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ABSTRACT

The idea of a virtual sensor is to extract information
of parameters that cannot be measured directly, or at
least would require very costly sensors, by only using
available information. Virtual sensors are described
for the friction between road and tire, the tire inflation
pressure and wheel imbalance. There are certain in-
terconnections between these virtual sensors so they
are preferably implemented in one unit. Results from
a real-time implementation, using mainly sensor in-
formation from the CAN bus, are given.

1 INTRODUCTION

By a virtual sensor we mean an algorithm that com-
putes a value of a variable which is not measured di-
rectly. The reason might be that the variable is not
possible to measure, or that a dedicated sensor would
be very costly. Instead, statistical inference is made
from a model that explains how other (existing) sen-
sor signals depend on the unmeasured variable.

The problems of road tire friction, tire pressure
and wheel imbalance might seem far apart. How-
ever, the virtual sensors described here use exactly
the same sensor signal, namely the wheel speed sen-
sors. These can be taken from the CAN bus, except
for the vibration analysis to be described. The tools
are also partly the same: a Kalman filter estimates
the parameters in a simple model, where the model
is not intended to describe very complicated physi-
cal phenomena, but rather an instrument to describe

what can be observed. Another coupling is that one
of the parameters in the friction model, contains very
useful information about the tire pressure, so the out-
line is that friction estimation is described first, then
different approaches to tire pressure estimation are
compared. Tire imbalance detection is a direct spin-
off of a certain approach to tire pressure indication,
and is only briefly commented upon there.

NIRA Dynamics AB is together with Link¨oping
University, developing adaptive filters for automotive
applications. As one project, real-time hardware has
been developed containing algorithms for friction es-
timation and tire pressure estimation. The aim of
this contribution is to present the results and ideas
of these algorithms.

2 FRICTION ESTIMATION

The road friction indication (RFI) project is a direct
application of previous work reported in Gustafsson
(1997) and Gustafsson (1998). As briefly outlined in
Figure 1, the longitudinal wheel slip and the wheel
torque are computed from standard sensor signals.
Then a Kalman filter estimates a linear relation be-
tween these, and the slope of the line is mapped to a
surface in a classifier.

The mathematical model is now briefly outlined.
The classical tire model as described in for instance
Gillespie (1992), Adler (1993) and Wong (1993), de-
fines a slip curve as the one shown in Figure 1. The
wheel slip is usually defined as the relative speed of
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Figure 1: Overview of the RFI algorithm. 1.Sensors:The individual wheel speedsωit and engine torque
indicatorMt (injection time or manifold pressure) are taken from the CAN bus. 2.Pre-computations:From
these, normalized traction forceµt and wheel slipst are computed. 3.Filter: A Kalman filter adapts a linear
relationship bewteen these (the plot shows measurements from two different surfaces and an estimated straight
line). 4. Classification:The slope of the linear relationship is matched to a slip curve (the plot shows three
examples on different friction levels). 5.MMI: The driver is alerted for low friction by a warning signal.

a tire compared to its circumferential speed:

s =
ωr

vx
− 1.

For small values of the normalized traction forceµ =
Fx/Fz (sometimes called friction utilization coeffi-
cient), the wheel slip is a linear functionµ = ks
which dependsonly on tire characteristics. The new
finding is that it also depends on friction. A state
space model for the left side of the vehicle uses the
state vectorxt = (1/kl, δ13) = (inverse longitudi-
nal stiffness, relative difference in tire radius between
front and rear wheel):

xt+1 = xt + vt

st = (µl,t, 1)xt + et.

An independent and analogous model is used on the
right side of the vehicle. That is, the model says that
the measured wheel slip is a linear function of the
normalized traction forceµ plus an offset and addi-
tive noise. The offset is mainly caused by unequal
tire radius on front and rear wheels. The Kalman fil-
ter applied directly on the state space model, and a
careful tuning gives a decent trade-off between noise

attenuation and tracking speed after abrupt changes.
It is here useful to give the two parameters in the
state vector unequal adaptation gain, such that fric-
tion changes can be tracked faster than a change in
δ13. Since it is of utmost importance to distinguish
very small differences in slip slopek, the filter has
to be rather slow. For that reason, a change detection
mechanism is needed to speed up the response after a
detected friction change. The change detector is also
coupled to the driver information unit. The theory
of combining Kalman filtering and change detection,
with the particular case study of RFI, is described in
detail in Gustafsson (2000).

Figure 2 shows a test drive with the current proto-
type. The estimated slip slope is significantly smaller
on the skid pad, and the Kalman filter with change
detector react quickly. The response time is about 2
seconds, which would be enough for driver alert and
control systems as adaptive cruise control.

Improvements in the current project, over previ-
ously reported work, include:

• A calibration procedure(what is the normal
slope on asphalt for the used tires?) This was in
Gustafsson (1997) and Gustafsson (1998) rec-
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Figure 2: Estimated slip slope while repeatedly driv-
ing on and off a skid pad. Mean delay for detection
is 2.2 seconds.

ognized as the main problem to be overcome.

• Another Kalman filter using thelateral slip(the
lateral forces are for many drivers larger than
the longitudinal ones).

• Slip computation using absolute velocity esti-
mation (reported in an accompanying paper)
enabling4WD vehiclesto have RFI.

• Aqua planing detectioninterpreting excessive
slip in the friction model as aqua planing. Com-
pared to a direct apprach based on thresholding
the slip value directly, we are here able to have
a much more sensitive system which compen-
sates for the offset and dynamic effects during
acceleration.

We will here, however, focus on RFI as one tool for
designing a good tire pressure estimation system. It
turns out that the offsetδ13 has certain nice properties
for this application.

3 INTRODUCTION TO TIRE PRESSURE IN-
DICATION

There are plenty of on-going R&D projects on tire
pressure indication (TPI), reflected in more than 40
patents. The most relevant for this study are EP700798
(1996), Takeyasu (1997), Yoshihiro (1998), Hideki
(1999), Toshiharu (1999) and Fritz (2000). There are

two classes of patents using standard sensors (wheel
speeds):

• Vibration analysis using the fact that the rubber
in the tire reacts like a spring when excited by
road roughness. Characteristic features are a
high sampling frequency on wheel speed, and
disturbance rejection from vibration caused by
other moving parts in the vehicle. The vibra-
tion analysis can be performed by FFT-based
methods or by parametric methods (using an
auto-regressive model).

• Wheel radius estimation and comparison. The
most common suggestion is to monitor a resid-
ual based on a static non-linear transformation
of wheel speeds which should be close to zero
when the tires are equally large. This residual
is then averaged and compared to a decision
threshold.

In both approaches a calibration button is often sug-
gested, which must be pressed when one or more tires
are changed, or when the pressure is adjusted. When
pressed, the algorithm computes what the nominal
value of the resonance frequency or residual is.

This paper describes the result of two improve-
ments suggested in Persson and Drev¨o (1999) and
Gustafssonet al. (2000) and now tested in practice:

• Improving the vibration analysis with refined
disturbance rejection and signal processing for
estimation of auto-regressive parameters. The
gain of the patent pending idea is to run the
filter at a low sampling frequency (20 Hz), and
achieve twice as accurate result using a Kalman
filter.

• As suggested in Gustafsson (1997) and investi-
gated in Jonsson (1993), the so called slip off-
set from the RFI Kalman filter is a good in-
dicator of relative wheel radius. It is a linear
function of data, and is thus not as sensitive to
noise as other suggestions. The slip offset es-
timates the relative difference between left and
right wheel pairs. As a complement and further
support, the relative difference between front
and rear wheel pairs is computed by the yaw
rate filter described in an accompanying paper,



which further has the potential to compute ab-
solute wheel radius.

4 VIBRATION ANALYSIS FOR TIRE PRES-
SURE INDICATION

The basic idea is that the tire can be seen as a number
of connected spring-damper systems. For instance
the tire rim is one and the tire pattern another. The
most distinguished vibration mode is between 40 and
50 Hertz, depending on the tire model and pressure,
but there are other modes of both higher and lower
frequencies. The idea is to monitor the vibration fre-
quency, to decide what the normal value is, either by
learning or voting between the different tires, and to
detect abnormal values.

Calibration of toothed wheel

Before vibration analysis is applied, no matter if its
model-based or FFT-based, the speed measurements
have to be filtered. The reason is that the toothed
wheel, see Figure 3, is not perfect, and the angular
errors from manufacturing and aging, will show up
in the frequency content of the speed signal.

Figure 3: Schematic picture of a toothed wheel with
non-equal tooth sizes.

Figure 4 shows that the interesting information
is hardly visible because of the disturbance from the
toothed wheel. Here the disturbance looks narrow-
banded and well-behaved, but in a drive where ve-

locity is changed the energy leaks out to other fre-
quencies.

Figure 4: Spectrum of un-processed wheel speed
data, where the peaks come from imperfections in the
toothed wheel. When velocity is varied, the peaks are
blurred out by leakage effects, and the information in
the interesting frequency interval is damaged.

A model-based approach to estimate the offsetsδi
in Figure 3 has been implemented, where the recur-
sive least squares algorithm is used. The result is an
explicit estimate of each individual tooth, see Figure
6, and a speed signal with much improved signal to
noise ratio. The spectrum of the compensated speed
signal clearly shows a vibration mode around 45 Hz,
see Figure 5.

Figure 5: Spectrum of processed wheel speed data.
Now the resonance frequency around 45 Hertz is
clear. Other resonances can also be distinguished.



The tooth offsets in Figure 6 can be used fortire
imbalance detection. An imbalance will show up as
a certain pattern in the estimated sequence. Experi-
ments have shown that an imbalance caused by a 30
gram weight is detectable by this method.

Figure 6: The estimated teeth offsets from a toothed
wheel with 43 teeth.

This pre-processing means that the equipment has
to be connected directly to the wheel speed sensors.
That is, one drawback with vibration analysis not shared
by the approach in Section 5, is that CAN signals are
not enough.

Evaluation setup

To evaluate the advantages and short-coming of the
different approaches, a series of test drives were con-
ducted:

• The pressure was decreased by 15% and 30%,
respectively. For each pressure level, the driv-
ing style, surface and velocity were varied sys-
tematically.

• The methods were compared with respect to
their ability to detect small pressure changes,
robustness to the factors above, and detection
time.

FFT pressure estimation

A smoothed periodogram is here computed using FFT
and a low-pass filter. The automatically computed

peak level for each test drive is shown in Figure 7.
Off-line, a pressure decrease of 15 % is detectable,
but taking into account that the treshold has to be set
automatically and that a very low false alarm rate is
required, 30% decrease is more realistic. FFT is a
batch-wise data processing, so there is a certain de-
lay. In the figure, batches of 30 seconds of drive is
used. A drawback with the approach is a rather high
computational burden.

Figure 7: Vibration mode for different tire pressures
for 30 tests.

Model-based pressure estimation

The idea is to estimate the parameters in a second
order damper-spring model of the form

vt =
1

1 + a1q−1 + a2q−2
et,

wherevt is the wheel speed,et an unmeasured noise
signal andq is the shift operatorq−1vt = vt−1. The
parametersa1, a2 correspond to a certain vibration
mode. Model-based vibration analysis easily allows
a recursive implementation, so the vibration mode as
a function of time using the recursive least squares
(RLS) algorithm is shown in Figure 8. With this fil-
ter, we can get reliable detection of 30% pressure de-
crease within 5 seconds. The adaptive filter is pro-
cessing data at least with 100 Hz. The computa-
tion burden is slighly smaller but comparable with
the FFT-based approach.

The novel approach uses a Kalman filter which is
run in only 20 Hz. This filter has more degrees of



Figure 8: Estimated vibration mode using RLS as a
function of time for three pressure levels.

freedom at the same computational burden as RLS,
allowing a much better design for this purpose. Hold-
ing the tracking speed of RLS and Kalman filter the
same, Figure 9 shows a much more stable estimate.
That is, the new implementation is able to detect 15%
pressure changes as fast as RLS detects 30% changes,
with an implementation that requires almost 5 times
less computations.

Figure 9: Estimated vibration mode using the
Kalman filter as a function of time for three pressure
levels.

5 WHEEL RADIUS APPROACH TO TIRE PRES-
SURE INDICATION

Existing approaches to TPI are mostly based on static
consistency tests on wheel speeds, where the test statis-
tic is possibly low-pass filtered. As one example, not
pursued here, one can monitor

ω1

ω2
− ω3

ω4
.

The wheel speedsωi are enumerated as front left (1),
front right (2), rear left (3) and rear right (4) wheel,
respectively. This function of wheel speed is nomi-
nally zero when driving with constant speed on straight
paths or circle segments. A low-pass filtered version
of this signal having an abnormal deviation from 0
exceeding a certain threshold can be used for TPI.
However, the non-linear transformation of data gives
unpleasant statistical behavior, and the lack of robust-
ness to acceleration in bends, different friction levels,
“split µ”, tire wearness and so on limit the reliability
of this approach.

We have found that a model-based approach which
explicitly takes care of all the problems listed above
gives a significant increase in performance. The model-
based filters that are used here, are the road friction
indicator (RFI) filter described in Section 2, high per-
formance yaw rate (HPY) and absolute velocity indi-
cator (AVI) filters, the latter two ones described in an
accompanying paper, are instrumental for TPI. The
useful information is summarized in Table 1.

The deviationδr of average radius to nominal value
may be used for detectingdiffusion, that is when all
tires deflate slowly.

The conclusion from field tests were all approaches
have been compared, is that this latter method is su-
perior in performance in terms of accuracy, fast re-
sponse, robustness and computational complexity (low-
order models and low sampling frequency).

However, the other approaches may be a good
complement in certain situation, and the final sys-
tem may be a voting procedure of the individual al-
gorithms. For instance, the absolute differenceδr is
much harder to estimate than relative differencesδij,
so diffusion is a possible problem here, where vibra-
tion analysis may perform better.



Radius difference Estimation approach
δ13 RFI, left side of car
δ24 RFI, right side of car
δ12 HPY, front axle
δ34 HPY, rear axle
δr AVI

Table 1 Definition and estimation of relative tire ra-
dius differences. The wheels are enumer-
ated as front left (1), front right (2), rear
left (3) and rear right (4) wheel, respec-
tively. For example,δ12 is defined as(r1 −
r2)/rnom, wherernom is the nominal radius,
andri the tire radius on wheeli. δr denotes
the actual mean tire radius minus the nomi-
nal value.

6 CONCLUSIONS

Intelligent sensors measure information indirectly, by
making inference from other sensor signals. Two ex-
amples are road-tire friction and tire pressure, which
are very expensive to measure by dedicated sensors.
By measuring wheel speed signals accurately, it has
been demonstrated that inference of both friction and
pressure can be made. The novelty of friction estima-
tion here is a working prototype now approaching the
production phase. For tire pressure estimation, two
suggestions for improving performance were made.
First, for vibration analysis a model based Kalman
filter was proposed, which gives higher estimation
accuracy compared to algorithms proposed in liter-
ature, and an update frequency being only a fraction
of existing methods. Second, a wheel radius model-
based method is advocated. This is robust to a variety
of external factors, quick reaction time, computation-
ally simple and needs only information available on
the CAN bus.
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