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Abstract—Positioning in cellular networks is often based on
mobile-assisted measurements of serving and neighboring base
stations. Traditionally, positioning is considered to be enabled
when the mobile provides measurements of three different base
stations. In this paper, we additionally investigate positioning
based on time series of Time Of Flight (TOF) and Time
Difference of Arrival (TDOA) measurements gathered from two
base stations with known positions, where the specific base
stations involved depend on the trajectory of the mobile station..
The set of two base stations is different along the trajectory.
Each report contains TOF for the serving base station, and
one TDOA measurement for the most favorable neighboring
base station relative the serving base station. We derive explicit
analytical solution related to the intersection of the absolute
distance circle (from TOF) and relative distance hyperbola (from
TDOA). We consider both geometric noise-free problem and the
more realistic problem with additive noise as delivered in the 3rd
Generation Partnership Project (3GPP) Long-Term Evolution
(LTE). Positioning performance is evaluated using the Cramér-
Rao lower bound.

I. INTRODUCTION

Locating a Mobile Station (MS) by means of available
cellular network resources is investigated in this paper. Among
different available alternatives such as Angle of Arrival (AoA),
Received Signal strength (RSS), Time of Flight (TOF) and
Time Difference of Arrival (TDOA), this work focuses on
the two latter measurements. The MS detects and measures
the time of arrival of signals transmitted from cellular radio
network Base Stations (BS)s that are separated spatially,
and forms TDOA estimates. Hyperbolic positioning generally
refers to TDOA localization where two involved stations form
the foci of the hyperbola. In case of TOF measurements,
the target would be located somewhere on a sphere or circle
around the listening BS.

The accuracy horizon considered for 5th Generation (5G)
networks according to recent studies is set to be within
sub-meter bounds [1], [2]. It provides a considerably higher
accuracy than other available alternatives. For instance, TDOA
measurements provided by the 3GPP standard use Observed
Time Difference of Arrival (OTDOA) techniques. Long Term
Evolution (LTE) systems have an accuracy of a few tens of
meters [3], [4]. Global Navigation Satellite Systems (GNSS)s,
as another example, are limited to an accuracy of around
5m [5]. WLAN-based finger-printing systems are capable of
providing around 4m-accurate solutions [6]. A whole survey
regarding accuracies in different standards can be also found
in [7], [8].

Different aspects of positioning using passive ranging mea-
surements have already been analyzed in the literature. Closed-
form solutions for hyperbolic positioning can be found for in-
stance in [9]–[11]. Iterative algorithms for solving a nonlinear
(weighted) least squares (N(W)LS) form another major group.
The Gauss-Newton algorithm is studied in [12], constrained
and non-constrained NLS solutions are discussed in [13], [14].
The iterative approaches generally require good initialization
to converge to the global optimum of the cost function and
often many iterations. In order to avoid these issues, the solu-
tions proposed in [15], [16] transform nonlinear equations into
a set of linear ones, thus making real-time implementations
possible. Factor graph-based methods carrying low-complex
flags also attracted some attention [17], [18].

The transmitted signal’s waveform is known for transmitted
pilot symbols, thus the receiver can measure range to any
reference point by matching the signal with its delayed version.
This is known as active localization method where availability
of TOF measurements is guaranteed. In cooperative or semi-
cooperative passive localization scenarios it is also possible to
find TOF measurements at a single sensor as in [19].

It is often presumed in MS-assisted positioning that three
different BSs must be measured in order to localize a target.
The contribution of this work is to fuse TOF and TDOA
measurements gathered from two BSs over a time series. The
way how these measurements are obtained also matters. For
example, [20] assumes reference sensors on fixed locations. In
this work, BSs to which range is measured at each time instant
change along the trajectory. The closest BS to the MS at each
instant is taken for TOF and the most favorable neighboring
BS relative the first one for TDOA.

The rest of the paper is organized as follows. Section II
formulates the problem and introduces the motivation behind
the work. Section III considers the noise-free case where first
a scenario with three measured BSs is provided followed
by a scenario with only two BSs. Section IV considers a
more realistic situation where TOF and TDOA measurements
are used for position estimation in the presence of additive
Gaussian noise. Section V presents the result of the proposed
estimator and the achieved positioning error, followed by the
final conclusions in Section VI.

II. MOTIVATION AND PROBLEM FORMULATION

Positioning in cellular radio networks is performed by
processing position-dependent information contained in the
signals the BS and the MS are exchanging with each other.



In cellular radio networks, the MS is generally assigned to
a specific BS, the serving BS, which is responsible for the
communication link with the MS; other BSs are referred to
as neighboring BSs. The coverage area of each BS can be
visualized by a hexagonally shaped cell, even though the actual
coverage area depends on the actual radio propagation condi-
tions, antenna configurations, transmission power in relation to
neighboring cells. While the MS is moving through the net-
work, it will be handed over to different cells, via a handover
procedure. Their handover process is typically supported by
event-triggered MS assisted measurements, indicating when a
neighboring BS signal is measured at a better (with hysteresis)
received strength compared to a signal from the serving BS.

While cellular radio networks were traditionally designed
for communication purposes, its potential for positioning
was soon realized [6]. For instance, timing measurements
performed by the serving BS are used to ensure a proper
alignment of the message frames required in time division
multiple access (TDMA) based systems. The positioning
accuracy in the early stages was rather poor, which was
due to the fact that the used signals were not designed for
positioning purposes. However, in recent years there has been
a tremendous standardization effort, to increase this accuracy,
which was also a result of FCC regulations on emergency
calls that were established in the U.S.. Today’s cellular radio
networks standards enable the configuration of positioning
reference signals (PRS) from BSs which enable MS to estimate
TDOA measurements. In 3GPP LTE, these PRs can be defined
based on orthogonal patterns, as well as muting schemes,
where some BSs transmit a PRS, while other BSs are muted, in
order to suppress interference and ensure a wide detectability
of signals.

The purpose of the present work is to study the positioning
performance in cellular radio networks that can be expected
taking into account the above stated limitations. We assume
that BSs are deployed in a cellular radio network consisting
of hexagonal cells [4] and consider two different scenarios.
The first scenario assumes that three BSs are involved in
the positioning process as shown in Fig. 1. The serving BS
S1 is assumed to provide the TOF measurement, and two
neighboring BSs S2 and S3 are detected by the MS to form
TDOA measurements. The second scenario assumes that only
two BSs are involved in the positioning process. Again, the
serving BS S1 is providing the TOF measurement, but now the
TDOA is measured based on signals from the serving BS S1

and a neighboring BS e.g. S2. We further restrict ourselves
to two-dimensional scenarios, and convert TOF and TDOA
measurements to corresponding range and range differences.
Geometrically, this means that the TOF measurement can be
represented by a circle around the serving BS and the TDOA
by a hyperbola with foci equivalent to the two neighboring
BSs as depicted in Fig. 1. The MS positioning problem then
becomes a classical circle and hyperbola intersection problem.

We further assume that the MS is moving on a predefined
trajectory, which has a flower-shape structure as depicted in
Fig. 2. The serving BS and the neighboring BSs involved in

the positioning process will change depending on the current
location of the MS. The flower shape of the trajectory is
selected to excite key aspects of positioning based on TOF and
TDOA. It can be a relevant reference scenario for comparative
performance evaluations. The scenario data will be available
for download online with the final version of the paper.

In order to simplify the analysis, we assume that the serving
BS is the BS that has the smallest geometric distance to the
MS. Similarly, the two neighboring BSs are defined to be the
BSs which are geometrically the second and third closest to
the MS. With these assumptions, it is possible to define areas
identifying which BS is providing TOF measurements and
which pair of BSs are detected for TDOA measurements as
shown in Fig. 2a and Fig. 2b, respectively. Interestingly, the
areas for TOF measurements define hexagonal cells, while the
areas for the detected BS pairs for TDOA measurements define
parallelograms (e.g. the area where BS S1 and S5 are detected
for the TDOA measurement is defined as the parallelogram
having corners defined by S1 and S5).

III. GEOMETRIC FUSION OF TOF AND TDOA

We first consider the case where TOF and TDOA measure-
ments are noise-free. While this case is of limited practical
interest it is included here as it prepares the reader for the
(more interesting) case of having noisy measurements which
is presented in Section IV. Analytical solutions to the circle
and hyperbola intersection problem can be derived for any BS
deployment. However, assuming a deployment with hexagonal
cells and BSs located at the centre of each cell as given
in Fig. 1 together with an equivalent inter-site distance D
between all cells (i.e. distance between two BSs is equal), the
calculations can be considerably simplified. In particular, it is
then possible to transform the problem into a local coordinate
system (via translation and rotation) at each time instant the
BSs involved in the positioning process change, and solve for
the MS position in that local coordinate system.

S1

S3 S2

r1

r2r3

Measuring stations

Stations far from target
ToF Circle
TDoA hyperbola

Fig. 1: Cellular radio network deployment and example for BS
involved in the positioning process using TOF measurement
from BS S1 and TDOA measurements based on signals from
BS S2 and S3.
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Fig. 2: Simulation scenario with flower-shaped MS trajectory,
and areas identifying (a) which BS is providing TOF mea-
surements, and (b) which pair of BSs is detected for TDOA
measurements

Let [Xi, Yi]
T , i = 1, 2, 3 denote the a priori known BS

positions and let [X,Y ]T denote the unknown MS position
in some global coordinate system. We then transform the BS
positions and MS position into some local coordinates given
by xi = [xi, yi]

T and x = [x, y]T .

A. Three Base Stations Scenario

The transformation of the three BSs scenario into a local
coordinate system is depicted in Fig. 3. The local x-axis is
chosen such that the two neighboring BSs S2 and S3, which
are detected for the TDOA measurement (the focal points of
the hyperbola), are located at [D2 , 0]T and [−D2 , 0]T , respec-
tively. The equal inter-site distance D then would imply that
the serving BS S1 providing TOF measurements is located at
[0,
√
3
2 D]T . Further definitions of hyperbola related parameters

given in this figure are the semi-major axis from the origin to
each vertex, which is denoted by a, and the conjugate axis
of the hyperbola which is then given by 2b. Let r1 denote

-3000 -2000 -1000 0 1000 2000 3000
X-position [m]

-3000

-2000

-1000

0

1000

2000

3000

Y
-p

os
iti

on
 [m

]

S2S3

D

S1

X

Y

b a

Fig. 3: Equivalent local coordinate system for the three BS
scenario

the noise-free range corresponding to the TOF measurement
of the serving BS, and let r32 , r3 − r2 denote the noise-
free range difference related to the TDOA measurement of
the neighboring BSs. Then, the solution of the circle and

hyperbola intersection problem is equivalent to solving the
following system of (nonlinear) equations for [x, y]T

x2 + (y −
√

3

2
D)2 = r21, (1a)

x2

a2
− y2

b2
= 1, (1b)

where the parameters related to the semi-major and conjugate
axis of the hyperbola are given by

a2 =
1

4
r232, (2a)

b2 =
1

4
(D2 − r232). (2b)

Note, that according to (2a), two vertices of the hyperbola
are located at [− 1

2r32, 0]T and [ 12r32, 0]T . This means that
we generally have two hyperbolas and depending on how the
range difference is defined (i.e. r32 or r23) and whether the
range difference is positive or negative, the MS must either
lie on one of these. In Fig. 3, the MS position must lie on the
hyperbola with BS S2 as focal point, since r32 > 0. It is further
worth noting that (2b) implies that r3 − r2 < D must hold,
but this is always satisfied based on our assumption stated at
the end of Section II that r3 > r2 > r1.

Mathematically, the intersection problem (1) has no, one
or two solutions. However, considering how BSs are set, in
the noise-free scenario, TDOA hyperbola will always intersect
TOF circle. That is, in this setup the case with no solution
never occurs. Constraints on either having one or two solutions
depend on the geometric properties of BSs as well as their
distance to the MS as given by

x =

 [x, y]
T
, if 0 < r3 − r2 < r1,

[x+, y+]
T
, if r3 − r2 = r1,

(3)

with

x =

√
4D4r232 − 7D2r432 + 4D2r232r

2
1 ± 4

√
3θ

2D2
, g1(r1, r32),

(4a)

y =
3D4r232 − 3D2r432 ± 2

√
3θ

2
√

3D3r232
, g2(r1, r32), (4b)

where

θ =
√
D4r432 (r232 −D2) (r232 − r21). (5)

B. Two Base Stations Scenario

The transformation of the two BSs scenario into a local
coordinate system is depicted in Fig. 4. The local x-axis is
chosen such that the serving BSs S1 is located at [D/2, 0]T

and the neighboring BS S2 is located at and [−D/2, 0]T . The
noise-free range and range difference measurements are then
defined as r1 and r21 , r2 − r1, respectively. The solution
of the circle and hyperbola intersection problem is equivalent
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Fig. 4: Equivalent local coordinate system for the two BS
scenario

to solving the following system of (nonlinear) equations for
[x, y]T

(x− D

2
)2 + y2 = r21, (6a)

x2

a2
− y2

b2
= 1, (6b)

with a2 = 1
4r

2
21 and b2 = 1

4 (D2 − r221). Intersection points
would then be dependent on the distance between two stations
and r1 as given by

x =

[x,±y]
T if D − 2r1 < r21 < D

[x, 0]
T if r21 = D − 2r1

(7)

with

x =
r21 (r21 + 2r1)

2D
, g1(r1, r21) (8a)

y =

√
(D2 − r221) (r221 + 4r21r1 −D2 + 4r21)

2D
, g1(r1, r21)

(8b)

IV. STOCHASTIC FUSION OF TOF AND TDOA

In this section we consider the more realistic assumption
that the TOF and TDOA measurements are affected by noise.
In particular we assume that the MS position solutions pro-
vided in the previous section are affected by measurements
corrupted by additive noise. Let z denote the vector containing
TOF and TDOA measurements. Further, let e denote the noise
vector which is assumed Gaussian distributed e ∼ N (ē,R)
with mean ē and covariance matrix R. The generic MS
position solution provided in the previous section can be then
expressed as x = [x, y]T = g(z − e), where the mapping
g(z−e) = [g1(z−e), g2(z−e)]T with R2 → R2 nonlinearly
relates the stochastic vector (z−e) to the MS position x. Since
the mapping g(·) is nonlinear, the corresponding MS position
will be non-Gaussian distributed. Hence, the MS position es-
timation problem can be casted into the problem of efficiently
approximating the mean and covariance of Gaussian random
variables that have been transformed through nonlinearities.

In the literature, there exist many different approaches that
are suitable for the above estimation task, such as e.g. the

sigma-point transformation or Monte Carlo transformation.
In this work, we restrict our analysis to a first-order Taylor
approximation of the nonlinear mapping g(z − e) around
the measurement vector z, which we call first order Taylor
transformation (TT1), yielding

x = g(z− e) ≈ g(z)− g′(z)e, (9)

where g′(·) is the gradient of g(·) with respect to z. From
this linear approximation, we obtain the mean and covariance
which is sometimes referred to as Gauss’ approximation
formula, yielding

µx = Ex(x) ≈ g(z) (10a)

Px = Cov(x) ≈ g′(z)R (g′(z))
T (10b)

In the following, we let x̂ = µx denote our MS position
estimator with corresponding estimation uncertainty given by
covariance Px.

A. Three Base Stations Scenario

For the three BSs scenario, the measurement vector is given
by z = [z1, z32]T , where z1 denotes the noisy range measure-
ment from the serving BS S1 and z32 denotes the noisy range
difference measurement obtained from the neighboring BSs
S3 and S2. The corresponding measurement models are of the
following form

z1 = r1 + e1 (11a)

z32 = r3 − r2 + e3 − e2 , r32 + e32 (11b)

where e1, e2, e3 ∼ N (0, σ2), so that e32 ∼ N (0, 2σ2) and
R = diag([σ2, 2σ2]). The position estimator x̂ is rather simple,
as it only replaces the noise-free measurements r1 and r32 by
the noisy measurements z in the results provided in Section
III-A. The computation of the estimator’s covariance Px is
rather cumbersome as it requires to compute the gradient
matrix

g′(z1, z32) =

[
∂g1(z1,z32)

∂z1

∂g1(z1,z32)
∂z32

∂g2(z1,z32)
∂z1

∂g2(z1,z32)
∂z32

]
. (12)

For the problem at hand, the matrix elements are generally
available in closed-form, but are too lengthy to include here.

B. Two Base Stations Scenario

For the two BSs scenario, the measurement vector is given
by z = [z1, z21]T , where z21 denotes the noisy range dif-
ference measurement obtained from the neighboring BS S2

and serving BS S1. The corresponding measurement model is
given as follows

z21 = r2 − r1 + e2 − e1 , r21 + e21, (13)

where e21 ∼ N (0, 2σ2) and

R =

[
σ2 −σ2

−σ2 2σ2

]
. (14)

The position estimator x̂ is again only using noisy measure-
ments instead of noise-free measurements in the solutions
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Fig. 5: Illustration of position ambiguity from the geometric
solution. (a) Two involved BSs, (b) Three involved BSs

provided in Section III-B. The gradient matrix g′(z1, z21) for
the two BS scenario when [x, y]T is the solution, is then given
by[ z21

D
z1+z21
D

(D2−z21)
2
(2z1+z21)

Dδ

(D2−z21)(D2(2z1+z21+1)−2(z1+z21)(2z1+z21))
2Dδ

]
(15)

where δ =

√
(D2 − z21)

2
((2z1 + z21)2 −D2). The second

row in (15) must be multiplied by −1 when the solutions is
[x,−y]T .

V. SIMULATION RESULT

The proposed TT1 estimators introduced in Section IV can
be applied to any generic setup of BSs as long as the the inter-
site distance D is the same for all BSs. In order to assess the
analytical position solutions of the noise-free measurement, we
compute these for each point on the flower shape trajectory
being covered by seven BSs as described in Section II. The
moving MS reports ranging measurements to involved BSs.
The measuring BSs are defined by their distance to the target
and are not fixed throughout the whole trajectory.

At each time instant, we first transform the global coordi-
nates to a local coordinate system for which solutions have
been provided in Section III. The estimated position is then
transformed back to the global coordinates for positioning
performance metric computations. Fig. 5 illustrates that most
of the time there are two solutions at each position along the
trajectory for noise-free measurements, and that the incorrect
positions seem to be mirror positions defined by the geometry
of the scenario.

In order to evaluate the performance of the TT1 estimator,
we calculate the root mean square error (RMSE) of the
estimator. For the measurement noise standard deviation, we
assume a value of σ = 8.5 m, which coincides with the value
used in 3GPP-LTE systems [4]. For a number of N Monte
Carlo runs, the RMSE is defined as

RMSE =

√√√√ 1

N

N∑
i=1

(x̂i − x)2 + (ŷi − y)2, (16a)

where [x̂i, ŷi]
T corresponds to the estimated MS position at

the i-th Monte Carlo run and [x, y]T is the true position.
We consider the true positions as prior information in cases
when two solutions exist. The prior information is used by the
estimator to select the position solution that minimizes the L2

norm between true position and that point. In this way, we
avoid the position ambiguity and evaluate only the stochastic
contribution to the position error. In a real scenario, however,
the position prior shall be provided by a tracking filter. For all
simulations we have performed N = 500 Monte Carlo runs.

Fig. 6b corresponds to the scenario with three measured
BSs. As it is shown, the positioning error along the trajectory
varies between 11 to 18 meters by using TT1 estimator and
measuring three BSs. The Cramér-Rao lower bound (CRLB)
for this scenario is also plotted to represent the lower bound
to be achieved.

Fig. 6a represents the RMSE and the CRLB when two BSs
are measured. As expected, it has less accuracy than the case
with three BSs. Additionally, there are seven regions where
the estimation error is much larger, and is of the magnitude
of one hundred. These points correspond to the geometry of
, which can be easily mitigated with a tracking filter. Thus,
a tracking filter has a large potential to assist the snapshot
estimate as studied in this contribution, and this is the subject
for future work.

Scatter plots of the estimated positions using the proposed
TT1 estimator along the trajectory are presented in Fig. 6c for
the two BSs scenario and in Fig. 6d for the three BSs scenario.
It is interesting to note that there is always at least one solution
in case we assume noise-free measurements. However, this
is generally not true when having noisy measurements. The
Gaussian noise may result in smaller TOF circles or shifted
TDOA hyperbolas. In the noise-free measurement case having
only one solution corresponds to the case when the hyperbola
touches the circle at a single point. In this case, having
a unfavorable noise realization might move the hyperbola
outside the circle so that there is no intersection at all. This
occurred a couple of times in both scenarios. There is a natural
estimate in such cases, namely the geometric solution that
gives the point closest to both the circle and hyperbola, which
is subject to further research.

VI. CONCLUSIONS

Fusion of TOF and TDOA measurements systems for po-
sitioning purposes has been investigated in this paper. The
problem formulation is inspired by a recent standardization
decision in 3GPP-LTE, which will make these type of mea-
surements available with rather good accuracy. The analyt-
ical solution to the intersection of the circle and hyperbola
coming from two measurements together with constraints of
the solution are provided. While the MS moves around the
trajectory the known reference points change depending on the
distance to the MS. Two scenarios are investigated in which
the number of known BSs is different. In the first scenario,
the MS provides periodic reports to three different BSs while
in the second scenario, positioning is performed by measuring
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Fig. 6: Positioning error and estimated trajectory Left column, Two involved BSs, Right column Three involved BSs

only two BSs. We propose an estimator based on a Taylor
approximation of the non-linear mapping between TOF and
TDOA measurements and the 2D position of the MS. Monte
Carlo simulations indicate good performance that is close to
the CRLB for both scenarios.
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