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An Extended Target CPHD Filter and a Gamma
Gaussian Inverse Wishart Implementation
Christian Lundquist, Karl Granström, Member, IEEE, and Umut Orguner, Member, IEEE

Abstract—This paper presents a cardinalized probability hy-
pothesis density (CPHD) filter for extended targets that can
result in multiple measurements at each scan. The probability
hypothesis density (PHD) filter for such targets has been derived
by Mahler, and different implementations have been proposed
recently. To achieve better estimation performance this work
relaxes the Poisson assumptions of the extended target PHD filter
in target and measurement numbers. A gamma Gaussian inverse
Wishart mixture implementation, which is capable of estimating
the target extents and measurement rates as well as the kinematic
state of the target, is proposed, and it is compared to its PHD
counterpart in a simulation study. The results clearly show that
the CPHD filter has a more robust cardinality estimate leading
to smaller OSPA errors, which confirms that the extended target
CPHD filter inherits the properties of its point target counterpart.

Index Terms—Multiple target tracking, extended targets, ran-
dom sets, probability hypothesis density, PHD, cardinalized,
CPHD, random matrices, inverse Wishart.

I. INTRODUCTION

MULTIPLE TARGET TRACKING can be defined as
the processing of multiple measurements obtained from

multiple targets in order to maintain estimates of the targets’
current states, see e.g., [1]. In this context, a point target is
defined as a target which is assumed to give rise to at most
one measurement per time step, and an extended target is
defined as a target that potentially gives rise to more than one
measurement per time step. Closely related to extended target
is group target, defined as a cluster of point targets which can
not be tracked individually, but has to be treated as a single
object which can give rise to multiple measurements.

The point target assumption is valid for some cases, e.g.,
in radar based air surveillance applications when the distance
between the target and the sensor is large. However, in other
cases the resolution of the sensor, the size of the target, or the
distance between target and sensor, might be such that multiple
resolution cells of the sensor are occupied by the target.
Examples of such extended target scenarios include vehicle
tracking using automotive radar, tracking of sufficiently close
airplanes or ships with ground or marine radar stations, and
person tracking using laser range sensors.
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With a possibility of multiple measurements per target, a
model for the number of measurements per target is needed.
Gilholm and Salmond [2] presented an approach for tracking
extended targets under the assumption that the number of
received target measurements in each time step is Poisson
distributed. In [3] a measurement model was suggested which
is an inhomogeneous Poisson point process. At each time
step, a Poisson distributed random number of measurements
are generated, distributed around the target. This measurement
model can be understood to imply that the extended target is
sufficiently far away from the sensor, in relation to the sensor’s
resolution, for its measurements to resemble a cluster of points,
rather than a geometrically structured ensemble.

Multiple measurements per target also raise the possibility
of estimating the extended target’s extension, i.e., the size
and shape of the target. Using random matrices as a model
for extended targets and groups of targets was suggested by
Koch in 2008 [4]. The target kinematical states are modeled
as Gaussian distributed, while the target extension is modeled
as inverse Wishart distributed. Using random matrices to
track group targets under kinematical constraints is discussed
in [5]. Modifications and improvements to the Gaussian in-
verse Wishart model of [4] have been suggested in [6], and
the model [4] has also been integrated into a Probabilistic
Multi-Hypothesis Tracking (PMHT) framework in [7]. Further
approaches to estimating the target extensions, as ellipses,
rectangles, or more general shapes, are given in e.g., [8]–[13].

With finite set statistics (FISST), Mahler introduced a set
theoretic approach in which targets and measurements are
modeled using random finite sets (RFS). The approach allows
multiple target tracking in the presence of clutter and with
uncertain associations to be cast in a Bayesian framework [14],
resulting in an optimal multi-target Bayes filter. An important
contribution of FISST is the statistical moments of the RFS,
which enable practical implementation of the optimal multi-
target Bayes filter. The first order moment of an RFS is
called the probability hypothesis density (PHD), and it is an
intensity function defined over the target state space. The PHD
filter propagates the target set’s PHD in time [14], [15], and
represents an approximation to the optimal multi-target Bayes
filter.

By approximating the PHD with a Gaussian mixture (GM),
a practical implementation of the PHD filter for point targets
is obtained, called the Gaussian mixture PHD (GM-PHD) fil-
ter [16]. Convergence analysis of the GM-PHD filter is given
in [17]. A sequential Monte Carlo implementation of the point
target PHD filter is given in [18], with convergence analysis
in [18]–[20].
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An extension of the PHD filter to handle extended targets of
the type presented in [3] is given in [21]. A Gaussian mixture
implementation of the extended target PHD filter [21], called
the ET-GM-PHD-filter, has been presented in [22], with an early
version given in [23]. In both of the works [22] and [23], only
the kinematic properties of the targets’ centroids are estimated.
Estimating the targets’ extensions is omitted to reduce the
complexity of the presentation. An implementation of [21]
that utilizes the random matrix based extended target model [4]
was presented in [24], the resulting filter is called the Gaussian
inverse Wishart PHD filter (GIW-PHD filter).

An extended target PHD filter is given in [25], derived
under slightly different model assumptions than those in [21].
A Gaussian mixture implementation is given, however the
proposed implementation does not consider approximation of
the full set of measurement set partitions, which is shown
in [22]–[24] to be of great importance. A Gaussian Mixture
Markov Chain Monte Carlo filter for multiple extended target
tracking is presented in [26]. The filter is compared to the
linear ET-GM-PHD-filter [22], [23], and is shown to be less
sensitive to clutter (number of cardinality errors: 133 vs. 373)
but also considerably more computationally demanding (mean
cycle time: 3.23s vs. 0.14s).

For the closely related area of group target tracking, in
which several targets move in unison, an approach using
the point target GM-PHD filter is presented in [27]. An RFS
formulation of single extended target tracking is given in [28].

A known drawback of the PHD filter is that the cardinality
is estimated using a single parameter (the mean), resulting
from the cardinality distribution being approximated with a
Poisson distribution. Because the mean and the variance of a
Poisson density are equal, when the true cardinality is high the
corresponding estimate has a high variance. In practice, this
results in an oversensitive cardinality estimate, e.g., seen when
there are missed detections [29]. To improve upon this, the
cardinalized probability hypothesis density (CPHD) filter was
introduced [30]. In addition to propagating the PHD in time,
the CPHD filter also propagates the full cardinality distribution.
A GM implementation of the CPHD filter for point targets is
given in [31].

The first steps towards a CPHD filter for extended targets
appeared in [32], however no implementation was proposed.
While only the PHD updates are given in [32], the cardinality
updates can be extracted from the given equations. The models
used in [32] were later used to derive a PHD filter in [25]. A
CPHD filter for extended targets was presented in [33], however
the filter derivation is based on the quite strong assumption
that “relative to sensor resolution, the extended targets and
the unresolved targets are not too close and the clutter density
is not too large” [33, Corollary 1]. This assumption cannot be
expected to hold in the general case.

This paper presents a CPHD filter for extended targets and
group targets, denoted ET-CPHD. The ET-CPHD filter is derived
under a different model than that used in [32], and thus the
resulting equations are not the same. An early version of this
work was presented in [34], [35], where a GM implementation
was shown.

In this paper we just describe the results of the derivation

of the ET-CPHD filter as in [34] and then give a gamma
Gaussian inverse Wishart (GGIW) implementation of it. The
implementation can easily handle Bayesian estimation of the
targets’ extensions and measurement rates, as well as the
kinematic states of the targets. The GGIW implementation can
be reduced to the GM filter presented in [34] with the additional
measurement error covariance estimation capability thanks to
the properties of the random matrix framework [4]. The filter
derivation does not require any assumptions regarding the
spatial proximity of the targets, or the clutter density. Indeed, it
is shown in the results section that the presented filter handles
both high clutter density and spatially close targets. In this
sense the presented extended target CPHD filter is more general
than the CPHD filter presented in [33].

The rest of the paper is organized as follows. In Section II
we give a problem formulation, and in Section III we give the
main update formulae of a CPHD filter for extended targets.
Section IV presents the extended target state model, and the
implementation of the CPHD filter is given in Section V. Target
extraction and performance evaluation metrics are presented in
Section VI, and the results from a simulation study are given
in Section VII. Section VIII contains conclusions and thoughts
on future work.

II. PROBLEM FORMULATION

Let ξ(i)
k denote the state of the i:th extended target at time

k, and let the set of extended targets at time k be denoted

Xk =
{
ξ

(i)
k

}Nξ,k
i=1

, (1)

where Nξ,k is the unknown, time-varying, number of extended
targets. Let the operation | · | denote set cardinality, i.e., |Xk| =
Nξ,k. The set of target generated measurements obtained at
time k is denoted

ZT,k =
{
z

(j)
k

}NT,k

j=1
, (2)

where NT,k = |ZT,k| is the number of measurements. The
set of target measurements is distributed according to an i.i.d.
cluster process. The corresponding set likelihood is given as

f (ZT,k|ξ) = NT,k!Pz (NT,k|ξ)
∏

zk∈ZT,k

pz (zk|ξ) (3)

where Pz ( · |ξ) and pz ( · |ξ) denote the probability mass
function (pmf) for the cardinality NT,k of the measurement set
ZT,k, and the likelihood of a single measurement, conditioned
on the state ξ of the target. Note here our convention of
showing the dimensionless probabilities with “P ” and the
likelihoods with “p”.

The set of false alarms collected at time k is denoted

ZFA,k =
{
z

(j)
k

}NFA,k

j=1
. (4)

The false alarms are distributed according to an i.i.d. cluster
process with set likelihood

f (ZFA,k) = NFA,k!PFA (NFA,k)
∏

zk∈ZFA,k

pFA (zk) , (5)



LUNDQUIST et al.: AN EXTENDED TARGET CPHD FILTER AND A GAMMA GAUSSIAN INVERSE WISHART IMPLEMENTATION 3

Dk|k(ξ) =


 κ(1− PD(ξ) + PD(ξ)Gz(0|ξ))

+

∑
P∠Z

∑
W∈P σP,WG

(|W|)
z (0|ξ)

∏
z′∈W

pz(z′|ξ)
pFA(z′)∑

P∠Z

∑
W∈P ψP,WιP,W

PD(ξ)

 pk|k−1(ξ), |Z| 6= 0

κ(1− PD(ξ) + PD(ξ)Gz(0|ξ))pk|k−1, |Z| = 0

. (10)

Pk|k(n) =



∑
P∠Z

∑
W∈P ψP,WG

(n)
k|k−1(0)

(
GFA(0)ηW|P|

ρn−|P|

(n−|P|)!δn≥|P|

+G
(|W|)
FA (0) ρn−|P|+1

(n−|P|+1)!δn≥|P|−1

)
∑
P∠Z

∑
W∈P ψP,WιP,W

, |Z| 6= 0

ρnG
(n)
k|k−1(0)

Gk|k−1(ρ)
, |Z| = 0

. (11)

where PFA ( · ) and pFA ( · ) denote the pmf for the cardinality
NFA,k of the false alarm set ZFA,k, and the likelihood of a
single false alarm.

Let Zk denote the union of the target generated measure-
ments and the false alarms,

Zk =
{
z

(j)
k

}Nz,k

j=1
= ZT,k ∪ ZFA,k, (6)

and let Zk denote the set of all measurement set, from time 0
to time k,

Zk = {Z0, . . . ,Zk} . (7)

The multi-target prior f(Xk|Zk−1) at each estimation step
is assumed to be an i.i.d. cluster process,

f
(
Xk|Zk−1

)
=n!Pk|k−1 (n)

∏
ξ∈Xk

pk|k−1 (ξ) , (8)

where Pk|k−1 (n) is the pmf for the cardinality of the set of
targets. The predicted single target density is

pk|k−1 (ξ) , N−1
k|k−1Dk|k−1(ξ) (9)

where Nk|k−1 ,
∫
Dk|k−1(ξ)dξ and Dk|k−1(ξ) is the pre-

dicted PHD.
Given the above, the aim of the next section will be to

derive the CPHD filter equations for extended targets, i.e., to
find the posterior PHD Dk|k(ξ) and the posterior cardinality
distribution Pk|k(n) of the target set Xk given the set of
measurements Zk.

III. CPHD FILTER FOR EXTENDED TARGETS

The CPHD filter propagates the PHD Dk|k(ξ) and the cardi-
nality distribution Pk|k(n). Note that the ET-CPHD predictor
equations are equivalent to the standard CPHD predictor equa-
tions in [30], and they are omitted for space considerations.
In Section III-A the ET-CPHD corrector equations are given
without any derivation in view of the fact that the derivations
are already given in [34], [35]. Similar equations, derived
under different model assumptions, can be found in [32].
Section III-B gives a brief comparison between the ET-CPHD
model and the model used in [32].

A. CPHD correction

The posterior PHD Dk|k(ξ) and the posterior cardinality
distribution Pk|k(n) of the target set Xk are given in (10)
and (11) at the top of the page. The following notation is
used in (10) and (11):

• The functions Gk|k−1( · ), GFA( · ) and Gz( · |ξ) denote
the predicted probability generating function of the state,
the probability generating function of the false alarms,
and the probability generating function of the measure-
ments conditioned on the state, respectively.

• The superscript (n), indicates the n:th derivative of the
corresponding function.

• P∠Z denotes that P partitions the measurement set Z
into non-empty subsets. When used under a summation
sign the summation is over all possible partitions P .

• |P| denotes the number of non-empty subsets in the
partition P .

• The non-empty subsets are denoted W, and are called
cells. When W ∈ P is used under a summation sign, the
summation is over all cells in the partition.

• |W| denotes the number of measurements in the cell (i.e.,
the cardinality).

The coefficients and constants that are utilized in (10) and (11)
are defined as follows.

ρ ,pk|k−1

[
1− PD( · ) + PD( · )Gz(0| · )

]
, (12a)

ηW ,pk|k−1

[
PD( · )G(|W|)

z (0| · )
∏

z′∈W

pz(z′| · )
pFA(z′)

]
, (12b)

ιP,W ,GFA(0)G
(|P|)
k|k−1(ρ)

ηW
|P|

+G
(|W|)
FA (0)G

(|P|−1)
k|k−1 (ρ),

(12c)

χP,W ,GFA(0)G
(|P|+1)
k|k−1 (ρ)

ηW
|P|

+G
(|W|)
FA (0)G

(|P|)
k|k−1(ρ),

(12d)

ψP,W ,
∏

W′∈P−W

ηW′ , (12e)

κ ,


∑
P∠Z

∑
W∈P ψP,WχP,W∑

P∠Z

∑
W∈P ψP,WιP,W

, |Z| 6= 0

Nk|k−1, |Z| = 0

, (12f)

σP,W ,
ψP,W
|P|

GFA(0)G
(|P|)
k|k−1(ρ)
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+

∑
W′∈P−W ψP,W′ιP,W′

ηW
. (12g)

where the notation p[g( · )] denotes the integral
∫
p(x)g(x)x. .

B. Comparison to [32]

The previous work that is most similar to the presented ET-
CPHD filter is [32]. The PHD correction equation in [32] is
derived using hierachical cluster processes, with two levels of
cluster processes: the parent and the daughter process, where
the daughter process is conditioned on the parent process.
In (3), (5) and (8) the target measurement likelihood, false
alarm likelihood and multi-target prior are modelled as cluster
processes. Thus, the model used here can be seen as a special
case of the hierarchical model in [32], where an impulsive
likelihood is used for the daughter process.

The increased generality of the hierachical model comes
at the price of an additional requirement in the correction
formulae: obtaining all sub-partitions of the partitions of the
measurement set. In the presented formulation, the correction
equations involve only the partitions of the measurement
set, i.e., no sub-partitions. This makes the computational
complexity of the presented ET-CPHD filter similar to that
of the extended target PHD filter [21]. It has been shown in
previous work that the measurement set partitioning is of high
importance for the practical performance [22]–[24]. Since no
implementation is given in [32], a practical comparison is not
possible.

IV. THE GGIW EXTENDED TARGET MODEL

In this section we present a gamma Gaussian inverse
Wishart extended target model.

A. Notation

We use the following notation:
• Rn is the set of real n-vectors, Sn++ is the set of

symmetric positive definite n×n matrices, and Sn+ is the
set of symmetric positive semi-definite n× n matrices.

• GAM (γ ; α, β) denotes a gamma probability density
function (pdf) defined over γ > 0 with shape parameter
α > 0 and inverse scale parameter β > 0,

GAM (γ ; α, β) =
βα

Γ(α)
γα−1e−βγ . (13)

• N (x ; m,P ) denotes a multi-variate Gaussian pdf de-
fined over the vector x ∈ Rnx with mean vector m ∈
Rnx , and covariance matrix P ∈ Snx+ ,

N (x ; m,P ) =
e−

1
2 (x−m)TP−1(x−m)

(2π)
nx
2 |P |

1
2

, (14)

where |P | is determinant of the matrix P .
• IWd (X ; v, V ) denotes an inverse Wishart pdf defined

over the matrix X ∈ Sd++ with degrees of freedom v >
2d and parameter matrix V ∈ Sd++, [36, Definition 3.4.1]

IWd (X ; v, V ) =
2−

v−d−1
2 |V | v−d−1

2

Γd
(
v−d−1

2

)
|X| v2

etr

(
−1

2
X−1V

)
,

(15)

where etr (A) = exp (Tr (A)) is exponential of the trace
of the matrix A.

• A⊗B is Kronecker product between matrices A and B.

B. Extended Target State

The extended targets considered in this work are, as de-
scribed in e.g., [24], characterized by a number of reflection
points spread over their extents. The following assumption
about the number of measurements generated by each ex-
tended target is common in extended target tracking, see e.g.,
[2], [3], [21]–[24], [37].

Assumption 1: The number of measurements generated by
the extended target ξk is Poisson distributed, with a gamma
distributed rate parameter γk. �
Note that Assumption 1 is generally not needed for imple-
mentation of the CPHD filter, it is only made for the specific
implementation presented in this paper.

The following assumption about the extended target kine-
matics (i.e., position, velocity, acceleration) and extension (i.e.,
shape and size) was first suggested by Koch [4]. It has been
used extensively since, see e.g., [5]–[7], [24], [38].

Assumption 2: The target kinematics and target extension
can be decomposed into a random vector xk and a random
matrix Xk. �
Modeling the extension as a random matrix limits the extended
targets to be shaped as ellipses, comments on the appropriate-
ness of this model can be found in e.g., [4], [6], [24].

The following assumption about the measurement rate and
the kinematical and extension states is inherited from [37],
where it is noted that it is resonable in most cases.

Assumption 3: The measurement rate γk is conditionally
independent of xk and Xk. �
Since, in general, it is unknown how γk changes over time,
conditioned on the kinematics and extension1, we believe
the assumption, which greatly facilitates the derivation of the
GGIW-CPHD filter below, is approximately valid in many cases.

Following Assumptions 1, 2 and 3, the extended target state
ξk, cf. (1), is defined as the triple

ξk , (γk,xk, Xk) , (16)

where γk > 0 is the measurement rate, xk ∈ Rnx is the
kinematical state and Xk ∈ Sd++ is the extension state.
Following [4], [37], the extended target state ξk, conditioned
on Zk, is modeled as gamma Gaussian inverse Wishart (GGIW)
distributed,

p
(
ξk
∣∣Zk ) = p

(
γk
∣∣Zk ) p (xk ∣∣Xk,Z

k
)
p
(
Xk

∣∣Zk ) (17a)

= GAM
(
γk ; αk|k, βk|k

)
×N

(
xk ; mk|k, Pk|k ⊗Xk

)
× IWd

(
Xk ; vk|k, Vk|k

)
(17b)

= GGIW
(
ξk ; ζk|k

)
, (17c)

where ζk|k =
{
αk|k, βk|k,mk|k, Pk|k, vk|k, Vk|k

}
is the set of

GGIW density parameters. The Gaussian covariance is (Pk|k⊗

1It is unknown, for example, how many more reflections would appear as
the target comes closer to the sensor.
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Xk) ∈ Snx+ , where Pk|k ∈ Ss+. Estimates of the kinematic state
covariance and of the target extent are obtained as in [4],

P̂k|k =
Pk|k ⊗ Vk|k

vk|k + nx( 1
d − 1)− 2

, X̂k|k =
Vk|k

vk|k − 2d− 2
(18)

for vk|k such that the denominators are positive.

C. Transition Density and Measurement Likelihood

The state transition density p (ξk+1|ξk) describes the time
evolution of the extended target state from time tk to time
tk+1. In Bayesian state estimation, the prediction step consists
of solving the Chapman-Kolmogorov equation

p(ξk+1|Zk) =

∫
p(ξk+1|ξk)p

(
ξk|Zk

)
dξk. (19)

The following assumption is made about the transition density.
Assumption 4: The extended target state transition density

satisfies

p (ξk+1|ξk) ≈ pγ (γk+1|γk) px,X (xk+1, Xk+1|xk, Xk)
(20a)

≈ pγ (γk+1|γk) px (xk+1|Xk+1,xk) pX (Xk+1|Xk)
(20b)

for all ξk, ξk+1, xk, Xk , xk+1 and Xk+1. �
The approximation in (20b) is inherited from [4], where it is
noted that it implies restrictions that can be justified in many
practical cases. The approximation to predict the measurement
rate independent of the kinematical state and extension state
is inherited from [37]. Comments on the pros and cons of this
approximation can be found in [37].

The individual measurement likelihood pz
(
z

(j)
k |ξk

)
in (3)

describes the relation between the measurements z
(j)
k ∈ Zk

generated by a target and the corresponding target state ξk.
The following assumption is made about the measurement
likelihood.

Assumption 5: The individual measurement likelihood is
given as

pz

(
z

(j)
k

∣∣∣ ξk) = pz

(
z

(j)
k

∣∣∣xk, Xk

)
. (21)

�
Note that the proposed likelihood pz

(
z

(j)
k

∣∣∣ ξk) does not
depend on the measurement rate γk. The reason for this is
that it has been seen that the CPHD update formula already
provides a likelihood for the update of the measurement rate
parameters with the multiplicative terms G

|W|
z (0| · ) which

depend on γk. In fact, these terms come directly from the
term Pz (NT,k|ξ) = Pz (NT,k|γ) in the set likelihood (3).

The following two assumptions are standard in many target
tracking applications, see e.g., [1].

Assumption 6: Each target’s kinematical state follows a
linear Gaussian dynamical model. �

Assumption 7: The sensor has a linear Gaussian measure-
ment model. �

In particular, we use the dynamical model suggested in [4],

xk+1 =
(
Fk+1|k ⊗ Id

)
xk + wk+1 (22)

where wk+1 is zero mean Gaussian process noise with covari-
ance ∆k+1|k = Qk+1|k ⊗ Xk+1, Id is an identity matrix of
dimension d, and Fk+1|k and Qk+1|k are [4],

Fk+1|k =

1 Ts
1
2T

2
s

0 1 Ts
0 0 e−Ts/θ

 , (23a)

Qk+1|k = Σ2
(

1− e−2Ts/θ
)

diag ([0 0 1]) , (23b)

where Ts is the sampling time, Σ is the scalar acceleration
standard deviation and θ is the maneuver correlation time.

The measurement model is also suggested in [4],

zk = (Hk ⊗ Id)xk + ek, (24)

where Hk = [1 0 0] and ek is white Gaussian noise with
covariance given by the target extension matrix Xk.

V. THE GGIW-CPHD FILTER

In this section we present a gamma Gaussian inverse
Wishart implementation of the extended target CPHD filter.

A. Assumptions

In order to derive prediction and correction equations for the
GGIW-CPHD filter, a number of assumptions are made here in
addition to the assumptions already described.

Assumption 8: The current estimated PHD Dk|k( · ) is an
unnormalized mixture of GGIW distributions,

Dk|k (ξk) ≈
Jk|k∑
j=1

w
(j)
k|kGGIW

(
ξk ; ζ

(j)
k|k

)
, (25)

where Jk|k is the number of components, w(j)
k|k is the weight

of the j:th component, and ζ
(j)
k|k is the density parameter of

the j:th component.
Assumption 9: The intensity of the birth RFS is an unnor-

malized mixture of GGIW distributions. �
Assumption 10: The survival probability is state indepen-

dent, i.e. PS (ξk) = PS. �
Similarly to [22], [24], an assumption is made concerning the
probability of detection PD ( · ).

Assumption 11: The following approximation about PD ( · )
holds for all ξk

PD (ξk)GGIW
(
ξk ; ζ

(j)
k|k−1

)
≈ PD

(
ζ

(j)
k|k−1

)
GGIW

(
ξk ; ζ

(j)
k|k−1

)
. (26)

�
In Assumption 11 the approximation (26) is trivially satisfied
when PD ( · ) = PD, i.e., when PD ( · ) is constant. In general,
Assumption 11 holds approximately when the function PD ( · )
does not vary much in the uncertainty zone of a target in the
augmented state space ξk. This is true either when PD ( · ) is
a sufficiently smooth function, or when the signal to noise
ratio (SNR) is high enough such that the uncertainty zone is
sufficiently small.
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B. Prediction

The PHD corresponding to prediction of existing targets is
given by

Dk+1|k (ξk+1) =

∫
PS (ξk) p (ξk+1|ξk)Dk|k (ξk) dξk. (27)

Utilizing (25) and Assumptions 4 and 10, the integral simpli-
fies to
Jk|k∑
j=1

PSw
(j)
k|k

∫
GAM

(
γk ; α

(j)
k|k, β

(j)
k|k

)
pγ (γk+1|γk) dγk︸ ︷︷ ︸

Measurement rate

×
∫
N
(
xk ; m

(j)
k|k, P

(j)
k|k ⊗Xk+1

)
×px (xk+1|Xk+1,xk)

dxk︸ ︷︷ ︸
Kinematics

×
∫
IWd

(
Xk ; v

(j)
k|k, V

(j)
k|k

)
pX (Xk+1|Xk) dXk︸ ︷︷ ︸

Extension

. (28)

Using the linear Gaussian model given in (22), the prediction
for the kinematical part becomes [4]∫

N
(
xk ; m

(j)
k|k, P

(j)
k|k ⊗Xk+1

)
px (xk+1|Xk+1,xk) dxk

= N
(
xk+1 ; m

(j)
k+1|k, P

(j)
k+1|k ⊗Xk+1

)
, (29)

where

m
(j)
k+1|k =

(
Fk+1|k ⊗ Id

)
m

(j)
k|k (30a)

P
(j)
k+1|k = Fk+1|kP

(j)
k|kF

T

k+1|k + Qk+1|k. (30b)

The integrals that correspond to the measurement rate and
extension are less straightforward to solve. For measurement
rate prediction, as in [37] we use exponential forgetting with
forgetting factor 1

ηk
,

α
(j)
k+1|k =

α
(j)
k|k

ηk
, β

(j)
k+1|k =

β
(j)
k|k

ηk
, (31)

where ηk > 1. This prediction has an effective window of
length we = 1

1−1/ηk
= ηk

ηk−1 .
For the extension, we apply the same heuristic approach as

in [4], i.e., the predicted degrees of freedom and inverse scale
matrix are approximated by

v
(j)
k+1|k = e−Ts/τv

(j)
k|k, (32a)

V
(j)
k+1|k =

v
(j)
k+1|k − d− 1

v
(j)
k|k − d− 1

V
(j)
k|k , (32b)

where Ts is the sample time and τ is a temporal decay con-
stant. Thus, the PHD (27) corresponding to predicted existing
targets is

Dk+1|k (ξk+1) =

Jk|k∑
j=1

w
(j)
k+1|kGGIW

(
ξk+1 ; ζ

(j)
k+1|k

)
, (33)

where w(j)
k+1|k = PSw

(j)
k|k, and the predicted parameters ζ(j)

k+1|k
are given by (30), (31), and (32).

The birth PHD

Db
k (ξk) =

Jb,k∑
j=1

w
(j)
b,kGGIW

(
ξk ; ζ

(j)
b,k

)
, (34)

represents new targets that appear at time step k. For the
sake of simplicity, as in [24] target spawning is omitted. The
full predicted PHD Dk+1|k (ξk+1) is the sum of the PHD of
predicted existing targets (33) and the birth PHD (34), and
contains a total of Jk+1|k = Jk|k +Jb,k+1 GGIW components.

The cardinality distribution is predicted as in [31],

Pk+1|k(n) =

n∑
j=0

Pb,k(n− j) (35)

×
∞∑
`=j

`!

j!(`− j)!
Pk|k(`)P jS,k(1− PS,k)`−j ,

where Pb,k (n) is the cardinality distribution of birth.

C. Correction

The correction has the following steps:

1) For all components j, and all sets W in all partitions P
of Zk: First compute the centroid measurement, scatter
matrix, innovation factor, gain vector, innovation vector
and innovation matrix,

z̄Wk =
1

|W|
∑

z
(i)
k ∈W

z
(i)
k (36a)

ZW
k =

∑
z
(i)
k ∈W

(
z

(i)
k − z̄Wk

)(
z

(i)
k − z̄Wk

)T

(36b)

S
(j),W
k|k−1 = HkP

(j)
k|k−1H

T

k +
1

|W|
(36c)

K
(j),W
k|k−1 = P

(j)
k|k−1H

T

k

(
S

(j),W
k|k−1

)−1

(36d)

ε
(j),W
k|k−1 = z̄Wk − (Hk ⊗ Id)m

(j)
k|k−1 (36e)

N
(j),W
k|k−1 =

(
S

(j),W
k|k−1

)−1

ε
(j),W
k|k−1

(
ε

(j),W
k|k−1

)T

(36f)

and then compute the posterior GGIW parameters

α
(j),W
k|k = α

(j)
k|k−1 + |W| (36g)

β
(j),W
k|k = β

(j)
k|k−1 + 1 (36h)

m
(j),W
k|k = m

(j)
k|k−1 +

(
K

(j),W
k|k−1 ⊗ Id

)
ε

(j),W
k|k−1 (36i)

P
(j),W
k|k = P

(j)
k|k−1 −K

(j),W
k|k−1S

(j),W
k|k−1

(
K

(j),W
k|k−1

)T

(36j)

v
(j),W
k|k = v

(j)
k|k−1 + |W| (36k)

V
(j),W
k|k = V

(j)
k|k−1 +N

(j),W
k|k−1 + ZW

k (36l)

2) Calculate ρ, according to (12a), as

ρ =

Jk|k−1∑
j=1

w̄
(j)
k|k−1

(
1− P (j)

D + P
(j)
D Gz(0, j)

)
(37a)
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where

Gz(0, j) =

 β
(j)
k|k−1

β
(j)
k|k−1 + 1

α
(j)

k|k−1

(37b)

is the expected probability that the j:th component did
not cause any detections, and

w̄
(j)
k|k−1 ,

w
(j)
k|k−1∑Jk|k−1

`=1 w
(`)
k|k−1

(37c)

for j = 1, . . . , Jk|k−1 are the normalized prior PHD
weights.

3) Calculate ηW for all sets W in all partitions P of Zk
according to (12b), as follows.

ηW =

Jk|k−1∑
j=1

w̄
(j)
k|k−1P

(j)
D

L(j),W
k

LW
FA

, (38a)

where

L(j),γ
k =

Γ
(
α

(j),|W|
k|k

)(
β

(j)
k|k−1

)α(j)

k|k−1

Γ
(
α

(j)
k|k−1

)(
β

(j),W
k|k

)α(j),|W|
k|k

(38b)

L(j),x,X
k =

(
π|W||W|

)− d2(
S

(j),W
k|k−1

) d
2

∣∣∣V (j)
k|k−1

∣∣∣ v
(j)
k|k−1

2

∣∣∣V (j,W)
k|k

∣∣∣ v
(j),W
k|k

2

Γd

(
v
(j),W

k|k
2

)
Γd

(
v
(j)

k|k−1

2

)
(38c)

L(j),W
k = L(j),γ

k L(j),x,X
k (38d)

LW
FA =

∏
z∈W

pFA(z) (38e)

In the GIW likelihood (38c), |V | denotes the determinant
of the matrix V , and |W| is the number of measurements
in the cell W. The derivation of the GIW likelihood
(38c) is given in [24]. The GGIW likelihood (38d) is the
product of the measurement rate likelihood (38b) and
the GIW likelihood (38c).

4) Calculate the coefficients ιP,W, χP,W, ψP,W, κ and
σP,W for all sets W and all partitions P using the for-
mulas (12c), (12d), (12e), (12f) and (12g) respectively.

5) Calculate the posterior weights w(j),P,W
k|k as

w
(j),P,W
k|k =

w̄
(j)
k|k−1P

(j)
D σP,W

L(j),W
k

LW
FA∑

P∠Z

∑
W∈P ψP,WιP,W

. (39)

The posterior PHD is a GGIW mixture

Dk|k (ξk) =
∑
P∠Zk

∑
W∈P

w
(j),P,W
k|k GGIW

(
ξk ; ζ

(j),W
k|k

)
+DND

k|k (ξk) , (40)

where DND
k|k ( · ) is given by

DND
k|k (ξk) =κ

Jk|k−1∑
j=1

w̄
(j)
k|k−1(1− P (j)

D )GGIW
(
ξk ; ζ

(j)
k|k−1

)

+ κ

Jk|k−1∑
j=1

w̄
(j)
k|k−1P

(j)
D

 β
(j)
k|k−1

β
(j)
k|k−1 + 1

α
(j)

k|k−1

× GGIW
(
ξk ; ζ

(j)

k|k−1

)
. (41)

The first summation on the right hand side of (41) represents
the cases where a target is not detected and the second
summation deal with the cases when the target is detected but
it does not generate any measurements. All of the modified
parameters ζ

(j)

k|k−1 in the second summation are the same as

the parameters ζ(j)
k|k−1 except that β

(j)

k|k−1 = β
(j)
k|k−1 + 1.

The calculation of the updated cardinality distribution
Pk|k( · ) is straightforward with (11) using the quantities
calculated above.

D. Measurement Set Partitioning

Note that the presented ET-CPHD filter, like the ET-PHD [21],
requires all partitions of the current measurement set for its
update. A partition is a division of the measurement set into
non-empty subsets called cells. Each cell can be interpreted as
containing measurements that all stem from the same source,
either a target or a clutter source.

As the total number of measurements grows, the number
of possible partitons grows very large. Even with as little as
five measurements there are 120 possible partitions, hence
considering all partitions is computationally infeasible and
approximations are necessary. In [22], [23] it was shown
that the set of all partitions can efficiently be approximated
with a subset of partitions, provided that the subset contains
the most likely partitions. The partitioning methods in [22],
[23] puts upper bound constraints on the distances between
measurements that are put into the same cells W in a
partition P . These partitioning methods have been shown to
reduce the number of partitions that have to be considered by
several orders of magnitude, while sacrificing as little tracking
performance as possible [10], [22]–[24], [34], [37].

A careful investigation of the presented ET-CPHD filter
update equations makes it evident that for correct operation,
the ET-CPHD filter requires partitions that would include the
false alarms in a single cell. As an illustration, suppose that the
current measurement set is composed of two clusters of closely
spaced target generated measurements, and 10 individual well
separated false alarm measurement, see Fig. 1a. In this case,
the partitioning algorithms used would most probably supply
a single partition of 12 cells: two cells containing the respec-
tive target originated measurements, and the other ten cells
containing the false alarms, see Fig. 1b. In the update of the
cardinality distribution (11), the probabilities for all n smaller
than |P| − 1 are set to zero. Hence the result would be a
grossly incorrect cardinality estimate, which would lead to a
lot of false tracks.



8 JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING

0 10 20 30 40 50 60 70 80 90 100

0

10

20

30

40

50

60

70

80

90

100

x

y

(a)

0 10 20 30 40 50 60 70 80 90 100

0

10

20

30

40

50

60

70

80

90

100

x
y

(b)

0 10 20 30 40 50 60 70 80 90 100

0

10

20

30

40

50

60

70

80

90

100

x

y

(c)

Fig. 1. Partitioning illustration. (a) Two targets at [25 25]T and [75 75]T with 10 measurements each, and 10 uniformly distributed clutter measurements.
(b) Measurement set partition obtained using the method from [22], [24]. Different cells are illustrated using different colors. The true target measurements
have correctly been allocated to two cells, and the clutter measurements belong to individual cells. (c) Cells with less than or equal to Nlow = 1 measurement
have been merged to a single cell.

This problem is a direct manifestation of the approximation
of the set of all partitions with a limited number of distance
based partitions. Note that if the full set of partitions was
used, there would always be a partition that puts the target
generated measurements into individual cells, and all clutter
measurements into a single cell.

The problem can be solved in at least two alternative ways.
The first solution is to derive the ET-CPHD filter in a slightly
different way, which results in two levels of partitioning in
the update. This is done in [39] where the final formulae for
the ET-CPHD filter update, though equivalent to the update pre-
sented in this manuscript, requires partitioning of all cells in all
partitions of the measurement set. Distance based partitioning
in both levels then solves the problem. On the other hand,
this type of solution causes other implementational difficulties.
First, the computational overload increases unnecessarily with
two levels of partitioning which is rather inefficient. Secondly,
and more importantly, such an implementation results in some
PHD components with negative weights w(j)

k|k. The resulting
PHD remains valid thanks to the identical PHD components
whose weights always sum up to their true positive values.

The second solution, which is used in the paper, is a variant
of the distance partitioning method presented in [22], [24].
Due to space considerations, only the necessary modifications
are discussed here and the reader is referred to [22], [24] for
the basic algorithm. The distance partitioning method would,
without changes, put the false alarms into individual cells, as
illustrated in Fig.1b. The reason is that they are in general
isolated measurements far away from the target generated
measurement clusters. In the present work the method has
therefore been modified in the sense that an additional partition
is created, for partitions computed by the distance partitioning
method, that merge all the cells that contain |W| ≤ Nlow mea-
surements into a single cell. This is illustrated for Nlow = 1
in Fig.1c. In this way, there remains still a single level of
partitioning, which is in fact the same computational overload
as the ET-PHD filter, but the set of distance based partitions

are further processed to compose new partitions that would
solve the problem of cardinality overestimation in the case of
high number of false alarms.

E. Pruning and Merging

The usual techniques of merging and pruning, see [16] for
details on GM-PHD, must be applied to reduce the exponential
growth of the number of GGIW components. Merging methods
specific to GGIW mixtures can be found in [37], [38]. For space
consideration these algorithms are not repeated here.

F. Target extraction and maintaining target tracks

Similarly to [16], [22], [24] targets are extracted from the
PHD intensity by taking the components i for which it holds
w

(i)
k|k > 0.5. Let the set of extracted targets be

X̂k|k =
{
ξ̂

(i)
k|k

}N̂x,k
i=1

, ξ̂
(i)
k|k =

(
γ̂

(i)
k|k, x̂

(i)
k|k, X̂

(i)
k|k

)
, (42a)

γ̂
(i)
k|k = E [γk] , x̂

(i)
k|k = E [xk] , X̂

(i)
k|k = E [Xk] , (42b)

where the expected values are taken with respect to the i:th
GGIW distribution.

Note that this GGIW implementation of the ET-CPHD filter
does not maintain target identities over time. For the point
target GM-PHD filter [16], methods to maintain target identities
are presented in e.g., [40], [41]. The presented GGIW CPHD
filter can easily be augmented in a similar manner to provide
target identities over time. In this case, the estimates of the
measurement rate and the extension would aid in the process
of maintaining target identities over time.

VI. PERFORMANCE EVALUATION

In this section, we discuss the metrics used in order to
evaluate the performance of the GGIW-CPHD filter. It is of
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interest to compare the set of extracted targets (42) to the true
set of targets,

Xk =
{
ξ

(j)
k

}Nξ,k
j=1

, ξ
(j)
k =

(
γ

(j)
k , x

(j)
k , X

(j)
k

)
. (43)

Here we use a variant of the optimal sub-pattern assignment
(OSPA) metric [42]. The distance between ξ

(j)
k and ξ̂

(i)
k|k is

decomposed as

d
(
ξ

(j)
k , ξ̂

(i)
k|k

)
=
wγ
cγ
d

(cγ)
j,i +

wx

cx
d

(cx)
j,i +

wX
cX

d
(cX)
j,i , (44)

where wγ + wx + wX = 1, and

d
(cγ)
j,i = min

(
cγ ,
∣∣∣γ(j)
k − γ̂

(i)
k|k

∣∣∣) , (45a)

d
(cx)
j,i = min

(
cx,
∥∥∥x(j)

k − x̂
(i)
k|k

∥∥∥
2

)
, (45b)

d
(cX)
j,i = min

(
cX ,

∥∥∥X(j)
k − X̂

(i)
k|k

∥∥∥
F

)
, (45c)

where | · | is the absolute value, ‖ · ‖2 is the Euclidean norm,
and ‖ · ‖F is the Frobenius norm. The constants cγ , cx and
cX are chosen such that they correspond to the maximum
expected error for the measurement rate, kinematical state, and
extension state, respectively.

An optimal assignment π̄ of order p with cut-off c is given
by

π̄ =arg min
π∈Πn

Nξ,k∑
i=1

(
d

(c)
j,i

)p
, (46a)

d
(c)
j,i = min

(
c, d
(
ξ

(j)
k , ξ̂

(i)
k|k

))
. (46b)

The multiple extended target tracking performance is presented
in terms of the following quantity,

d̄(c)
p =

 1

n

Nξ,k∑
i=1

(
d

(c)
i,π̄(i)

)p
+ cp

(
N̂ξ,k −Nξ,k

) 1
p

. (47)

A cardinality estimate can be obtained in a few different
ways. One estimate is the number of extracted targets, N̂ξ,k,
another is the sum of weights Σiw

(i)
k|k. For the CPHD filter, an

estimate can also be taken as the maximum likelihood estimate
from the cardinality distribution,

NC
ξ,k =arg max

n
Pk|k(n). (48)

In the sections below where our results are presented, we will
compare the true cardinality with Σiw

(i)
k|k for the PHD filter,

and NC
ξ,k for the CPHD filter.

VII. SIMULATION RESULTS

In this section we present results from a simulation study
that compares the GGIW-CPHD filter to a GGIW implementation
of the ET-PHD filter [21], called GGIW-PHD filter. The GGIW-
PHD filter is a variant of the GIW-PHD filter presented in [24],
where measurement rate estimation has been added as outlined
in [37].

Implementing the GGIW-CPHD filter can be cumbersome, to
facilitate reproducibility and future comparisons a MATLAB
implementation of the GGIW-CPHD filter is freely available
for research purposes. It can be acquired by contacting the
authors.

A. Target Tracking Setup

Two different scenarios were simulated, one with two targets
and one with four targets. The true extensions are

X
(i)
k =R

(i)
k diag

([
A2
i a

2
i

]) (
R

(i)
k

)T

, (49)

where R
(i)
k is rotation matrix applied such that the i:th

extension’s major axis is aligned with the i:th target’s direction
of motion at time step k, and Ai and ai are the length of the
major and minor axes, respectively. True target measurements
were generated with Poisson rates γ(i)

k .
In the scenario with four targets, the major and minor axes,

and measurement rates, are

A1 = 5, a1 = 3, γ
(1)
k = 10, (50a)

A2 = 5
√

2, a2 = 3
√

2, γ
(2)
k = 20, (50b)

A3 = 5
√

1.5, a3 = 3
√

1.5, γ
(3)
k = 15, (50c)

A4 = 5
√

2.5, a4 = 3
√

2.5, γ
(4)
k = 25. (50d)

The scenario is 200 time steps, the targets appear at time t(i)b
and disappear at time t(i)d ,

t
(1)
b = 10, t

(2)
b = 35, t

(3)
b = 60, t

(4)
b = 85, (51a)

t
(1)
d = 110, t

(2)
d = 135, t

(3)
d = 160, t

(4)
d = 185. (51b)

The true tracks of the kinematical states are shown in Fig. 2a,
the surveilance area is [−200 , 200]× [−200 , 200].

In the scenario with two targets, the major and minor axes,
and measurement rates, are

A1 = 20, a1 = 5, γ
(1)
k = 20, (52a)

A2 = 10, a2 = 2.5, γ
(2)
k = 10. (52b)

Both targets are present during the entire simulation (100 time
steps). The true tracks of the kinematical states are shown in
Fig. 2b, the surveilance area is

[
−104 , 104

]
×
[
−104 , 104

]
.

This scenario was also used in [24].
In the filter, the motion model parameters are set to Ts = 1s,

θ = 1s, Σ = 0.1m/s2 and τ = 5s. For the performance
evaluation the parameters were set to p = 1, c = cγ+cx+cX ,
cγ = 10, cx = 50, cX = 50, wγ = 0.1, wx = 0.8, and wX =
0.1. In the partitioning we use Nlow ∈ {1, 2, 3}. The birth PHD
is set such that the Gaussian mean vectors correspond to the
targets’ actual starting points. The birth inverse Wishart mean
matrices are set to diag ([30 30]) in the scenario with four
targets, and diag ([1 1]) in the scenario with two targets. The
birth measurement rate means are set to 3.5 in the scenario
with four targets, and to 15 in the scenario with two targets.
Examples of how the birth PHD can be set in an experimental
scenario can be found in e.g., [22], [24]. The birth cardinality
is set to

Pb,k (n) =


0.90 n = 0
0.05 n = 1
0.025 n = 2, 3
0 otherwise

(53)
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Fig. 2. True target tracks used in simulations. (a) Four targets that appear
and disappear at different times. (b) Two targets that move in parallel.

B. Four Targets

The scenario was simulated for different probability of
detection, 0.80 or 0.99, and different number of false alarms,
5/4002 or 30/4002 clutter measurements per surveillance
volume. The results are shown in Fig. 3a -3d. In comparing
the filters we can observe the following:
• In terms of estimating the cardinality, the CPHD filter

handles high clutter rate and low probability of detection
much better than the PHD filter. This is especially clear
when the clutter rate is high and the probability of
detection is low at the same time, see Figure 3d.

• In terms of estimating the extended target state ξk, there
is no significant difference between the two filters when
probability of detection is high and the clutter rate is low,
which can be seen in the OSPA plot in Figure 3a. For the
other three parameter settings, the OSPA differences can
be attributed to the difference in cardinality estimate.

Both these findings are expected and intuitive – the CPHD
filter was introduced because the PHD filter’s cardinality esti-
mate has high variance.

C. Two Targets

The scenario was simulated with probability of detection
0.99, and 10/(4× 108) clutter measurements per surveillance
volume. The performance metrics and the cardinality estimates
are shown in Fig. 3e. During the parallel motion the PHD
filter’s performance deteriorates slowly, because a missed
detection for one target typically results in target loss, followed
by underestimation of cardinality, see [24]. The CPHD filter on
the other hand does not have this problem, and as a result has
no cardinality error on average, and smaller OSPA errors on
average.

Example CPHD filter results from a single simulation run
are shown in Figure 4. The motion model does not include
information about the direction of motion being aligned with
the major axis of the extension, however there is very little
difference between the estimated direction of motion and the
extimated orientation of the major axis.

D. Cycle times

The CPHD filter is, compared to the PHD filter, computa-
tionally more complex. In Table I the mean cycle times are
given for the scenario with four targets. One cycle consists of

Fig. 4. Example CPHD results showing three time steps from a single
simulation run of the scenario with two targets. The true extended targets
are shown in gray. The estimates are shown as blue ellipses, with the major
and minor axis plotted for increased clarity. The direction of motion is shown
with a red dashed line.

measurement set partitioning, prediction, correction, pruning
and merging, and target extraction. The results were obtained
using a computational server with an Intel Xeon Processor
X5675 (61.8GB total memory, 3.06GHz CPU). As expected,
the CPHD filter has higher average cycle time.

VIII. CONCLUSIONS

A CPHD filter is given for tracking multiple extended
targets, in the presence of clutter and missed detections. A
gamma Gaussian inverse Wishart mixture implementation for
the derived filter was proposed, and the steps of the algorithm
were presented. A simulation study was performed to compare
the CPHD filter to the PHD filter. When the targets are spatially
separated, the CPHD filter has much better cardinality estimate
than the PHD filter, especially in cases with high clutter rate
and/or low probability of detection. When the targets are
spatially close, the CPHD filter again has better cardinality
estimate than the PHD filter, even when the probability of
detection is high. In conclusion, the cardinality estimate of the
presented CPHD filter is more robust than its PHD counterpart.

An experimental study was not shown in this paper, however
some experiments have been performed and the early results
confirm the observation that the CPHD filter has a more
robust cardinality estimate, see [34] for a detailed comparison.
Because there is no ground truth data available, and because
the experiment results did not add any significant insight into
the CPHD filter other than what was already available from the
simulation results, the experiments were omitted in this work.
It is the authors’ ambition to present a more comprehensive
experimental comparison between different multiple extended
target trackers in the future.
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TABLE I
CYCLE TIMES [s] FOR THE SCENARIO IN FIGURE 2A. MEAN ± ONE

STANDARD DEVIATION.

pD, NFA 0.99, 5 0.99, 30 0.80, 5 0.80, 30
CPHD 0.20± 0.11 2.65± 0.71 0.29± 0.15 2.20± 0.47
PHD 0.08± 0.05 0.59± 0.22 0.17± 0.12 0.73± 0.31
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(a) Scenario in Fig. 2a with pD = 0.99 and NFA = 5

(b) Scenario in Fig. 2a with pD = 0.99 and NFA = 30

(c) Scenario in Fig. 2a with pD = 0.80 and NFA = 5

(d) Scenario in Fig. 2a with pD = 0.80 and NFA = 30

(e) Scenario with two targets in Fig. 2b

Fig. 3. Simulation results. The thick lines show the mean value over 103 Monte Carlo simulations, blue is CPHD, red is PHD. The light blue and pink
colored areas are mean ± one standard deviation. Left: OSPA-metric, cf. (47). Right: Comparison of NC

x,k for the CPHD filter with the sum of weights for
the PHD filter, true cardinality in green.
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Sweden, Tech. Rep. LiTH-ISY-R-2999, Mar. 2011. [Online]. Available:
http://www.control.isy.liu.se/research/reports/2011/2999.pdf

[36] A. K. Gupta and D. K. Nagar, Matrix variate distributions, ser. Chapman
& Hall/CRC monographs and surveys in pure and applied mathematics.
Chapman & Hall, 2000.

[37] K. Granström and U. Orguner, “Estimation and Maintenance of Mea-
surement Rates for Multiple Extended Target Tracking,” in Proceedings
of the International Conference on Information Fusion, Singapore, Jul.
2012.

[38] ——, “On the Reduction of Gaussian inverse Wishart mixtures,” in
Proceedings of the International Conference on Information Fusion,
Singapore, Jul. 2012.

[39] U. Orguner. (2010, Nov.) CPHD filter derivation for extended
targets. ArXiv:1011.1512v2. [Online]. Available: http://arxiv.org/abs/
1011.1512v2

[40] D. E. Clark, K. Panta, and B.-N. Vo, “The GM-PHD Filter Multiple
Target Tracker,” in Proceedings of the International Conference on
Information Fusion, Florence, Italy, Jul. 2006.

[41] K. Panta, D. Clark, and B.-N. Vo, “Data association and track man-
agement for the Gaussian mixture probability hypothesis density filter,”
IEEE Transactions on Aerospace and Electronic Systems, vol. 45, no. 3,
pp. 1003–1016, Jul. 2009.

[42] D. Schuhmacher, B.-T. Vo, and B.-N. Vo, “A consistent metric for
performance evaluation of multi-object filters,” IEEE Transactions on
Signal Processing, vol. 56, no. 8, pp. 3447–3457, Aug. 2008.

Christian Lundquist received the M.Sc. degree
in Automation and Mechatronics Engineering from
Chalmers University of Technology, Gothenburg,
Sweden, in 2003. He received the Ph.D. degree in
2011, at the Department of Electrical Engineering at
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