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Abstract: The Kalman filter is known to be the optimal linear filter for linear non-
Gaussian systems. However, nonlinear filters such as Kalman filter banks and more recent
numerical methods such as the particle filter are sometimes superior in performance. Here
a procedure to a priori decide how much can be gained using nonlinear filters, without
having to resort to Monte Carlo simulations, is outlined. The procedure is derived in
terms of the posterior Cramér-Rao lower bound. Results are shown for a class of standard
distributions and models in practice. Copyright © 2005 IFAC
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1. INTRODUCTION

Consider a linear non-Gaussian system with state vec-
tor xt, process noise wt, and measurement noise et,
both noises white and mutually independent:

xt+1 = Ftxt + Gtwt, wt ∼ pw(·),
yt = Hxt + et, et ∼ pe(·).

The Kalman filter (KF) (Kalman, 1960; Kailath et al.,
2000) minimizes the covariance matrix among all lin-
ear filters. The resulting covariance matrix Pt+1|t =
cov(x̂t+1|t) is given by a Riccati equation, which
obeys a functional recursion:

P KF
t+1|t = κ(P KF

t|t−1, Ft, Gt,Ht, Qt, Rt). (1)

There might, however, exist nonlinear filters that
perform better. For instance, in target tracking, the
state noise models pilot maneuvers, and the interac-
tive multiple model (IMM) algorithm (Blom and Bar-
Shalom, 1988) has become a standard tool in this
context. Other examples include a multi-modal mea-
surement noise distribution for radar sensors used in
for instance (Bergman et al., 1999), in which case
the particle filter (PF) (Gordon et al., 1993; Doucet
et al., 2001) has proven to yield good performance.

Using results in (Bergman, 2001), it will in Sec. 3
be shown that the posterior Cramér-Rao lower bound
(CRLB) obeys the same functional form as the KF
Riccati equation

P CRLB
t+1|t = κ

(
P CRLB

t|t−1, Ft, Gt,Ht, I−1
wt

, I−1
et

)
, (2)

where Iwt
and Iet

denote the intrinsic accuracy (IA)
(Sec. 2.1) of the noises wt and et, respectively.

It will also be shown that the Gaussian distribution
acts as a worst case distribution, in that P CRLB

t+1|t �
P KF

t+1|t with equality if and only if both process and
measurement noise are Gaussian. For all other cases, a
nonlinear filter might perform better, depending on the
implementation. For instance, the PF with sufficiently
many particles will always, in theory, compute the true
posterior state distribution.

Formulas are, in this paper, derived to decide how
much better performance can be hoped for by resort-
ing to nonlinear filtering instead of linear filtering. If
the gain is very small, it is hard to motivate using any-
thing but the KF. In other cases, the noise distributions
may provide much more information than a Gaussian
second order equivalent does, and the performance can
be improved considerably. The results can also be used



in practice for tuning, since when the achieved filter
performance has reached, or come close to, the CRLB
further tuning is useless.

Though more general results for the CRLB exist
(Tichavský et al., 1998; Bergman, 1999) for nonlin-
ear non-Gaussian systems, studying the linear non-
Gaussian case simplifies the CRLB expression to
something that is easy to comprehend and use in prac-
tice. Furthermore, it allows for direct comparison with
the best linear unbiased estimator (BLUE) — the KF.

The paper will first discuss information and accuracy
before determining the CRLB for linear systems. Sim-
ulations then exemplify the presented theory. Finally
conclusions are drawn.

2. INFORMATION AND ACCURACY

This section defines Fisher information (FI), intrin-
sic accuracy (IA), and relative accuracy (RA). Then
results regarding distributions of different kinds are
presented.

2.1 Fisher Information and Intrinsic Accuracy

The Fisher information (FI) is defined (Kay, 1993),
under mild regularity conditions on the probability
density distribution (PDF) of ξ, as

Iξ(θ) := −Eξ

(
∆θ

θ log p(ξ|θ)
)

(3)

evaluated for the true value of θ, where ∆ denotes the
Hessian. The FI is closely tied to the CRLB through the
relation (Kay, 1993)

cov(θ̂) � P CRLB
θ = I−1

ξ (θ), (4)

where A � 0 denote that A is a positive semidefinite
matrix. When nothing else is explicitly stated in this
paper, the information is taken to be with respect
to the mean of the distribution in question assumed
to be 0, i.e., θ = E(ξ) = µ = 0. The notation
Iξ = Iξ(µ) will be used. This quantity is in (Kay and
Sengupta, 1987; Kay, 1998; Cox and Hinkley, 1974)
referred to as the intrinsic accuracy (IA) of the PDF
for ξ.

2.2 Relative Accuracy

Define relative accuracy (RA) as the scalar con-
stant Ψξ that fulfills

cov(ξ) = Ψξ I−1
ξ , (5)

when such a scalar exists.

The RA is thus a relation between IA and covariance.
RA can be interpreted as a measure of how much
more informative the distribution of ξ is compared to a
Gaussian distribution with the same covariance. It can
be shown (Kay and Sengupta, 1987) that Ψξ ≥ 1, with
equality if and only if ξ is Gaussian.

2.3 Gaussian Mixture Distribution

A class of suitable distributions for analysis is Gaus-
sian mixtures. Gaussian mixtures can be used to ap-
proximate any distribution (Sorenson and Alspach,
1971; Anderson and Moore, 1979) and numerical
methods apply well. This section will define Gaussian
mixtures and study the accuracy concept using special
cases.

Gaussian mixture distributions, with nδ modes de-
noted δ, can be parameterized using the parameters
ωδ > 0, µδ , and Rδ � 0, representing the probability,
the mean, and the variance, respectively, of the differ-
ent modes, as

p(ξ) =
∑

δ

ωδN (ξ;µδ, Rδ), (6)

with
∑

δ ωδ = 1.

There exist in general no closed expressions for IA
or RA for multi-Gaussian distributions. They can nev-
ertheless be computed using Monte Carlo integration
(Robert and Casella, 1999).

Other statistical properties of multi-Gaussian distribu-
tions are mean, µ, covariance, R, skewness, γ1, and
kurtosis, γ2,

µ =
∑

δ

ωδµδ (7a)

R =
∑

δ

ωδ(Rδ + µ̄δ) (7b)

γ1 =
∑

δ

ωδµ̄(3Rδ + µ̄2
δ) R− 3

2 (7c)

γ2 =
∑

δ

ωδ(3R2
δ + 6µ̄2

δRδ + µ̄4
δ) R−2 − 3, (7d)

where µ̄δ = µδ − µ. Compare this to Gaussian
distributions where γ1 = γ2 = 0.

Bi-Gaussian Noise: One type of Gaussian mixtures
that occurs naturally is bi-Gaussian noise, that can
be observed in e.g., radar applications (Bergman et
al., 1999; Bergman, 1999; Dahlgren, 1998) or as a
description of outliers (Gustafsson, 2000).

Bi-Gaussian distributions (nδ = 2) will be illustrated
using a zero mean unit variance subset of them, (cf.
N (0, 1)) where µ and R are parameters of a domi-
nating Gaussian contribution (ωδ = 9

10 is used in the
sequel). These distributions can be expressed as

p(e) = 9
10N (e; µ,R)

+ 1
10N (e; 9µ, 10− 90µ2 − 9R),

(8)

for 10− 90µ2 − 9R > 0.

The RA of the distributions in (8) is presented in
Fig. 1. Since Ψ−1

e = Ie for R = 1, Ψ−1
e tells how

good a parameter in noise can be estimated using all
information in a specific noise distribution. If R 6= 1
then Ψe is a relative comparison to Gaussian noise, or
a linear estimator, instead. Areas with high RA provide



better conditions for accurate estimation than areas
with lower RA.
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Fig. 1. RA, Ψ−1
e , for the bi-Gaussian in (8). (Level

curves: [0.99, 0.98, 0.97, 0.95, 0.92, 0.87, 0.78,
0.64, 0.40, 0]. × marks µ = 0.2, R = 0.3, and
Ψe = 2.7 = 0.37−1.)

The parameter pair µ = 0.2 and R = 0.3 (see Fig. 2)
yields Ψe = 2.7, γ1 = −5.1, and γ2 = 9.7, mainly
due to its one heavy tail.
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Fig. 2. Bi-Gaussian PDF (8) (µ = 0.2 and R = 0.3)
with Ψe = 2.7 and Gaussian approximation
(dashed).

Tri-Gaussian Noise: Tri-Gaussian noise (nδ =
3) will be discussed using a symmetric zero mean
unit variance subset of tri-Gaussian distributions (cf.
N (0, 1)) and can be obtained by letting ω determine
the weight of the center mode, µ be a spread param-
eter, and enforcing the same variance on all modes.
This parameterization yields

p(w) = 1−ω
2 N

(
w;−µ, 1− µ2(1− ω)

)
+ωN

(
w; 0, 1− µ2(1− ω)

)
+ 1−ω

2 N
(
w; +µ, 1− µ2(1− ω)

)
,

(9)

for 1− µ2(1− ω) > 0.

This type of distributions can be used to model multi-
ple model systems. For instance, suppose w is process
noise in a motion model, then the different modes rep-
resent a change in speed or acceleration with approxi-
mately the same probability as the matching mode.

Fig. 3 shows the RA of (9) using ω and µ as pa-
rameters. With this parameterization the RA increases
quickly as the modes are separated by increasing µ,
this because the mode variances must decrease in
order to achieve unit variance. At the border of the
allowed parameter region the modes turn into point
distributions explaining the infinite IA there.
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Fig. 3. RA, Ψ−1
w , for the tri-Gaussian (9). (Level

curves: [0.99, 0.98, 0.97, 0.95, 0.92, 0.87, 0.78,
0.64, 0.40, 0]. ◦ denotes µ = 2.5, ω = 0.58, and
Ψw = 15.5 = 0.065−1.)

The parameter values ω = 0.85 and µ = 2.5 result
in the PDF in Fig. 4. This tri-Gaussian is distinctly tri-
modal yielding Ψw = 15.5, γ1 = 0, and γ2 = 3.4.
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Fig. 4. Tri-Gaussian PDF (9) (ω = 0.85 and µ = 2.5)
with Ψw = 15.5 and Gaussian approximation
(dashed).

3. PREDICTION LIMITATIONS

This section first presents a general expression for
the posterior Cramér-Rao lower bound (CRLB) for
dynamic systems and derives expressions for linear
systems which are then discussed further.

3.1 General System

Consider a general system described by{
xt+1 = f(xt, wt)

yt = h(xt, et)
←→

{
p(xt+1|xt)

p(yt|xt)
. (10)



The CRLB for this system, P CRLB
t|t−1 = Pt|t−1, is given

in (Bergman, 1999, Theorem 4.5) by the recursion

P−1
t+1|t = Q̃t − S̃T

t (P−1
t|t−1 + R̃t + Ṽt)−1S̃t, (11)

where

Q̃t = E
(
−∆xt+1

xt+1
log p(xt+1|xt)

)
,

R̃t = E
(
−∆xt

xt
log p(yt|xt)

)
,

S̃t = E
(
−∆xt+1

xt
log p(xt+1|xt)

)
,

Ṽt = E
(
−∆xt

xt
log p(xt+1|xt)

)
and the iteration is initiated with

P−1
0 = E

(
−∆x0

x0
log p(x0)

)
.

The quantities Ṽt, R̃t, S̃t, Q̃t, and P−1
0 are all closely

related to the IA of different aspects of the system.

3.2 Linear System

For a linear system,

xt+1 = Ftxt + wt, cov wt = Qt (12a)
yt = Hxt + et, cov et = Rt, (12b)

the quantities in (11) are (Bergman, 1999)

Q̃t = Iwt
, R̃t = HT

t Iet Ht,

S̃t = −FT
t Iwt , Ṽt = FT

t Iwt Ft.

Using these relations the equivalent to (11) is

P−1
t+1|t = Iwt −Iwt Ft

(
P−1

t|t−1+

+ HT
t Iet Ht + FT

t Iwt Ft

)−1
FT

t Iwt . (13)

By inverting this expression (using the matrix inver-
sion lemma 1 repeatedly) the standard Riccati equa-
tion appears,

Pt+1|t = FT
t (P−1

t|t−1 + Ht I−1
et

HT
t )−1Ft + I−1

wt

= FT
t Pt|t−1Ft − FT

t Pt|t−1Ht

· (HT
t Pt|t−1Ht + I−1

et
)−1

·HT
t Pt|t−1Ft + I−1

wt
. (14)

If Iwt is singular this can be handled by using
Gt I−1

w̄t
GT

t instead of I−1
wt

, where Gt and w̄t are such
that wt = Gtw̄t and Iw̄t is non-singular (Bergman,
1999).

Note that (14) is the standard Riccati equation for the
KF with I−1

wt
= Qt and I−1

et
= Rt.

Stationary Properties: In stationary state (t→∞),

P̄ := Pt|t−1 = Pt+1|t = κ̄
(
I−1

wt
, I−1

et

)
,

the following simple rules hold for κ̄ (the system is
here kept out of the notation for clarity).

1 (A+BCD)−1 = A−1−A−1B(C−1 +DA−1B)−1DA−1

given that A−1 and C−1 are well defined. (Kailath, 1980)

Theorem 1. For matrices Q � 0 and R � 0, and
scalar γ > 0 the following hold.

(i) κ̄(γQ, γR) = γκ̄(Q,R)
(ii) κ̄(Q, γR) = γκ̄( 1

γ Q,R)
(iii) κ̄(γQ,R) = γκ̄(Q, 1

γ R)
(iv) Q̃ � Q and R̃ � R ⇒ κ̄(Q̃, R̃) � κ̄(Q,R) with

equality if and only if Q̃ = Q and R̃ = R.

The properties of Theorem 1 hold for individual iter-
ations, Pt+1|t = κ(Pt|t−1, Q,R), as well. This moti-
vates the statement P CRLB

t+1|t � P KF
t+1|t for (2) and (1).

Proof: The properties (i)–(iii) are equivalent (rewrite (ii)
in terms of Q̄ = 1

γ Q, and use R̄ = 1
γ R in (iii)) so it

suffices to show (i).

If P̄ is a solution to (13), then P = γP̄ solves

P−1 = 1
γ Q−1 − 1

γ Q−1FT (P−1

+ H 1
γ R−1HT + F 1

γ Q−1FT )−1F 1
γ Q−1,

and hence κ̄(γQ, γR) = γκ̄(Q,R).

Property (iv) can be shown with induction on the
KF recursion (Hendeby and Gustafsson, 2005). An
intuitive explanation is that the KF always improves
when either of the covariances decreases, i.e., Q̃ ≺ Q
or R̃ ≺ R, and that (13) is the same Riccati equation
as in the KF with just a different interpretation of the
included matrices. �

For an interpretation of Theorem 1, assume that Q
and R are covariances of process and measurement
noises, respectively, and view γ ≤ 1 as inverse RA,
then the theorem provides rules to derive optimal
prediction performance. For instance, (i) shows that
optimal performance is linear in Ψ−1 if all noise share
the same RA, and (iv) shows that any non-Gaussian
noise improve the optimal performance. Even more
general interpretations can be obtained by letting Q
and R represent inverse IA.

4. SIMULATIONS

In this section the theory presented above will be
illustrated using simulations.

4.1 System

The following system will be used in the simulations,

xt+1 =
(

1 T
0 1

)
xt +

(
T 2

2
T

)
wt, cov wt = Q (15a)

yt =
(
1 0

)
xt + et, cov et = R (15b)

with wt and et mutually independent white noises
with Q = R = 1 and T = 1. The system represents
a second order random walk with x = (x, v)T where



x and v represent position and velocity, respectively.
The system can also viewed as a double integrator. The
best stationary estimate of x (the observed state) using
a linear filter (KF) is var(x̂t+1|t) = κ̄x(1, 1) = 3.0.

Since both wt and et are scalar it is possible to il-
lustrate how the optimal performance varies as the
IA of the noises changes. In Fig. 5 the prediction
performance κ̄x(Ψ−1

wt
,Ψ−1

et
)/κ̄x(1, 1) is presented as a

function of the RA involved. Hence, Fig. 5 is in much
similar to Fig. 1 and Fig. 3 in that it shows the optimal
prediction performance expressed in parameters. Us-
ing the figure it is possible to see if it is worthwhile to
try a nonlinear filter and try to reach the lower bound
or not. For instance, in the the lower left corner the
CRLB is much better than what is achieved with a
BLUE since there are both the noises as informative
they can be. Generally, if the CRLB is much lower
than the BLUE performance a nonlinear filter should
be considered. However, observe that it is impossible
to conclude from these results how to obtain optimal
performance, how difficult it is, or even if it is possible
at all.
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Fig. 5. Optimal filter performance, as a function of
Ψwt and Ψet , κ̄x(Ψ−1

wt
,Ψ−1

et
)/κ̄x(1, 1) . (× de-

notes the noise in the first simulation and ◦ the
noise in the second simulation.)

4.2 Bi-Gaussian Measurement Noise

The first simulation features the non-Gaussian mea-
surement noise

et ∼ 9
10N (0.2, 0.3) + 1

10N (−1.8, 3.7),

see Sec. 2.3. From Fig. 5, or by solving the appro-
priate Riccati equation (14), the CRLB for this sys-
tem with this measurement noise can be found to be
κ̄x(1, 0.37) = 1.8, i.e., the optimal variance is 60%
of what is obtainable with a BLUE, κ̄x(1, 1) = 3.0.
Hence, this seems to be a candidate for a nonlinear
filter.

The system was analyzed in a simulation study, where
a KF and a PF (50 000 particles 2 ) were applied. The
mean square error (MSE) of these estimates were then
computed for 1 000 Monte Carlo (MC) simulations.
The MSE together with theoretical stationary limits are
plotted in Fig. 7, which shows a significant improve-
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Fig. 6. MSE of 1 000 MC simulations with KF and PF
(50 000 particles) on the system with bi-Gaussian
measurement noise. Theoretical limits are in-
cluded for reference.

ment when using the PF (approximately 18% lower
variance), but the CRLB is not reached. A reason is
that the CRLB expression is asymptotic in the mea-
surements, which leaves no guarantee that it could be
reached in practice. More measurement information
compared to process noise would probably improve
the results, i.e., more and better measurements. This
could in practice be achieved with e.g., more frequent
measurements or a better sensor.

4.3 Tri-Gaussian Process Noise

This time, the measurements are kept Gaussian,
whereas the system is driven by the tri-modal noise
in Sec. 2.3,

wt ∼ 0.075N (−2.5, 0.065)
+ 0.85N (0, 0.065) + 0.075N (+2.5, 0.065).

The Gaussian approximation is the same as before,
with κ̄x(1, 1) = 3.0. However, the CRLB for the
system is different, κ̄x(0.065, 1) = 1.77 (consult
Fig. 5 or solve (14)).

Simulating this system and applying a KF and a PF
(50 000 particles) yields for 1 000 MC simulations the
result in Fig. 7. Here the PF is not significantly better
than the KF (mean over time shows a 3% improvement
for the PF). The same argumentation as for the previ-
ous simulation apply.

2 The number of particles in the PF is large, intentionally through-
out this paper, to get the most from the filter still without having
to worry about numerical issues. Fewer particles could be sufficient
but this has not been analyzed.
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Fig. 7. MSE for x of 1 000 MC simulations with KF
and PF (50 000 particles) on the system with tri-
Gaussian process noise. Theoretical limits are
included for reference.

This case is also complicated by the fact that the non-
Gaussian noise is only measured indirectly. As a result
it is harder to extract all available information, espe-
cially for prediction since there is no measurement
available to give information about the latest process
noise affecting the system.

5. CONCLUSIONS

In this paper, starting from general posterior Cramér-
Rao lower bound (CRLB) expressions, an expression
for the CRLB in linear systems is derived in terms
of intrinsic accuracy (IA) or relative accuracy (RA)
and covariance of the included noises. This results in
a method to, given a system and its IA or RA, cal-
culate the CRLB by solving a few Riccati equations.
The CRLB can then e.g., be used to decide if it is
worthwhile to try nonlinear filtering or decide when
no further tuning is needed, all this without resort-
ing to time consuming MC simulations. Simulations,
presented to support the theoretical results, indicate
improved performance using a particle filter on linear
systems with non-Gaussian noise, but do also point out
that it is sometimes difficult to reach the CRLB.
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