP7 research project, CADICS, a Linnaeus Center funded by the Swedish Research Council (VR) and BALANCE, a European Commission, FP7 research project.



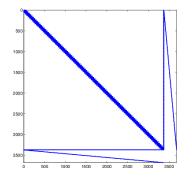
Vetenskapsrådet

## Thank you for your attention!

#### Questions?



funded by the BALANCE BALANCE


This work is supported by MC Impulse, a European Commission, FP7 research project, CADICS, a Linnaeus Center funded by the Swedish Research Council (VR) and BALANCE, a European Commission, FP7 research project.

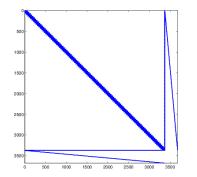


Vetenskapsrådet

## Computation time






Only 0.56% of the matrix-elements are non-zero.

Solving the problem for an experiment of 10 seconds takes:

- about 5 minutes on an AMD X4
   2.8 GHz processor (first inefficient Matlab implementation).
- Initial tests with a C-implementation show that speed improvements of up to 500 times are easily obtained.
- A moving horizon implementation would further speed up the computations.

#### Computation time





Only 0.56% of the matrix-elements are non-zero.

 $z \in \mathbb{R}^{(9N_S + 6N_B + 3)N + 3N_S}$ # equality constraints: 3N

Example: 7 body segments, 7 sensors, 10s, 10Hz

 $\sim$  11000 variables 300 constraints

 $\Rightarrow$ 

