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ABSTRACT

Risk-sensitive filters (RSF) put a penalty to higher-order mo-
ments of the estimation error compared to conventional fil-
ters as the Kalman filter minimizing the mean square error.
The result is a more cautious filter, which can be interpreted
as an implicit and automatic way to increase the state noise
covariance. On the other hand, the process of jittering, or
roughening, is well-known in particle filters to mitigate sam-
ple impoverishment. The purpose of this contribution is to in-
troduce risk-sensitive particle filters (RSPF) as an alternative
approach to mitigate sample impoverishment based on con-
structing explicit risk functions from a general class of factor-
izable functions.

Index Terms— Risk sensitive, particle filter

1. INTRODUCTION

Recursive implementations of Monte Carlo based statistical
signal processing [1] are known as particle filters, see [2, 3].
The research has since the paper [4] steadily intensified, see
the article collection [2], the survey [5], and the monograph
[6]. The particle filters may be a serious alternative for real-
time applications classically approached by the (extended)
Kalman filter. The more non-linear model, or the more non-
Gaussian noise, the more potential particle filters have, es-
pecially in applications where computational power is rather
cheap and the sampling rate is moderate.

The basic particle filter approach suffers from the problem
of sample degeneracy, also known as depletion or sample im-
poverishment. This means that after a while all particles but
a few ones will have negligible weights. By introducing an
additional noise to the samples the depletion problem can be
reduced. This technique is called jittering in [7], but a similar
approach was introduced in [4] under the name roughening.
In [8], the problem is handled by introducing an additional
Markov Chain Monte Carlo step to separate the samples.

In [4], the so-called prior editing method is discussed.
The estimation problem is delayed one time-step, so that the
likelihood can be evaluated at the next time step. The idea
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is to reject particles with sufficiently small likelihood values,
since they are not likely to be re-sampled. The auxiliary par-
ticle filter [9] is constructed in such a way that particles with
large predictive likelihoods are simulated directly.

Another technique is regularization. The basic idea is to
convolve each particle with a diffusion kernel before resam-
pling. This will prevent multiple copies of a few particles.
One may for instance use a Gaussian kernel where the vari-
ance acts a the bandwidth. The problem is that this variance
will increase the variance of the posterior distribution.

Recently, a risk-sensitive particle filter has been proposed
in [10] using practical arguments and a specific risk function
which measures how risky not tracking a particular area of
state space is. We must note that although the name ”risk-
sensitive particle filter” is a correct one since, in [10], the
sampling density of the standard particle filter is modified
so that more samples are generated in the ”risky” regions of
the state-space, this interpretation is not the same as the so
called ”risk-sensitive estimation” in especially control theory
and signal processing where one minimizes the expected ex-
ponential of (cumulative quadratic) estimation error.

In this study, we propose a general theoretical framework
yielding particle filters which minimizes a product cost func-
tion and we call the resulting filters as product particle filters.
Under this framework, the particle filter of [10], which we
will call as Thrun’s filter from this point on, can be shown
to minimize a product cost and the risk-sensitive particle fil-
ters (as understood in the context of control theory and as
described above) are a special case. In order to derive the
product particle filters, the reference probability method [11]
is used. Our approach for obtaining the recursively calculated
information state can be considered as a combination and/or
generalization of [12] where risk-sensitive filters are derived
for nonlinear systems and [13] where product estimators are
proposed for hidden Markov models.

2. RISK SENSITIVE FILTERING

We here explain the basic concepts of risk-sensitive filtering
in terms of the Kalman filter for a linear system

xk+1 = Axk + wk, Cov(wk) = Qk, (1a)
yk = Cxk + vk, Cov(vk) = Rk. (1b)



Defining the product form

Υk(ξ) =

[
k−1∏

l=0

ηl(x̂0:l−1, xl, x̂l|l)

]
ηk(x̂0:k−1, xk, ξ) (2)

ηk(x̂0:k−1, xk, ξ) = exp
{θ

2
(xk − ξ)T Σk(xk − ξ)

}
, (3)

where x̂0:k , {x̂0|0, x̂1|1, . . . , x̂k|k}, we consider the prob-
lem x̂k|k = arg minξ E [Υk(ξ)|y0:k].

Using a Taylor expansion of the cost function and let-
ting the exponential parameter θ approach zero, it is realized
that only the quadratic cost is minimized, which leads to the
Kalman filter solution. That is, the Kalman filter is a special
case of a risk-sensitive filter. When θ increases, higher order
moments appear in the cost, and the resulting filter can be ex-
pected to become more robust, in particular to unlikely events
in the tails of the involved noise distributions. On the other
hand, if θ is chosen too large, the RS filter becomes unstable.

It can be shown that the solution gives a recursion that
only modifies the time update of the covariance matrix in the
Kalman filter algorithm [12],

Pk+1|k = Ak

(
P−1

k|k − θΣ−1
k

)−1

AT
k + Qk (4a)

= AkPk|k
(
I + θΣ−1

k Pk|k
+ θ2Σ−1

k Pk|kΣ−1
k Pk|k + . . .

)
AT

k + Qk. (4b)

The latter series expansion holds if θ is small enough. This ex-
pression clearly shows that the exponential risk function can
be interpreted as a roughening instrument in that it increases
the covariance after the time update.

3. RISK-SENSITIVE NON-LINEAR FILTERING

We consider the following discrete-time nonlinear state space
model defined on a probability space (Ω,F ,P )

xk+1 = f(xk) + wk+1

yk = h(xk) + vk

(5)

where {xk ∈ Rn} is the state sequence with initial distri-
bution x0 ∼ p0(x0), {yk ∈ Rm} is the noisy observation
sequence,{wk ∈ Rn} is a white process noise sequence with
distribution wk ∼ pw(wk), {vk ∈ Rm} is a white measure-
ment noise sequence independent from the process noise wk

with distribution vk ∼ pv(vk). The functions f(.) and h(.)
are measurable and nonlinear functions of the state xk. The
classical exponential form of the risk function can be moti-
vated by the explicit algebra leading to (4). In a general non-
linear filtering framework, any function that punishes higher
order moments can be used. We propose the following prod-
uct form.

Γ0:k(ζ) = Γ̂0:k−1γk(x̂0:k−1, xk, ζ) (6)

Γ̂0:k =
k∏

i=0

γi(x̂0:i−1, xi, x̂i|i) (7)

The aim is to calculate the state estimates x̂k|k defined as

x̂k|k , arg min
ζ

E [Γ0:k(ζ)|y0:k] . (8)

If we work with a different probability measure P under which
the measurement sequence {yk} is independent identically
distributed with density function yk ∼ pv(yk) for all k, we
see that

x̂k , arg min
ζ

E
[
ΛkΓ0:k(ζ)|y0:k

]
. (9)

where λk , p(yk|xk)
pv(yk) , Λk ,

∏k
l=0 λl and E denotes the ex-

pectation operation under the probability measure P . The re-
cursive calculation of the expected value in (9) can be done
using the unnormalized density function αk|k−1(x) defined
as

αk|k−1(x)dx , E
[
Λk−1Γ̂0:k−1I{xk∈dx}|y0:k−1

]
(10)

where the function IA(ω) denotes the indicator function of
the set A. Defining the normalized densities βk|k−1(x) ,
αk(x)/

∫
Rn αk(ξ)dξ we can obtain the following lemma.

Lemma 1 The normalized density βk|k−1(x) satisfies the fol-
lowing recursion.

βk|k−1(xk) =
1
ck

∫

Rn

p(xk|xk−1)p(yk−1|xk−1)

×γk−1(x̂0:k−2, xk−1, x̂k−1|k−1)βk−1|k−2(xk−1)dxk−1.(11)

where ck is a normalization factor.

Proof: Omitted in this draft version.
The density function βk|k−1(.) (as well as αk|k−1(.) ) is

actually an information state for the expectation in (9) and
hence the estimate x̂k|k.

4. RISK-SENSITIVE PARTICLE FILTER

The infinite dimensional recursion can be used to generate a
particle filter as follows: At each time step k, the information
state βk|k−1(xk) is approximated with N samples (particles)
x

(i)
k as βk|k−1(xk) ≈ 1

N

∑N
i=1 δ(xk − x

(i)
k ) where δ(.) is the

delta-Dirac function. Substituting this approximation into the
recursion (11), we obtain the following particle filter.

Algorithm 1

1. Initialize the particles {x(i)
0 }N

i=1 ∼ p0(x0). Calculate
the estimate x̂0|0. Set k = 1.

2. Measurement Update: Calculate importance weights
{π(i)

k−1}N
i=1 as

π
(i)
k−1 = p(yk−1|x(i)

k−1)γk−1(x̂0:k−2, x
(i)
k−1, x̂k−1|k−1)

and normalize π̄
(i)
k−1 = π

(i)
k−1/

∑N
j=1 π

(j)
k−1.



3. Resampling: Draw N particles {x(i)
k−1|k−1}N

i=1 with re-
placement according to

P
(
x

(i)
k−1|k−1 = x

(j)
k−1

)
= π̄

(j)
k−1. (12)

4. Time Update: Obtain predicted particles {x(i)
k }N

i=1 ac-
cording to x

(i)
k ∼ p(xk|x(i)

k−1|k−1).

5. Calculate the estimate x̂k|k. Set k = k + 1, go to step
2.

The algorithm described above differs from the standard par-
ticle filter only at Step 2 where the importance weights are
formed using both measurement likelihood and the risk func-
tion. The use of the risk function modifies the resampling step
of the algorithm so that more samples will be generated from
those parts of the state space for which the risk function γk(.)
assigns more risk.

4.1. Generalizations

Once the problem is transferred into particle filtering domain,
the following generalizations easily follow:

1. The product functions γk(.) appearing can be allowed
to change from particle to particle i.e., the function can
be γ

(i)
k (.).

2. The (previous) particles can be input to functions γk(.)
i.e., we can add x

(1:N)
0:k−1 defined by

x
(1:N)
0:k−1 , {{x(i)

0 }N
i=1, {x(i)

1 }N
i=1, . . . , {x(i)

k−1}N
i=1}(13)

and x
(1:N)
k defined as x

(1:N)
k , {x(i)

k }N
i=1 as additional

inputs to functions γk(.) (or γ
(i)
k (.) considering the first

generalization.).

4.2. Special Cases

Thrun’s filter [10] is obtained by making the specific selection

γ
(i)
k (. . .) =

{
r(x) k = 0
r(x)

r(x
(i)
k−1)

k > 0 . (14)

It then follows that the samples {x(i)
k|k}N

i=1 generated by the
resampling step of (the generalized version of) Algorithm 1
are distributed according to 1

τk
r(xk)p(xk|y0:k) where τk is

the normalization constant.
Moreover, a risk-sensitive particle filter is found if we

make the risk function an exponential one as follows.

γk(x̂0:k−1, xk, x̂k|k) = exp
{θ

2
(xk− x̂k|k)T Mk(xk− x̂k|k)

}

where Mk > 0 ∈ Rn×n and θ > 0 ∈ R.
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