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This paper presents the robust optimization framework in the modeling language YALMIP,
which carries out robust modeling and uncertainty elimination automatically, and allows
the user to concentrate on the high-level model. While introducing the software package, a
brief summary of robust optimization is given, as well as some comments on modeling and
tractability of complex convex uncertain optimization problems.
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1. Introduction

Almost all optimization models are wrong, and we know it. In most cases we can
live with this, the performance degradation due to modeling errors is too small
to be of practical interest, or the application might be inherently robust against
small errors (e.g. control systems where the whole idea is to reduce the impact of
uncertainty via feedback). On the other hand, there are cases where small model
errors can have disastrous effects, or at least lead to unnecessarily poor performance
compared to what could have been obtained if uncertainty explicitly had been taken
into account.
A common reason for practitioners to avoid uncertainty is the added complexity

of building the robust optimization model, and the lack of knowledge of how and
when this can be done efficiently. The purpose of this paper is therefore two-fold.
To begin with, we collect some of the most common approaches to structured
robust optimization, and try to pin-point typical classes of problems that can be
handled efficiently. However, it is our belief that knowing how to develop and
manipulate uncertain models does not necessarily lead to actual implementations
of robust optimization models, strong software support is required if we want robust
optimization to become common in practice. Thus, we introduce and discuss the
software support that is available in modeling language YALMIP to implement
these uncertain scenarios. Additionally, we discuss the easily overseen fact that
models where the nominal high-level problem can be easily reformulated to linear
programs in polynomial time, in some cases automatically by software, and we have
methods to derive robust counterparts of uncertain linear programs in polynomial
time, the combination of the two does not necessarily lead to a polynomial time
problem for uncertain high-level convex programs.
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2. Robust optimization

The basic problem addressed in this paper is uncertain optimization problems.

min
x

max
w

f(x,w)

s.t g(x,w) � 0 ∀w ∈ W

To keep notation at a minimum, we write g(x,w) � 0 here, but keep in mind that
these constraints may include element-wise inequalities, equality, second-order and
semidefinite cone constraints. In fact, as we will see later, it can also include more
advanced constraints, such as sum-of-squares constraints. Since the objective can
be moved to the constraints by an epigraph reformulation, we can w.l.o.g assume
certain objective function and thus concentrate on uncertain constraints.
In short, there are two ways to address this class of problems. Historically, prob-

abilistic approaches with chance constraints, risk-measures and expected outcomes
have been common, being the foundation for the whole stochastic programming
field [Pre95]. The solution methods are, due to the intractability of most problems,
typically based on some type of sampling from an uncertainty set. The disadvantage
with this approach is of course that it only gives an (optimistic) approximation, and
thus no guaranteed solutions. It is however possible to obtain statistical confidence
results on the solution, in particular in the convex case [CC04].
Recently, a more strict approach has become popular. The paradigm here is to

exactly or conservatively convert the problem to a certain problem (a so called
robust counterpart), by in some way removing the uncertainty, using methods
such as explicit maximization, duality properties, or relaxation methods. These
approaches have to a large extent gained popularity due to developments in the field
of convex and conic optimization [EOL98, BTN98, BTN99, BTN02] with significant
impetus from the robust control field [BEFB94, ZDG95]. It should however be
made clear that this approach in no sense is a new concept, exact approaches
to uncertain linear programming can be found already in, e.g., [Soy73, Soy74,
Fal76]. This paradigm, commonly referred to as a worst-case approach is what we
concentrate on in this paper (sometimes also referred to as unknown-but-bounded,
or minimax).
Many robust optimization problems fall into standard cases, which can be con-

verted to certain counterparts by standard but error-prone and cumbersome refor-
mulations. Our goal is to describe an extension to the modeling language YALMIP
[L0̈4] for modeling robust optimization problems in an intuitive format, and let
the software package take care of the reformulations. In other words, it is the ro-
bust optimization correspondence of the convex programming reformulations in the
”nonlinear operator”-framework in YALMIP and the similar ”disciplined convex
programming” framework in CVX [GB08]. The outcome of the features presented
in this paper is a new optimization problem which solves the worst-case scenario.

min
x,y

f̂(x, y)

s.t ĝ(x, y) ≤ 0

Typically, the problem is changed considerably from the original problem, indicated
by the new objective f̂ , constraints ĝ and additional variables y, introduced in order
to eliminate the uncertainty. While the original uncertain problem, for instance, is
a linear program, the robust counterpart can become a semidefinite program. Even
worse, the robust counterpart may not even be a tractable problem. In the follow-
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ing sections, we will outline the basic ideas in the proposed robust optimization
extension, and introduce the uncertainty scenarios that are supported.
At the initial release of the robust optimization framework in 2005, described in

[L0̈8], there was no comparable system publically available. Recently however, al-
ternatives have emerged [SG10]. The emphasis is however different. While YALMIP
concentrates on the generality and integration of the robust optimization frame-
work into other modules (parametric programming, sum-of-squares, integer pro-
gramming etc.), the emphasis in [SG10] is largely on uncertainty descriptions using
distributions and moments, and various applications of linear decision rules.

3. Notation

Matrices will generically be denoted using capital letters while vectors are in small
letters. Inner product trace(ATB) will be written as A • B. Cone constraints are
indicated using the � (�) operator. The cone can be either the positive (negative)
orthant cone, second order cone, or the cone of semidefinite matrices. When a
discussion is limited to the standard orthant, we use ≥ (≤). To simplify notation,
conic constraints in dual form C −

∑m
i Aiwi � 0 will be written in the operator

form C −AT (w) � 0. Primal form conic constraints, Ai •X = bi, i = 1 . . .m, will
be written A(X) = b. The cones might be direct products of several cones, possibly
of different type, and the data is partitioned accordingly. For simplicity though,
one may think of all cone constraints as having only one element.

4. The philosophy behind the software implementation

The first and most important idea in the robust optimization framework in
YALMIP is that uncertain models should be modeled using exactly the same syn-
tax as certain models. Hence, the only addition to the modeling language is a new
command uncertain, which declares a set of variables as uncertain.

4.1. Detection

When YALMIP encounters a model with uncertain variables, three main steps
occur. To begin with, the variables explicitly declared as uncertain are detected,
and constraints involving only these variables are separated from the model. These
constraints constitute (the initial) uncertainty description.

4.2. Expansion

YALMIP then applies an expansion of the remaining model, to model all advanced
nonlinear operators, such as absolute values and norms, typically using graph rep-
resentations. Note that the expansion of expressions that only involve uncertain
variables might generate new variables and constraints, which have to be added to
the list of uncertain variables, and to the uncertainty description. As an example,
if the uncertainty description is defined in the modeling language as |w|∞ ≤ 1,
the set of uncertain variables and associated uncertainty set after the expansion is
performed will be {(w, t) : −t ≤ w ≤ t, t ≤ 1}. The introduction of the auxiliary,
and strictly speaking redundant, variable t is a consequence of the way YALMIP
models nonlinear operators, such as norms.
A complication in terms of implementation is that the modeling language has to
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treat the uncertainty as a constant during the convexity propagation and expansion.
For instance, the constraint |xw| ≤ 1 is not convex, and could thus lead to problems
when convexity analysis is performed by YALMIP to decide on how to model the
absolute value operators. However, the standard graph model −1 ≤ xw ≤ 1 will
be derived, since the modeling language temporarily treats w as a constant and
thus sees an affine term inside the absolute value operator. After this expansion
has been made, the model is conceptually in YALMIP standard form (no high-
level operators such as norms, absolute values, etc.), albeit parameterized in the w
variables.

4.3. Classification and filtering

At this point, the derivation of a robust counterpart takes place. Depending on the
class of uncertain constraints, and the uncertainty model, different approaches are
used. The process of removing the uncertainty and deriving a robust counterpart is
called the filtering step, and there are currently five filters implemented, as outlined
in the next section.
Once the filter has been applied, a standard YALMIP model with no uncertainty

has been generated. This symbolic model can be solved using any installed solver
suitable for the robust problem, or manipulated further by the user.
Important to understand is that the uncertainty modeling and the derivation of

robust counterparts is a feature that is (essentially) completely integrated in the
infrastructure of YALMIP. Hence, nothing prevents a user to, e.g., define uncer-
tain sum-of-squares problems with combinatorial constraints. The modeling lan-
guage performs the sum-of-squares compilation, uncertainty removal, and addition
of combinatorial constraints separately in a modular fashion.

5. The filters

The mechanism of converting a problem with uncertainty, to the corresponding
certain counterpart, is called filtering in the robust optimization framework in
YALMIP. At the moment, five filters are implemented. The goal is to extend this
list in future versions, but the current set of problem classes are considered the
most important in practice.

5.1. Duality filter

The duality filter is applicable to element-wise constraints with coefficients lin-
early parameterized in the uncertain variable, and the uncertainty constrained to
an intersection of linear, second order and semidefinite cones. Consider a single
element-wise constraint

(Aw + b)Tx+ (cTw + d) ≤ 0 ∀w : E −FT (w) � 0 (1)

By writing the left-hand term as (ATx + c)Tw + (bTx + d) and viewing it as the
cost of a conic program in w, it follows from duality theory of conic optimization
that the maximum of this function, over w, is less than or equal to 0 if and only
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if1 there exist a Z such that the following condition holds [BTN02]

E • Z + bTx+ d ≤ 0,F(Z) = ATx+ c, Z � 0 (2)

This is a very general and useful result. A major drawback however is that the
filter can lead to a substantial increase of problem size, since a new variable Z, and
the associated constraints, have to be introduced for every uncertain constraint.
Hence, when possible, more specialized filters should be used.
Note that the strong duality arguments are employed in the w-space. Hence,

additional complicating constraints on x, such as integral variables or other convex
or nonconvex constraints, does not influence the correctness of the method. Of
course, this holds also for the remaining four filters.

5.2. Enumeration filter

A classical uncertainty case is constraints where the parameterization is linear
in the uncertainty, and the uncertainty is constrained to a polytopic set. To sim-
plify notation, let Aw(x) denote the parameterized operator

∑

Ai(w)xi where each
matrix Ai is linearly parameterized in w. Consider the following uncertain conic
constraint

(CT (w) +D) + (BT (x) +AT
w(x)) � 0 ∀w : Ew ≤ f (3)

This is the case that arise, e.g., in stability analysis of polytopic systems [BEFB94],
where w corresponds to parameters in an uncertain system and x corresponds to
the variables parameterizing a Lyapunov matrix.
From convexity, it follows that it is sufficient to study the vertices of the polytope

Ew ≤ f . Hence, if we let {wi} denote the vertex enumeration of the uncertainty
polytope, the robustified constraint is given by the intersection of the conic con-
straint evaluated at the vertices {wi}.

(CT (wi) +D) + (BT (x) +AT
wi
(x)) � 0 (4)

The problem with this approach is obvious; simple polytopes can generate in-
tractably many vertices. As a trivial example, the unit-cube in Rn has 2n vertices.

5.3. Explicit maximization filter

Specializing the problem structure further, we arrive at a case where we actu-
ally can perform the maximization over the uncertainty analytically. Consider an
element-wise constraint linearly parameterized in an uncertainty w ∈ Rr which is
constrained to a norm-ball.

(cTw + d) + (Aw + b)Tx ≤ 0 ∀w : |w|p ≤ 1 (5)

The maximum over w can be derived by using the fact that max|w|p≤1q
Tw is |q|p∗

where | · |p∗ denotes the dual norm, 1
p
+ 1

p∗
= 1 [BV04]. Hence, the robust constraint

is

(bTx+ d) + |c+ATx|p∗ ≤ 0 (6)

1Assuming the uncertainty set is bounded and has a strict interior.
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The current implementation exploits this result for the (possibly scaled and trans-
lated) 1, 2 and ∞-norm case, where the dual norm is the ∞, 2 and 1-norm re-
spectively. As for complexity, it depends on A. If A is nonzero, an uncertainty
constrained by a 1-norm will introduce one new variable and 2r constraints for
each uncertain constraint (epigraph variable and associated constraints to model
the dual ∞-norm). An uncertainty constrained in 2-norm will generate one second-
order cone constraint per uncertain constraint, whereas an uncertainty constrained
in ∞-norm will be somewhat expensive as it forces us to introduce r new variables
and 2r constraints, for every uncertain constraint, to model the dual 1-norm. If
A = 0, all approaches are extremely cheap, as they only require an addition of the
constant term |c|p∗ to the unperturbed constraint.

5.4. Pólya filter

The filters above are all exact, in the sense that the robustified constraints are
both sufficient and necessary for the original constraints to be robustly satisfied.
Unfortunately, there are not many more cases where simple sufficient and neces-
sary counterparts are available [BTN98]. Instead, one has to rely on conservative
approximations. One common case where a simple conservative result is available
is polynomially parameterized element-wise or semidefinite constraints, with the
uncertainty constrained to a simplex1.

p(x,w) � 0 ∀w :

m
∑

i=1

wi = 1, w ≥ 0 (7)

Since w is constrained to a simplex, the constraint is trivially equivalent to
p(x,w) (

∑m
i=1wi)

N � 0 for arbitrary N . If we assume that p(x,w) is homoge-

neous2 in w, the polynomial p(x,w) (
∑m

i=1wi)
N � 0, when seen as a polynomial

in w with coefficients parameterized in x, is non-positive if all coefficients are non-
positive. This follows trivially since w is non-negative. Hence, a sufficient condition
is

coefficientsw{p(x,w)(

m
∑

i=1

wi)
N} � 0 (8)

Note that this analogously also holds for the symmetric matrix polynomial case,
i.e., when p(x,w) is a matrix polynomial, with matrix coefficients functions of x.
The reason we denote the filter Pólya, is due to a result of Pólya, stating that

for a finite sufficiently large N , the condition is necessary3 [HLP52]. However, a
bound on this sufficiently large N is typically unreasonably large, and depends
on the parameterized coefficients, so the necessity result is of no direct use to us.
Instead, the user has to specify N and hope that the relaxation is sufficiently tight.
Analogous necessity in the matrix case has recently been shown in [Sch05].
An important feature of this relaxation, compared to more advanced schemes

using recent developments in convex optimization based relaxations of polynomial

1This is not necessary, any polytope can be handled by expressing w as a convex combination of its vertices,
if such vertex enumeration is available and tractable. The variable used in the convex combination lives,
by definition, on a simplex.
2This is not a restriction, since any polynomial can be rendered homogeneous on a simplex by multiplying
monomial terms with suitable powers of

∑
m

i=1
wi.

3To be precise, the theorem concerns a strict inequality of a homogeneous polynomial, and the restriction
on the simplex can be relaxed to any set in the positive orthant excluding the origin.
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problems, such as sum-of-squares and moment relaxations [Par03, Las09], is that
an uncertain element-wise constraint leads to element-wise constraints in the ro-
bust counterpart. In other words, the problem class does not change. Nevertheless,
since YALMIP has support for sum-of-squares reformulations and moment relax-
ations [L0̈9], future versions may have support for stronger relaxations in the robust
optimization module, at the cost of increased problem complexity.

5.5. Elimination filter

If everything else fails, our last resort is to constrain the decision variables such
that the uncertainties disappear from the constraint. Consider a polynomially pa-
rameterized constraint, with arbitrary uncertainty description.

p(x,w) � 0 ∀w ∈ W (9)

If we see this as a polynomial in w with coefficients parameterized in x, a trivial
sufficient condition is obtained by constraining the coefficients to be zero.

p(x,w) � 0, coefficientsw{p(x,w)} = 0 (10)

Although this condition is trivial, it is actually rather useful in some situations, as
mentioned in the LPV control example in Section 7.3. Additionally, the elimination
filter is the only option when an equality constraint involves uncertain variables
(which typically indicates an incorrect model, or the fact that the user wants to
solve a recourse problem and fails to see the difference between assignment and
equality in a model)

5.6. Mixing uncertainty models

We have so far only discussed the case when a constraint involves only one type of
uncertainty. It might however be the case that a constraint is affected by several
disjoint sets of uncertainties, say one uncertainty constrained to a norm ball and
another uncertainty constrained to a general conic set. One approach to address
this is to include the norm-ball description in the conic set, and apply the duality
filter on the direct product of the two uncertainties. YALMIP will however take
care of each part independently in an attempt to derive as small models as possible.

5.7. Comparison of filter complexity

As a simple illustration we now apply the three first approaches to derive a ro-
bust counterpart. Consider an uncertain linear programming problem with the
constraint (A ∈ Rm×n)

A(x+ w) ≤ b ∀|w|∞ ≤ 1 (11)

This set of uncertain constraints can be robustified using the duality approach, the
enumeration approach, and the explicit maximization. The explicit maximization
approach will lead to the robustified constraint Ax + |A|1 ≤ b, where 1 denotes
a vector of ones and |A| is element-wise absolute value. In other words, the size
of the problem remains unaltered. The enumeration approach would lead to the
constraints A(x+vi) ≤ b, where vi denotes the 2

n vertices of the unit cube. Hence,
the original set of m constraints are replicated 2n times with different right-hand
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sides, thus leading to a quickly growing problem size. Finally, the duality based
approach leads to a model with 2nm + n variables, nm equality constraints, and
m+ 2nm inequality constraints.1

We now make a small change in our model, and consider

A(x+ w) ≤ b ∀|w|1 ≤ 1 (12)

By using the explicit filter, the problem size remains unchanged, since every row
in the constraint is robustified to aTi x + |ai|∞ ≤ bi. Using an enumeration of the
uncertainty polytope leads to 2n vertices, hence the robust counterpart will have
2nm constraints in the n original decision variables. The duality approach depends
crucially on how the uncertainty set has been modelled. The most naive approach
is to use a polytope in the original w-variables. Such a polytope will have 2n

facets, hence a polytopic representation Ew ≤ f will have 2n constraints. Using
the same computations as above, we end up with 2nm+ n variables, nm equality
constraints and m+ 2nm inequality constraints. This derivation assumes that the
user explicitly has generated the exponentially large polytope representation of
the uncertainty set. A more realistic scenario is that the set is represented in a
lifted space, {w, t : −t ≤ w ≤ t,

∑n
i ti ≤ 1}. This is the representation YALMIP

would work with if the user simply described the uncertainty as |w|1 ≤ 1. This
polytope has 2n+1 vertices, hence the enumeration approach would yield roughly
the same complexity. However, it only has 2n+ 1 facets, although in 2n variables.
Applying the duality filter leads to a model with (2n + 1)m + n variables, nm
equality constraints and m+ (2n+ 1)m inequalities.
From this simple comparison, it should be clear that the choice of filter can

make a huge impact on the resulting problem. The current implementation always
tries to apply the explicit maximization scheme first. If this filter not is applicable,
the robustification resorts to the enumeration scheme if possible (based on the
empirical knowledge that most users solve problems with few uncertain variables).
The duality based scheme is only used if necessary, or if an explicit choice is made
via an option structure that is available for the user to guide the conversion.

6. Robust convex programming can easily become intractable

In this section, we want to bring forward an often missed fact. Models that easily
(polynomial time and size reformulation) can be converted to conic programs can
become intractable if uncertainty is involved, even if the uncertainty by it self can
be handled in polynomial time on a given standard form conic program. In other
words, the combination of tractable convex modeling and tractable robust modeling
can lead to intractable problems. Notice that we are not talking about the fact that
some worst-case problems are intractable (e.g., uncertain semidefinite constraints
with semidefinite representable uncertainty), but that unfortunate combinations of
epigraph reformulations and uncertainty can lead to troubles.
Let us begin by considering the issue in a fairly general setting, minimizing the

1For every row ai, we have to maximize aT
i
w subject to −1 ≤ w ≤ 1. Since the dimension of w is n, there

are 2n inequalities in the uncertainty constraint set. There will thus be 2n dual variables for each row. The
dual variables are constrained by n equality constraints and 2n inequality constraints. Summing up and
adding the original constraints and variables leads to the result.
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worst-case sum of convex functions

min
x∈X

max
w∈W

m
∑

i=1

fi(x,w) (13)

Perhaps not too surprising, this problem is intractable in the general case. Let
us now assume that all functions are (polynomial size) linear programming rep-
resentable (i.e. convex and piecewise affine), the uncertainty set is polytopic and
enters affinely, and that there are no constraints on x. We claim that the problem
still is intractable. The result follows directly from the following theorem due to
Mangasarian and Shiau,

Theorem 6.1 [MS86] Maximizing ||w||p over Aw ≤ b is NP-complete for p ∈ [1,∞)

Clearly, the function ||w||1 is linear programming representable with a size poly-
nomial in the dimension of w (requiring 2n+1 constraints and n additional auxiliary
variables, see Section 5.7). However, the theorem above immediately tells us that
the problem minxmaxAw≤b ||w||1 should be intractable (already in the case when
x is absent). Hence, it would be highly surprising if we had an efficient approach to
handle worst-case optimization of linear programming representable expressions,
despite the fact that the uncertainty model it self is easily handled on a given linear
program in standard form (in this case, using the polynomially sized duality filter).
In the current version of YALMIP, these model scenarios are thus not supported,
but the extension is under development.

7. Examples

To illustrate the use of the software package, we will solve a couple of uncertain
optimization problems, starting with the general linear programming scenario, and
the solve some applied problems from control.

7.1. Robust linear programming

As a first example, we implement the robust linear programming problem from
Section 5.7, minimize cTx subject to A(x+ w) ≤ b where |w|∞ ≤ 1.

x = sdpvar(n,1);

w = sdpvar(n,1);

C = [A*(x+w) <= b,

abs(w) <= 1,

uncertain(w)]

solvesdp(C,c’*x);

For a user familiar with YALMIP, the only new modeling construct is the command
uncertain which declares a variable as uncertain. The actual uncertainty set will
be extracted automatically from the model. After extracting the uncertainty model
and analyzing the uncertain constraints, a suitable filter will be applied to derive the
robust counterpart, which will be solved with a suitable solver, here any installed
and recognized linear programming solver. In this case, the explicit maximization
filter from Section 5.3 will be applied. Note that according to the discussion in
Section 4, the uncertainty model will be expanded to the model {(w, t) : −t ≤ w ≤
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t, t ≤ 1}. This uncertainty set only implicitly defines a simple box-bounded set.
However, since this case is so common, and the use of the absolute value operator
is frequent among users, YALMIP implements some specialized code to analyze
the uncertainty set to detect the redundant variables t and project the problem to
the standard box-bounded case.
Sim introduces the D-norm in [Sim04]. In its most simple form, this norm induces

an uncertainty set which can can be interpreted as a standard ∞-norm ball with
corners cut off by intersecting it with a 1-norm ball. How much of the corners that
are cut of is controlled with a scalar 0 ≤ r ≤ n.

C = [A*(x+w) <= b,

max(norm(w,inf),norm(w,1)/r) <= 1,

uncertain(w)]

This model, although it allows an explicit robust counterpart due to the self-dual
properties of the D-norm [Sim04], will be handled using the duality filter since the
YALMIP identifies the uncertainty set as nothing but a general polytopic set, and
the result is a linear program.
The model in [Soy73] can easily be generated and solved. All we have to do is

to add perturbations to the data matrix A and declare them as uncertain and
bounded. Once again, the explicit maximization machinery will be invoked and a
linear program will be solved.

dA = sdpvar(n,m);

C = [(A+dA)*x <= b,

dAmin <= dA <= dAmax,

uncertain(dA)]

Finally, we recover row-wise ellipsoidal uncertainty model from [BTN99].

dA = sdpvar(n,m);

C = [(A+dA)*x <= b,

sum(dA.*dA,2) <= 1,

uncertain(dA)]

This uncertainty model can be approached using both the explicit maximization
filter and the duality filter (YALMIP automatically rewrites the quadratic con-
straints as second-order cone constraints). Due to the typically lower complexity
of the models arising from explicit maximization, it is employed by default. The
result is a second-order cone program.

7.2. Robust optimal control with linear recourse

As a second example, we address the problem of finite-horizon optimal control of
uncertain constrained discrete-time linear systems. Consider the scalar system

xk+1 = xk + uk + wk (14)

The sought control input is constrained |uk| ≤ 1 while the disturbance is bounded
|wk| ≤

1
5 . The objective is to minimize the worst-case amplitude of the state over

a finite prediction-horizon, i.e., maxwmaxi|xk+i|. However, we assume that the
system will run in closed-loop in a receding horizon fashion, hence we should allow
u1 to feed back from future state measurements, i.e., to depend on w0. One strategy
to incorporate this is to parameterize the future input linearly in past disturbances
[GW74, L0̈3], which in our setting means we write u1 = Lw0 + v1, where L and
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v1 are decision variables. The model is straightforwardly implemented and solved
below for the particular initial state x0 = 1.

sdpvar u0 L v1 w0 w1

x0 = 1;

x1 = x0 + u0 + w0

u1 = L*w0+v1

x2 = x1 + u1 + w1

C = [uncertain([w0 w1]), -0.2 < [w0 w1] < 0.2, -1 < u0 < 1];

solvesdp(C,norm([x1;x2],inf));

The optimal solution turns out to be u0 = −1, L = −1 and v1 = 0. In other
words, one aggressive step, and then feedback decides the whole input at the future
instant. Note that predictions and control parameterizations are defined explicitly,
they should not represented using equality constraints.

7.3. LPV stabilization

Our task is to compute a stabilizing state-feedback u(t) = Kx(t) for the linear
parameter-varying system ẋ(t) = A(ρ)x(t) + Bu(t), where A is linearly parame-
terized in ρ, which is uncertain but known to be constant and constrained to a
simplex. Without going into details, a controller that minimizes an upper bound
on

∫∞
0 x(t)TQx(t) + u(t)TRu(t)dt can be found by solving the following uncer-

tain semidefinite program in the variable L and the inverse positive semidefinite
Lyapunov matrix Y [BEFB94].

max
L,Y

max
ρ

− trace(Y )





−(A(ρ)Y +BL)− (A(ρ)Y +BL)T Y LT

Y Q−1 0
L 0 R−1



 � 0

The feedback matrix can be recovered as K = LY −1. This problem can be solved
easily using our framework, since it fits into the enumeration scenario (linearly pa-
rameterized conic constraint with polytopic uncertainty). However, to make mat-
ters more challenging, we complicate the problem slightly. To decrease conserva-
tivity in the case when we actually can measure ρ on-line, we could be interested
in using a parameterized feedback L =

∑

ρiLi, and a parameterized inverse Lya-
punov function Y =

∑

ρiYi. The problem with this parameterization is that the
product A(ρ)Y (ρ) yields bilinear terms. Hence, the enumeration scheme cannot
be used. However, if the matrix A(ρ) has a particular structure, some terms in Y

can still be parameterized, without giving rise to any bilinear terms. This is where
the elimination filter comes into play. By simply using a full parameterization,
and letting YALMIP derive the robust counterpart, YALMIP will automatically
constrain the structure of Y so that no bilinear terms are generated. After this
elimination is done, the remaining uncertainty is dealt with using enumeration. A
less conservative approach can be obtained by using the Pólya filter introduced in
Section 5.4. This approach will allow nonlinear terms in the uncertain semidefinite
constraint. The following code illustrates how we would solve a problem in the case
when ρ is two-dimensional, for a system with n states and m inputs, using a Polya
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filter with N = 1.

rho = sdpvar(2,1)

A = A0 + A1*rho(1) + A2*rho(2);

Y0 = sdpvar(n,n);Y1 = sdpvar(n,n);Y2 = sdpvar(n,n);

Y = Y0 + rho(1)*Y1 + rho(2)*Y2

L0 = sdpvar(n,m);L1 = sdpvar(n,m);L2 = sdpvar(n,m);

L = L0 + rho(1)*L1 + rho(2)*L2

S = -A*Y-B*L;

C = [[S+S’ Y L’;

Y inv(Q) zeros(n,m);

L zeros(m,n) inv(R)] > 0]

C = [C, 0 <= rho, sum(rho) == 1]

C = [C, uncertain(rho)]

options = sdpsettings(’robust.polya’,1);

solvesdp(C,-trace(Y),options)

7.4. Uncertain quadratic constraint on the unit-simplex

To more explicitly illustrate the use of the Pólya filter, we study the impact of the
relaxation degree N on a simple quadratic constraint. Consider the following set

{(a, b) | ax2 + 2bxy + by2 ≥ 0 ∀ x+ y = 1, x ≥ 0, y ≥ 0} (15)

Our goal here is to study the approximation that arise when we apply the Pólya
filter on this constraint. The model is

sdpvar a b c x y

p = a*x^2+b*x*y+y^2*a

C = [p > 0, uncertain([x y]), x+y == 1, [x y] > 0];

To perform the study, we use the plot capabilities of YALMIP. Note that the set is
unbounded, hence, for illustration purpose only, we add artificial bound constraints.

C = [C, a < 5, b < 5]

plot(C,[],[0.9 0.9 0.9],[],sdpsettings(’robust.Polya’,16))

plot(C,[],[0.8 0.8 0.8],[],sdpsettings(’robust.Polya’,4))

plot(C,[],[0.7 0.7 0.7],[],sdpsettings(’robust.Polya’,2))

plot(C,[],[0.6 0.6 0.6],[],sdpsettings(’robust.Polya’,0))

The resulting feasible sets are reported in Figure 1.

7.5. Uncertain sum-of-squares

As a final example, we solve a problem where we show-case the integration of
different modules in YALMIP. Here, illustrated by combining the robust optimiza-
tion module with the sum-of-squares capabilities of YALMIP, described in detail
in [L0̈9].
A nonlinear system is described by the following differential equation.

ẋ1 = −
3

2
x21 −

1

2
x31 − x2

ẋ2 = 6x1 − wx2
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Figure 1. The feasible sets arising after applying Pólya filters of varying relaxation orders. On top (and
darkest), the trivial set (a, b) ≥ 0 generated when N = 0. For increasing degrees, the feasible set (partly
covered by sets related to lower relaxation degrees) grows and incorporates portions of the lower right
orthant.

The model is not known exactly, due to the uncertain parameter w ∈ W =
{w | 2 ≤ w ≤ 5}. Our goal is to show that the nonlinear system is stable for
any w ∈ W, and our approach to do this is to construct a polynomial Lyapunov
function, and prove robust asymptotic stability using sum-of-squares techniques.
The uncertain variable w does not pose a problem for standard sum-of-squares

techniques. Including information about uncertainty in the differential equation can
be done relatively easily in a sum-of-squares framework by, e.g., suitable application
of the positivstellensatz, [Par03]. However, we will apply a robust optimization
approach instead.
To prove stability, we introduce a polynomial Lyapunov function V (x) = cT v(x)

where c is the sought parameterization of the polynomial, and v(x) is a predefined
vector of monomials. For stability, we require

V (x) > 0 ∀x 6= 0

V̇ (x) < 0 ∀x 6= 0, w ∈ W

A sum-of-squares approach tries to find symmetric matrices Q1 and Q2 such that
V (x) = h(x)TQ1h(x) and V̇ (x) = −h(x)TQ2h(x), given a polynomial basis h(x).
By writing the sum-of-squares problem in image form [Par03], the semidefinite
problem that arise will include two constraints, Q1(c) ≻ 0 and Q2(c, w) ≻ 0.
We begin by defining the variables and basic expressions involved in the problem.

Without any deeper thought, we use a fourth order polynomial, and bound the
Lyapunov function and its negative derivative from below by quadratic functions
to ensure that the functions are positive definite1.

sdpvar x1 x2 w

f = [-1.5*x1^2-0.5*x1^3-x2;

6*x1-w*x2];

x = [x1;x2];

[V,c] = polynomial(x,4);

dVdt = jacobian(V,x)*f;

1Methods to impose strict inequalities in a sum-of-squares setting is a delicate issue beyond the scope of
this example.
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r = x’*x;

The sum-of-squares constraints and the uncertainty model are defined and the
problem is solved. If feasible, robust asymptotic stability is proved.

C = [uncertain(w), 2<=w<=5];

C = [C,sos(V-r),sos(-dVdt-r)];

solvesdp(C,[],[],c);

Behind the scenes, YALMIP will derive the matrices Q1(c) and Q2(c, w) using its
standard sum-of-squares module. Since Q2(c, w) is linear in w and w is described
by a polytope, the enumeration filter is applicable and is used to eliminate the
uncertainty. The solution V (x) is a quartic polynomial with 11 non-zero elements.
By exploiting the built-in support for mixed-integer conic programming, we can
alternatively search for a solution with minimal cardinality using the nnz operator.
For the mixed-integer programming representation of the cardinality constraint to
be numerically sound, we bound the decision variables.

solvesdp([C, -100< c < 100],nnz(c));

The solution returned is V (x) = 89.22x21 − 49.21x1x2 + 14.77x22 + 0.12x42.

8. Conclusion

A software framework for robust optimization has been presented. The modeling
language in YALMIP allows users to concentrate on the application model, while
YALMIP takes care of reformulations required to remove uncertainty in the prob-
lem and compute robust solutions. The automatic support for robustification of
uncertain models allows extremely rapid experimentation and prototyping with
different uncertainty models and methods to handle these.
The implementation is currently limited to a small number of standard uncer-

tainty cases, albeit they have to be considered the most common cases found in
practice. Additional scenarios will hopefully be available in future versions.
In addition to more uncertainty scenarios, the framework will hopefully be ex-

tended to support a broader class of optimization problems, such as general con-
vex problems, and uncertain geometric programs. The current version is primarily
meant for problems with (mixed-integer) conic representable constraints.
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[L0̈3] J. Löfberg. Approximations of closed-loop MPC. In Proceedings of the 42nd IEEE Conference
on Decision and Control, pages 1438–1442, Maui, Hawaii, 2003.
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