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Abstract: The performance of nonlinear fault detection schemes is hard to decide ob-
jectively, so Monte Carlo simulations are often used to get a subjective measure and
relative performance for comparing different algorithms. There is a strong need for a
constructive way of computing an analytical performance bound, similar to the Cramér-
Rao lower bound for estimation. This paper provides such a result for linear non-Gaussian
systems. It is first shown how a batch of data from a linear state-space model with additive
faults and non-Gaussian noise can be transformed to a residual described by a general
linear non-Gaussian model. This also involves a parametric description of incipient faults.
The generalized likelihood ratio test is then used as the asymptotic performance bound.
The test statistic itself may be impossible to compute without resorting to numerical
algorithms, but the detection performance scales analytically with a constant that depends
only on the distribution of the noise. It is described how to compute this constant, and a
simulation study illustrates the results. Copyright © 2006 IFAC
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1. INTRODUCTION

This paper studies fault detection in linear non-
Gaussian systems. It is first shown how a batch of data
from a linear state-space model with additive faults
and non-Gaussian noise can be transformed into a
residual described by a general linear non-Gaussian
model of the form

Rt = H̄θ
t θ + H̄v

t Vt. (1)

This transformation is based on either prior knowl-
edge, estimation based on past data, or a parity space
approach. Here, Vt captures the stochastic effects in
the system possibly with coloring H̄v

t . Further, θ is a
parameter vector in a smooth parameterization of in-
cipient fault profiles, which affects the system through
the matrix H̄θ

t (see Sec. 2). The generating system is
said to be fault free if θ = 0 and otherwise faulty,

i.e., fault detection thus turns into a hypothesis test,
(Kay, 1998; Basseville and Nikiforov, 1993),{

H0 : θ = 0,

H1 : θ 6= 0.
(2)

This test may be repeated for all possible faults, by
using different H̄θ

t , for the purpose of diagnosis.

The goal of this paper is to compute an asymptotic
upper bound for the detection probability PD for a
given false alarm rate PFA,

PD(d̂(Rt);PFA) ≤ PD(dGLR(Rt);PFA). (3)

Here, d̂(Rt) is any binary decision rule forH0 andH1

based on the residuals in (1), and dGLR(Rt) is the gen-
eralized likelihood ratio (GLR) test, which asymptoti-
cally maximizes PD. The performance of ad hoc meth-
ods using Monte Carlo simulations gives the value



of the left-hand side of (3), which can objectively be
compared to the right-hand side.

It is of practical interest to investigate how much
more efficient the GLR test is for the non-Gaussian
linear model compared to an equivalent Gaussian lin-
ear model in (1), where Vt has the same mean and
covariance. The Gaussian distribution is a worst case
distribution in that asymptotically

min
d

max
pVt

PD

(
d(Rt);PFA, pVt

)
= PD(dGLR

(
Rt);PFA, Vt ∈ N

)
< PD

(
d(Rt);PFA, po

Vt

)
, (4)

where po
Vt

denotes the true non-Gaussian distribution
of the noise. The gap in the inequality indicates how
important it is to take the non-Gaussianity into consid-
eration in the design. If the gap is negligible, fault de-
tection may be designed under a Gaussian assumption,
and one can hope for good performance. Otherwise,
dedicated tests based on the GLR test statistic should
be derived.

The GLR test involves explicit or implicit estimation
of the parameter vector θ. One method is to compute
the weighted least squares estimate of θ. This leads to
the best linear unbiased estimate (BLUE) obtainable
for linear systems. This is, however, not the minimum
variance (MV) estimate for non-Gaussian noise. The
MV estimator is in general nonlinear in data, and is
asymptotically given by the maximum likelihood (ML)
estimator. Relating to this, the Cramér-Rao lower
bound (CRLB) offers a performance bound for param-
eter estimation (Lehmann, 1983; Kailath et al., 2000),
and hence indirectly also a bound for detection perfor-
mance.

Of interest here is if utilizing nonlinear estimators
pays off in terms of better detection performance
and therefore motivates the need for more computa-
tional power. For autoregressive models the informa-
tion content in noise (intrinsic accuracy (IA)) can be
used to determine the potential for nonlinear methods
(Sengupta and Kay, 1990; Kay and Sengupta, 1993).
The same concept has also been used to describe op-
timal detectability for linear systems (Hendeby and
Gustafsson, 2005). This paper elaborates further on
this and points out the importance of choosing an
appropriate fault basis, as this affects the detectability.

This paper is organized as follows: Sec. 2 introduces
the models used, both for faults and residuals. In Sec. 3
accuracy is introduced as a measure of the information
available in noise, and in Sec. 4 bounds are derived
for the detection performance. Simulations in Sec. 5
exemplify the results. Conclusions are drawn in Sec. 6.

2. MODELS

To predict a system’s behavior a good model is very
important; the better the model, the easier it is to de-

tect abnormalities/faults. This paper assumes a linear
state-space model for the system,

xt+1 = Ftxt + Gw
t wt + Gf

t ft (5a)

yt = Htxt + et + Hf
t ft, (5b)

where yt are measurements of the system, ft a scalar
fault, xt the state, and wt and et are mutually inde-
pendent process noise and measurement noise, respec-
tively. For detection several measurements are often
considered at the same time, which can be described
with a stacked model with L measurements,

Yt = Otxt−L+1 + H̄w
t Wt + Et + H̄f

t Ft, (6)

where Yt = (yT
t−L+1, . . . , y

T
t )T are stacked mea-

surements, and Wt and Et stacked process noise and
measurement noise, respectively. The system matrices
(with time dependencies removed for notational clar-
ity) are the extended observability matrix

O =
(
HT (HF )T . . . (HFL−1)T

)T

and the Toeplitz matrices H̄f
t and H̄w

t

H̄? =


H? 0 . . . 0

HG? H? . . .
...

...
. . . . . . 0

HFL−2G? HFL−3G? . . . H?

 ,

see (Hendeby, 2005) for time-dependent expressions.

This section first shows how to structure the fault,
and then construct residuals suitable for detection
purposes.

2.1 Fault Model

Faults often manifest themselves in the measurements
in the same way as process noise does. This introduces
a difficulty because the effects of noise and faults are
indistinguishable at any given time. The difference
lies in the temporal behavior. Compared to noise,
faults have additional structure in how they affect the
system. By imposing this structure to the estimated
faults it is possible to separate between noise and fault.

The fault, ft, is split into two factors; direction and
magnitude. In this paper the fault direction is con-
tained in the matrices Gf

t and Hf
t . The remaining

magnitude is then expressed as a linear regression,

ft = ϕT
t θ. (7)

Written in stacked form the fault becomes

Ft =

ϕT
t−L+1θ

...
ϕT

t θ

 = ΦT
t θ, (8)

where Φt := (ϕt−L+1 . . . ϕt). Above, θ is a time-
invariant fault parameter of dimension nθ that is inde-
pendent of L, and Φt acts as a basis for the variation in
fault magnitude. The basis should be chosen carefully
to cover all faults to be detected, and at the same time



be kept as small as possible to improve detectability.
Typically, nθ � L to allow for efficient detection.
(The effect of the size of the basis is discussed in
Sec. 4.) Furthermore, with an orthonormal basis the
energy in the fault is preserved in the fault parameter,

‖Ft‖2 = ‖ΦT
t θ‖2 = ‖θ‖2.

One such suitable choice for the basis is discrete
Chebyshev polynomials, which describe orthogonal
polynomials of increasing degree (Abramowitz and
Stegun, 1965; Rivlin, 1974).

Example 1. (Incipient noise). Assume that a window
of L = 5 samples is studied and that the first three
discrete Chebyshev polynomials are used as basis,
nθ = 3, for faults in the window. The resulting basis
vectors and an example of an incipient fault is depicted
in Fig. 1. �

1 1.5 2 2.5 3 3.5 4 4.5 5
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Time [samples]

f t

 

 

θ=(1 0 0)T

θ=(0 1 0)T

θ=(0 0 1)T

θ=(0.67 0.69 0.25)T

Fig. 1. The three first Chebyshev polynomials and an
incipient fault described using them.

This paper adopts the convention that θ = 0 indicates
a fault free system. This simplifies the notation with-
out limiting the generality.

2.2 Residual Model

To generate the residuals needed for detection, first de-
fine H̄θ

t := H̄f
t ΦT

t , that is the effect of the structured
fault in (6). This section will now show how to obtain
residuals of the form (1), i.e., Rt = H̄θ

t θ + H̄v
t Vt,

where Vt contains all noise elements over the window,
and H̄v

t is a coloring of that noise. In the sequel, H̄θ
t

and H̄v
t are assumed thick and with full row rank,

and cov(Vt) � 0. For more details see (Hendeby and
Gustafsson, 2005; Hendeby, 2005).

State Space with Initial State Knowledge Given an
estimate of the initial conditions of a linear state-space
model, x̂t−L+1, the residuals are given by

Rt = Yt −OT
t−L+1x̂t

= H̄f
t ΦT

t︸ ︷︷ ︸
H̄θ

t

θ +
(
Ot Hw

t I
)︸ ︷︷ ︸

H̄v
t

x̃t−L+1

Wt

Et


︸ ︷︷ ︸

Vt

, (9)

where x̃t−L+1 := xt−L+1 − x̂t−L+1 is the error in
the estimate. The method used to estimate the state
determines which distribution the error has.

Parity-Space State-Space Formulation It is some-
times unfavorable to use information about the initial
state of a system. For instance, it may be impossible
to get reliable information about it. An alternative
is then to remove all influence on the measurements
from the initial state. This is referred to as working in
parity space (Basseville and Nikiforov, 1993). For (6)
this can be achieved by multiplying the measurements
with a suitable matrix, yielding the residuals

Rt = P⊥OYt

= P⊥O
(
Hw

t I
)︸ ︷︷ ︸

H̄v
t

(
Wt

Et

)
︸ ︷︷ ︸

Vt

+P⊥OH̄f
t ΦT

t︸ ︷︷ ︸
H̄θ

t

θ, (10)

where by construction P⊥OO = 0 and cov(Rt) � 0,
i.e., P⊥O

(
Hw I

)
has full row rank. Note that these

new residuals are completely independent of the initial
state and the noise associated with it.

3. INFORMATION AND ACCURACY

This section introduces Fisher information (FI), intrin-
sic accuracy (IA), and relative accuracy (RA) which
are important in the derivation of the fundamental
performance bounds discussed in Section 4.

3.1 Fisher Information

The Fisher information (FI) is a measure of how
much information is available about a parameter in a
distribution given samples from the distribution.

Definition 1. Fisher information (FI) is defined (Kay,
1993), under mild regularity conditions on the distri-
bution of ξ, for the parameter θ, as

Iξ(θ) := −Eξ

(
∆θ

θ log p(ξ|θ)
)

= Eξ

((
∇θ log p(ξ|θ)

)(
∇θ log p(ξ|θ)

)T
)

(11)

evaluated for the true parameter θ = θ0, with ∇
and ∆ defined to be the Jacobian and the Hessian,
respectively.

The FI is related to any unbiased estimate θ̂ of θ based
on measurements of ξ through

cov
(
θ̂(ξ)

)
� I−1

ξ (θ) = P CRLB
θ ,

where P CRLB
θ is the well known CRLB for the covari-

ance of the estimate θ̂ (Kay, 1993; Kailath et al., 2000)
and A � B denotes that A−B is a positive semidefi-
nite matrix.



3.2 Accuracy

When nothing else is explicitly stated, the informa-
tion is taken with respect to the mean, µ assumed to
be zero, of the distribution in question, and therefore
the notation Ie := Ie(µ), with e being a stochastic
variable, will be used. This quantity is in (Kay and
Sengupta, 1987; Kay, 1998; Cox and Hinkley, 1974)
referred to as the intrinsic accuracy (IA) of the proba-
bility density function (PDF) for e. It follows that

Ie = −Ee

(
∆µ

µ log pe(e−µ)
)

= −Ee

(
∆e

e log pe(e)
)
.

Theorem 1. For the intrinsic accuracy and covariance
of the stochastic variable e the semidefinite inequality

cov(e) � I−1
e ,

holds with equality if and only if e is Gaussian.

Proof: See (Sengupta and Kay, 1989). �

In this variance sense the Gaussian distribution is a
worst case distribution. Of all distributions with the
same covariance the Gaussian is the one with the least
information about its mean. All other distributions
have larger IA.

To be able to easily talk about the increase in accuracy,
relative accuracy (RA) is introduced in the following
way:

Definition 2. Denote with relative accuracy (RA), the
positive scalar Ψe such that cov(e) = Ψe I−1

e , when
such a scalar exists.

It follows from Theorem 1 that, when RA is defined,
Ψe ≥ 1, with equality if and only if e is Gaussian. The
RA is hence a relative measure of how much useful
information there is in a distribution, compared to a
Gaussian distribution with the same covariance.

Example 2. (Outlier distribution). Outliers in measure-
ments can be described using a Gaussian sum,

e ∼ (1− ω)N (0,Σ) + ωN (0, kΣ), (12)

where 0 < ω < 1 denotes how likely outliers are,
k tells how much worse variance the outliers have,
and Σ is the nominal measurement variance. The RA
of e in (12) varies with ω and k, as depicted in
Fig. 2. Note, given the right conditions a good outlier
description may be much more informative than a
Gaussian second order equivalent with the same mean
and variance. �

4. GENERALIZED LIKELIHOOD RATIO BASED
DETECTION

One method commonly used for detection purposes
is the generalized likelihood ratio (GLR) test. Given
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Fig. 2. Inverse relative accuracy, Ψ−1
e for (12). (× de-

notes the noise used in Sec. 5.)

the PDF of the residuals conditioned on θ, p(Rt|θ), the
GLR test statistic is (t has been dropped for notational
clarity)

LG(R) =
supθ|H1

p(R|θ)
supθ|H0

p(R|θ)
=

p(R|θ̂1)

p(R|θ̂0)
, (13)

where θ̂0 and θ̂1 are the ML estimates of θ under H0

and H1, respectively.

Using the GLR test statistic with a threshold test

LG(R)
H1

≷
H0

γ (14)

is then to decide if the alternative hypothesis is suf-
ficiently more likely (defined by γ) than the null hy-
pothesis.

This section describes the statistical properties of the
GLR test and based on this conclusions are drawn
about how different noises affect the detection perfor-
mance.

4.1 Asymptotic GLR Test Statistics

The GLR test is known to be a uniformly most pow-
erful (UMP) test among all invariant tests, see The-
orem 2. However, there are no general results about
non-asymptotic properties of the GLR test, but it is
known to be optimal in special cases (Basseville and
Nikiforov, 1993), and it is known that optimal tests do
not exist in certain cases (Lehmann, 1986).

Theorem 2. The GLR test is asymptotically UMP, i.e.,
most powerful for all θ under H1, amongst all tests
that are invariant. Furthermore, the asymptotic statis-
tics are given by

L′G(R) a∼

{
χ2

nθ
, under H0

χ′2nθ
(λ), under H1

, (15a)

where L′G(R) := 2 log LG(R) and

λ = (θ1 − θ0)T I(θ = θ0)(θ1 − θ0). (15b)

The dimension of I(θ = θ0) is nθ×nθ, and θ0 and θ1

are the true values of θ underH0 andH1, respectively.



Proof: See (Kay, 1998, Ch. 6). �

The important non-centrality parameter (15b) is for
the class of systems studied in this paper (1)

λ = θT
1 HθT

t (Hv
t I

−1
V HvT

t )−1Hθ
t θ1, (16)

when θ0 = 0 (Hendeby and Gustafsson, 2005).

Other tests that possess the same favorable asymp-
totic properties are the Wald test and the Rao test
(Kay, 1998). The asymptotic performance stipulated
by the theorem constitutes an upper bound for what
can be achieved with a detector given finite informa-
tion. According to (Kay, 1998), the performance of a
GLR test is often close to asymptotic performance for
relatively modest sizes of data.

4.2 Asymptotic Detection Performance

If the asymptotic GLR test described in Sec. 4.1 is
used the probability of false alarm, PFA, and the prob-
ability of detection, PD, can be derived analytically.
These values then constitute an upper bound on the
performance obtainable for the system, due to the UMP
property of the GLR test.

The PFA for a given γ′ is

PFA = Pr(decide H1|H0) = Qχ2
nθ

(γ′), (17)

where Q? denotes the complementary cumulative
density function of the distribution ?. Note, PFA de-
pends only on the choice of threshold γ′ and the fault
parameter dimension nθ, hence changing the noise
distributions will only affect the probability of detec-
tion

PD = Qχ′2
nθ

(λ)(γ′), (18)

where λ is defined by (16). The function Qχ′2
nθ

(λ)(γ′)
is monotonously increasing in λ (increasing the mean
under the alternative hypothesis lessens the risk that
a detection is missed), hence any increase in λ im-
proves PD. It follows directly from (16) that it is easier
to detect a larger fault.

More importantly, if IV increases, PD increases as
well. Now, since any increase in RA increases λ, and
since ΨV > 1 for non-Gaussian noise it follows that
any non-Gaussian noise improves PD compared to
the same system with Gaussian noise. That is, if the
noise is non-Gaussian this could significantly improve
the ability to detect a fault if the noise is treated
appropriately.

The dimension of the fault parameter is another im-
portant factor. With decreasing nθ the variance of L′G
decreases, making it easier to tell the null and alter-
native hypothesis apart. Hence, the number of fault
parameters should be kept as low as possible to not
loose too much detection power.

5. SIMULATION STUDY

To illustrate the theory, consider a DC motor given by
the state space description

xt+1 =
(

1 1− e−T

0 e−T

)
xt

+
(

T − (1− e−T )
1− e−T

)
(wt + ft) (19a)

yt =
(
1 0

)
xt + et, (19b)

with wt and et mutually independent noise. Assume
that the fault ft is affine in its behavior. For the sim-
ulations in this paper: T = 0.4, wt ∼ N

(
0, ( π

180 )2
)
,

and et ∼ 0.9N
(
0, ( π

180 )2) + 0.1N
(
0, ( 10π

180 )2), i.e., et

has 10% outliers with 100 times larger variance. The
measurement noise is then characterized by var(et) =
0.0083, Ie = 11000, and Ψe = 9.0. Detection is
performed in parity space, (10), on a window of L = 6
samples, a Chebyshev base is used to capture faults
with affine magnitude profile, nθ = 2, and the follow-
ing fault is simulated:

ft =


0, t ≤ 20T

(t− 20T )/(100T ), 20T < t ≤ 30T

1/10, 30T < t.

(20)

With this setup the performance gain to expect by
utilizing all available data for detection instead of
assuming Gaussian noise is indicated in Fig. 3. The
plot shows a clear potential gain from utilizing the
correct noise distribution. Note that for this setup the
impact of non-Gaussian process noise is only minor.
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Fig. 3. Normalized PD given PFA = 5% for f1 =
0.1, i.e., θ = (

√
6/10, 0)T . 1 corresponds to

PD = 27%. (× denotes the noise used in the
simulations.)

Simulating the system, using a numeric ML estimate
of θ in GLR tests based on the true noise distribution
and also on an approximative Gaussian second order
equivalent noise distribution, yields the ROC diagram
in Fig. 4. PFA and PD have been derived from the first
and last part of the fault sequence, i.e., θ = (0, 0)T

and θ = (
√

6/10, 0), respectively. The detection gain
obtained using the true noise characteristics is im-
pressive, especially for PFA � 1. It should at the
same time be pointed out that it would probably be



possible to obtain a better detector performance under
the Gaussian noise approximation with modifications
to the detector. However, the bound given under the
approximative Gaussian assumption provides an indi-
cation of the potential performance gain.
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Fig. 4. ROC plot based on 1 000 MC simulations for
ft = 0.1, i.e., θ = (

√
6/10, 0)T .

Furthermore, the detection rate in each time instance
of the simulation is presented in Fig. 5. Note how
the fault is hardly detected at all with the Gaussian
noise assumption whereas PD ≈ 80% when using all
available information.
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Fig. 5. Detection performance for a time series, when
designed for PFA = 5%. The simulated fault
included for reference. Note that different thresh-
olds are used in the two detectors to obtain the
same PFA.

6. CONCLUSION

In this paper detection performance is studied for lin-
ear non-Gaussian state-space systems, for which it
is shown how to construct linear residuals. It is fur-
thermore shown how using a structured fault repre-
sentation and handling non-Gaussian noise correctly
may improve detection performance. Bounds for the
detectability performance are provided in terms of in-
trinsic accuracy (IA) and the dimension of the fault
basis used. This way optimal detection performance
is related to the characteristics of the noise involved.
Monte Carlo simulations, which come close to the
predicted performance gain, are provided to support
the theory.
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